Unconstrained Minimization (II)

Lijun Zhang <u>zlj@nju.edu.cn</u> <u>http://cs.nju.edu.cn/zlj</u>

Outline

Gradient Descent Method

Convergence Analysis

Examples

General Convex Functions
 Convergence Analysis
 Extensions

Outline

□ Gradient Descent Method

Convergence Analysis

Examples

General Convex Functions
 Convergence Analysis
 Extensions

General Descent Method

□ The Algorithm

Given a starting point $x \in \text{dom } f$

Repeat

- 1. Determine a descent direction Δx .
- **2**. Line search: Choose a step size $t \ge 0$.
- **3**. Update: $x = x + t\Delta x$.

until stopping criterion is satisfied.

Descent Direction

 $\nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} < 0$

Gradient Descent Method

□ The Algorithm

Given a starting point $x \in \text{dom } f$

Repeat

- 1. $\Delta x \coloneqq -\nabla f(x)$.
- 2. Line search: Choose step size *t* via exact or backtracking line search.
- **3**. Update: $x \coloneqq x + t\Delta x$.

until stopping criterion is satisfied.

Stopping Criterion

 $\|\nabla f(x)\|_2 \le \eta$

Outline

□ Gradient Descent Method

Convergence Analysis

Examples

General Convex Functions
 Convergence Analysis
 Extensions

Extensions

Preliminary

□ $x^{(k+1)} = x^{(k)} + t^{(k)}\Delta x^{(k)} \Rightarrow x^+ = x + t\Delta x$ □ $\Delta x = -\nabla f(x)$ □ $f(\cdot)$ is both strongly convex and smooth $mI \leq \nabla^2 f(x) \leq MI$, $\forall x \in S$ □ Define $\tilde{f}: \mathbf{R} \to \mathbf{R}$ as

$$\tilde{f}(t) = f(x - t\nabla f(x))$$

A quadratic upper bound on \tilde{f} $\tilde{f}(t) \le f(x) - t \|\nabla f(x)\|_2^2 + \frac{Mt^2}{2} \|\nabla f(x)\|_2^2$

Analysis for Exact Line Search

1. Minimize Both Sides of

$$\tilde{f}(t) \le f(x) - t \|\nabla f(x)\|_2^2 + \frac{Mt^2}{2} \|\nabla f(x)\|_2^2$$

- Left side: $\tilde{f}(t_{\text{exact}})$, where t_{exact} is the step length that minimizes \tilde{f}
- Right side: t = 1/M is the solution $f(x^+) = \tilde{f}(t_{\text{exact}}) \le f(x) - \frac{1}{2M} \|\nabla f(x)\|_2^2$
- 2. Subtracting p^* from Both Sides $f(x^+) - p^* \le f(x) - p^* - \frac{1}{2M} \|\nabla f(x)\|_2^2$

Analysis for Exact Line Search

- 3. $f(\cdot)$ is strongly convex on S $\nabla^2 f(x) \ge mI, \quad \forall x \in S$ $\Rightarrow \|\nabla f(x)\|_2^2 \ge 2m(f(x) - p^*)$
- 4. Combining

 $f(x^+) - p^* \le (1 - m/M)(f(x) - p^*)$

5. Applying it Recursively $f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$

c = 1 - m/M < 1

• $f(x^{(k)})$ coverges to p^* as $k \to \infty$

- log(1/c) is a function of the condition number M/m
- When *M*/*m* is large

 $\log(1/c) = -\log(1 - m/M) \approx m/M$

Iteration Complexity

 f(x^(k)) - p* ≤ ε after at most

 log((f(x⁽⁰⁾) - p*)/ε)) ≈ M/m log((f(x⁽⁰⁾) - p*)/ε)) iterations

 log((f(x⁽⁰⁾) - p*)/ε)) indicates that initialization is important

- log(1/c) is a function of the condition number M/m
- When *M*/*m* is large

 $\log(1/c) = -\log(1 - m/M) \approx m/M$

- log(1/c) is a function of the condition number M/m
- Linear Convergence
 - Error lies below a line on a log-linear plot of error versus iteration number

Backtracking Line Search **given** a descent direction Δx for f at $x \in \text{dom } f, \alpha \in$ $(0, 0.5), \beta \in (0, 1)$ $t \coloneqq 1$ while $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^{\mathsf{T}} \Delta x$, $t \coloneqq \beta t$ 1. $\tilde{f}(t) \leq f(x) - \alpha t \|\nabla f(x)\|_2^2$ for all $0 \leq t \leq 1/M$ $0 \le t \le \frac{1}{M} \Rightarrow -t + \frac{Mt^2}{2} \le -\frac{t}{2}$ $\tilde{f}(t) \le f(x) - t \|\nabla f(x)\|_2^2 + \frac{Mt^2}{2} \|\nabla f(x)\|_2^2$

Backtracking Line Search **given** a descent direction Δx for f at $x \in \text{dom } f, \alpha \in$ $(0, 0.5), \beta \in (0, 1)$ $t \coloneqq 1$ while $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^{\mathsf{T}} \Delta x$, $t \coloneqq \beta t$ 1. $\tilde{f}(t) \leq f(x) - \alpha t \|\nabla f(x)\|_2^2$ for all $0 \leq t \leq 1/M$ $\tilde{f}(t) \le f(x) - (t/2) \|\nabla f(x)\|_2^2$ $\leq f(x) - \alpha t \|\nabla f(x)\|_2^2$ ■ *a* < 1/2

2. Backtracking Line Search Terminates Either with t = 1 $f(x^+) \le f(x) - \alpha \|\nabla f(x)\|_2^2$ Or with a value $t \ge \beta/M$ $f(x^+) \le f(x) - (\beta \alpha/M) \|\nabla f(x)\|_2^2$ So,

 $f(x^+) \le f(x) - \min\{\alpha, \beta \alpha / M\} \|\nabla f(x)\|_2^2$

3. Subtracting p^* from Both Sides $f(x^+) - p^* \le f(x) - p^* - \min\{\alpha, \beta \alpha / M\} \|\nabla f(x)\|_2^2$

4. Combining with Strong Convexity $(2\beta\alpha m)$

$$f(x^+) - p^* \le \left(1 - \min\left\{2m\alpha, \frac{2\beta\alpha m}{M}\right\}\right)(f(x) - p^*)$$

- 5. Applying it Recursively $f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$ $c = 1 - \min \left\{ 2m\alpha, \frac{2\beta\alpha m}{M} \right\} < 1$
 - $f(x^{(k)})$ converges to p^* with an exponent that depends on the condition number M/m
 - Linear Convergence

Outline

Gradient Descent Method
 Convergence Analysis

Examples

General Convex Functions
 Convergence Analysis
 Extensions

□ A Quadratic Objective Function

$$f(x) = \frac{1}{2} (x_1^2 + \gamma x_2^2), \qquad \gamma > 0$$

- The optimal point $x^* = 0$
- The optimal value is 0
- The Hessian of f is constant and has eigenvalues 1 and γ
- $\square m = \min\{1, \gamma\}, M = \max\{1, \gamma\}$
- Condition number

$$\frac{\max\{1,\gamma\}}{\min\{1,\gamma\}} = \max\left\{\gamma,\frac{1}{\gamma}\right\}$$

A Quadratic Objective Function $f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2), \qquad \gamma > 0$

Gradient Descent Method

Exact line search starting at $x^{(0)} = (\gamma, 1)$

 $x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, x_2^{(k)} = \gamma \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$ Convergence is exactly linear

$$f(x^{(k)}) = \frac{\gamma(\gamma+1)}{2} \left(\frac{\gamma-1}{\gamma+1}\right)^{2k} = \left(\frac{\gamma-1}{\gamma+1}\right)^{2k} f(x^{(0)})$$

Reduced by the factor $|(\gamma - 1)/(\gamma + 1)|^2$

Comparisons

$$m = \min\{1, \gamma\}, M = \max\{1, \gamma\}$$

- From our general analysis, the error is reduced by $1 \frac{m}{M}$
- From the closed-form solution, the error is reduced by

$$\left(\frac{\gamma-1}{\gamma+1}\right)^2 = \left(\frac{1-m/M}{1+m/M}\right)^2$$

Comparisons

$$m = \min\{1, \gamma\}, M = \max\{1, \gamma\}$$

- From our general analysis, the error is reduced by $1 \frac{m}{M}$
- From the closed-form solution, the error is reduced by

$$\left(\frac{\gamma-1}{\gamma+1}\right)^2 = \left(\frac{1-m/M}{1+m/M}\right)^2 = \left(1-\frac{2m/M}{1+m/M}\right)^2$$

When *M/m* is large, the iteration complexity differs by a factor of 4

Experiments

For γ not far from one, convergence is rapid

Figure 9.2 Some contour lines of the function $f(x) = (1/2)(x_1^2 + 10x_2^2)$. The condition number of the sublevel sets, which are ellipsoids, is exactly 10. The figure shows the iterates of the gradient method with exact line search, started at $x^{(0)} = (10, 1)$.

□ The Objective Function

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

Gradient descent method with backtracking line search

• $\alpha = 0.1, \beta = 0.7$

□ The Objective Function

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

Gradient descent method with exact line search

A Non-Quadratic Problem in R²

- **Comparisons**
 - Both are linear, and exact l.s. is faster

A Problem in \mathbf{R}^{100}

D A Larger Problem $f(x) = c^{\mathsf{T}}x - \sum_{i=1}^{m} \log(b_i - \alpha_i^{\mathsf{T}}x)$

$$m = 500 \text{ and } n = 100$$

Gradient descent method with backtracking line search

$$\alpha = 0.1, \beta = 0.5$$

Gradient descent method with exact line search

A Problem in \mathbf{R}^{100}

Comparisons

Both are linear, and exact l.s. is only a bit faster

Gradient Method and Condition Number

A Larger Problem $f(x) = c^{\mathsf{T}} x - \sum_{i=1}^{\mathsf{T}} \log(b_i - \alpha_i^{\mathsf{T}} x)$ Replace x by $T\bar{x}$

$$T = \operatorname{diag}(1, \gamma^{1/n}, \gamma^{2/n}, \dots, \gamma^{(n-1)/n})$$

A Family of Optimization Problems

$$\bar{f}(\bar{x}) = c^{\mathsf{T}}T\bar{x} - \sum_{i=1}^{m} \log(b_i - \alpha_i^{\mathsf{T}}T\bar{x})$$

Indexed by γ

□ Number of iterations required to obtain $\bar{f}(\bar{x}^k) - \bar{p}^* < 10^{-5}$

Gradient Method and Condition

□ The condition number of the Hessian $\nabla^2 \bar{f}(\bar{x}^*)$ at the optimum

The larger the condition number, the larger the number of iterations

Conclusions

- 1. The gradient method often exhibits approximately linear convergence.
- 2. The convergence rate depends greatly on the condition number of the Hessian, or the sublevel sets.
- An exact line search sometimes improves the convergence of the gradient method, but the effect is not large.
- 4. The choice of backtracking parameters α, β has a noticeable but not dramatic effect on the convergence.

Outline

Gradient Descent Method

Convergence Analysis

Examples

General Convex Functions
 Convergence Analysis

Extensions

General Convex Functions

□ $f(\cdot)$ is convex □ $f(\cdot)$ is Lipschitz continuous $\|\nabla f(x)\|_2 \le G$

Gradient Descent Method

Given a starting point $x^{(1)} \in \text{dom } f$ **For** k = 1, 2, ..., K **do** Update: $x^{(k+1)} = x^{(k)} - t^{(k)} \nabla f(x^{(k)})$ **End for Return** $\bar{x} = \frac{1}{K} \sum_{k=1}^{K} x^{(k)}$

Outline

Gradient Descent Method

- Convergence Analysis
- Examples

General Convex Functions
 Convergence Analysis

Extensions

Define
$$D = ||x^{(1)} - x^*||_2$$

Let $t^{(k)} = \eta, k = 1, ..., K$
 $f(x^{(k)}) - f(x^*)$
 $\leq \nabla f(x^{(k)})^T (x^{(k)} - x^*)$
 $= \frac{1}{\eta} (x^{(k)} - x^{(k+1)})^T (x^{(k)} - x^*)$
 $= \frac{1}{2\eta} (||x^{(k)} - x^*||_2^2 - ||x^{(k+1)} - x^*||_2^2 + ||x^{(k)} - x^{(k+1)}||_2^2)$

Define $D = ||x^{(1)} - x^*||_2$ \Box Let $t^{(k)} = \eta, k = 1, ..., K$ $f(x^{(k)}) - f(x^*)$ $\leq \nabla f(x^{(k)})^{\top}(x^{(k)}-x^*)$ $= \frac{1}{n} \left(x^{(k)} - x^{(k+1)} \right)^{\mathsf{T}} \left(x^{(k)} - x^* \right)$ $= \frac{1}{2n} \left(\left\| x^{(k)} - x^* \right\|_2^2 - \left\| x^{(k+1)} - x^* \right\|_2^2 \right) + \frac{\eta}{2} \left\| \nabla f(x^{(k)}) \right\|_2^2$ $\leq \frac{1}{2n} \left(\left\| x^{(k)} - x^* \right\|_2^2 - \left\| x^{(k+1)} - x^* \right\|_2^2 \right) + \frac{\eta}{2} G^2$

\Box So, $f(x^{(k)}) - f(x^*) \le \frac{1}{2n} \left(\left\| x^{(k)} - x^* \right\|_2^2 - \left\| x^{(k+1)} - x^* \right\|_2^2 \right) + \frac{\eta}{2} G^2$ \Box Summing over k = 1, ..., K $\sum_{k=1}^{K} f(x^{(k)}) - Kf(x^*) \le \frac{1}{2n}D^2 + \frac{\eta K}{2}G^2$ Dividing both sides by K $\frac{1}{K} \sum_{k=1}^{K} f(x^{(k)}) - f(x^*) \le \frac{1}{K} \left(\frac{1}{2n} D^2 + \frac{\eta K}{2} G^2 \right)$

$$= \frac{D^2}{2\eta K} + \frac{\eta}{2} G^2$$

□ By Jensen's Inequality

$$f(\bar{x}) - f(x^*) = f\left(\frac{1}{K}\sum_{k=1}^{K} x^{(k)}\right) - f(x^*)$$
$$\leq \frac{1}{K}\sum_{t=1}^{T} f(x^{(k)}) - f(x^*)$$
$$\leq \frac{D^2}{2\eta K} + \frac{\eta}{2}G^2$$
$$= \frac{GD}{\sqrt{K}}$$

Outline

Gradient Descent Method

Convergence Analysis

Examples

General Convex Functions
 Convergence Analysis
 Extensions

 \square How to Ensure $\|\nabla f(x)\|_2 \leq G$? Add a Domain Constraint min f(x)s.t. $x \in X$ Can model any constrained convex optimization problem Gradient Descent with Projection $\hat{x}^{(k+1)} = x^{(k)} - t^{(k)} \nabla f(x^{(k)}), \qquad x^{(k+1)} = P_{\mathbf{x}}(\hat{x}^{(k+1)})$ Property of Euclidean Projection $\|x^{(k+1)} - x^*\|_2 = \|P_X(\hat{x}^{(k+1)}) - P_X(x^*)\|_2 \le \|\hat{x}^{(k+1)} - x^*\|_2$

Gradient Descent with Projection

□ The Problem min f(x)s.t. $x \in X$ The Algorithm **Given** a starting point $x^{(1)} \in \text{dom } f$ For k = 1, 2, ..., K do Update: $\hat{x}^{(k+1)} = x^{(k)} - t^{(k)} \nabla f(x^{(k)})$ Projection: $x^{(k+1)} = P_x(\hat{x}^{(k+1)})$ End for Return $\bar{x} = \frac{1}{\kappa} \sum_{k=1}^{K} x^{(k)}$ $\Box \text{ Assumptions } \|\nabla f(x)\|_2 \leq G,$ $\forall x \in X$

Define $D = ||x^{(1)} - x^*||_2, x^* \in X$ \Box Let $t^{(k)} = \eta, k = 1, ..., K$ $f(x^{(k)}) - f(x^*)$ $\leq \nabla f(x^{(k)})^{\dagger}(x^{(k)} - x^{*})$ Property of Euclidean $= \frac{1}{n} \left(x^{(k)} - \hat{x}^{(k+1)} \right)^{\mathsf{T}} \left(x^{(k)} - x^* \right) \qquad \begin{array}{c} \text{Projectly} \\ \text{Projection} \end{array}$ $\leq \frac{1}{2\eta} \left(\left\| x^{(k)} - x^* \right\|_2^2 - \left\| \hat{x}^{(k+1)} - x^* \right\|_2^2 \right) + \frac{\eta}{2} G^2$ $\leq \frac{1}{2n} \left(\left\| x^{(k)} - x^* \right\|_2^2 - \left\| x^{(k+1)} - x^* \right\|_2^2 \right) + \frac{\eta}{2} G^2$

Summary

Gradient Descent Method

Convergence Analysis

Examples

General Convex Functions
 Convergence Analysis
 Extensions