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Basic Norm Approximation

Norm Approximation Problem
min ||Ax — b||

B A€ R™" peR™ are problem data

B x € R" is the variable

m ||-]| isanormon R"
B Approximation solution of Ax = b, in |||

Residual = Ax — b

A Convex Problem
B bheR(A), the optimal value is O
B b & R(A), more interesting




Basic Norm Approximation

Approximation Interpretation
Ax = xqaq + -+ x50,
®m a..,a, € R™ are the columns of A

B Approximate the vector b by a linear
combination

B Regression problem
v aq,..,a, are regressors
v x,a; + -+ x,a, IS the regression of b



Basic Norm Approximation

Estimation Interpretation
B Consider a linear measurement model

y=Ax +v
B y e R™is avector measurement

B x € R" is a vector of parameters to be
estimated

B v e R™|s some measurement error that is
unknown, but presumed to be small

B Assume smaller values of v are more

plausible & _  omin, 4z — y|



Basic Norm Approximation

Geometric Interpretation

B Consider the subspace A = R(4) € R™, and
a point b € R™

B A projection of the point b onto the
subspace A, in the norm |||

min |lu — b
s.t. ue4A

B Parametrize an arbitrary element of R(A4)
as u = Ax, we see that norm approximation
IS equivalent to projection



Basic Norm Approximation

Weighted Norm Approximation

Problems
min ||W(Ax — b)]||

B W e R™™ js called the weighting matrix

B A norm approximation problem with
norm ||-||, and data A = WA,b = Wb

B A norm approximation problem with data
A and b, and the W-weighted norm

1zllw = lIWZ]



Basic Norm Approximation

Least-Squares Approximation

min ||[Ax = b|5=rf+1f+ - +712

B The minimization of a convex quadratic
function

f(x) =x"TATAx —2bTAx+ b"h
B A point x minimizes f If and only if
Vfi(x) =2ATAx—24"h =0
B Normal equations
ATAx=A"b



Basic Norm Approximation

Chebyshev or Minimax Approximation
min |[[Ax — bl = max{|nr|, ..., 5.}

B Be cast as an LP

min ¢t

s.t. —tl<Ax—-b<tl
with variables x e R" and t € R
Sum of Absolute Residuals Approximation

min ||Ax — bll; = |rq| + - + [13,]

B Be cast as an LP

min 17t

s.t. —t<Ax—-b<t
with variables x € R" and t € R™
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[,-norm Approximation

1 [,-norm approximation, for 1 <p < o
([P + - + |1 [P)VP

The equivalent problem with objective

13| + o+ |1 P

B A separable and symmetric function of the
residuals

B Objective depends only on the amplitude
distribution of the residuals



Penalty Function Approximations

The Problem

min  ¢(ry) + -+ P(ny)
s.tt. r=Ax—>»

B ¢:R - R is called the penalty function
B ¢ IS convex

B ¢ Is symmetric, honnegative, and
satisfies ¢(0) = 0

B A penalty function assesses a cost or
penalty for each component of residual



Example

£,-norm Approximation

¢(w) = |ul?
B Quadratic penalty: ¢(u) = u?

B Absolute value penalty: ¢(u) = |u|
Deadzone-linear Penalty Function

¢(u):{0 lul < a

lul—a |u|l>a

The Log Barrier Penalty Function

0 lul = a

P(u) = {_az log(1 -~ (w/a)?) lul <a
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Figure 6.1 Some common penalty functions: the quadratic penalty function
&(u) = u?, the deadzone-linear penalty function with deadzone width a =
1/4, and the log barrier penalty function with limit a = 1.

B Log barrier penalty function assesses an infinite
penalty for residuals larger than a

B Log barrier function is very close to the
quadratic penalty for |u/a| < 0.25



Discussions

Roughly speaking, ¢(u) Is a measure of
our dislike of a residual of value u

If ¢ Is very small for small u, It means
we care very little if residuals have
these values

If ¢ (u) grows rapidly as u becomes
large, It means we have a strong dislike
for large residuals

If ¢ becomes infinite outside some
Interval, it means that residuals outside
the interval are unacceptable




Discussions

¢1(U) = lu|. ¢,(u) = u’

For small u we have ¢,(u) » ¢,(u), so £;-norm
approximation puts relatively larger emphasis
on small residuals

B The optimal residual for the £;-norm
approximation problem will tend to have more
zero and very small residuals

m For large u we have ¢,(u) >» ¢,(u), so £;-norm
approximation puts less weight on large
residuals

B The ¢,-norm solution will tend to have
relatively fewer large residuals
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Observations of Penalty
Functions

[

[

The ¢£;-norm penalty puts the most weight on small
residuals and the least weight on large residuals.

The ¢,-norm penalty puts very small weight on
small residuals, but strong weight on large
residuals.

The deadzone-linear penalty function puts no
weight on residuals smaller than 0.5, and relatively
little weight on large residuals.

The log barrier penalty puts weight very much like
the ¢,-norm penalty for small residuals, but puts
very strong weight on residuals larger than around
0.8, and infinite weight on residuals larger than 1.



Observations of Amplitude
Distributions

[l For the #;-optimal solution, many residuals are
either zero or very small. The ¢;-optimal solution
also has relatively more large residuals.

[ The ¢,-norm approximation has many modest
residuals, and relatively few larger ones.

[l For the deadzone-linear penalty, we see that
many residuals have the value +0.5, right at the
edge of the ‘free’ zone, for which no penalty is
assessed.

[0 For the log barrier penalty, we see that no
residuals have a magnitude larger than 1, but
otherwise the residual distribution is similar to the
residual distribution for £,-norm approximation.
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Approximation with Constraints

Add Constraints to
min ||Ax — b||

B Rule out certain unacceptable
approximations of the vector b

B Ensure that the approximator Ax satisfies
certain properties

B Prior knowledge of the vector x to be
estimated

B Prior knowledge of the estimation error v

B Determine the projection of a point b on
a set more complicated than a subspace



Approximation with Constraints

Nonnegativity Constraints on
Variables

min ||Ax — b||

s.t. x=0

B Estimate a vector x of parameters known
to be nonnegative

B Determine the projection of a vector b
onto the cone generated by the columns
of A

B Approximate b using a nonnegative
linear combination of the columns of A



Approximation with Constraints®

Variable Bounds

min ||Ax — b||
s.t. I<x<u

B Prior knowledge of intervals in which
each variable lies

B Determine the projection of a vector b

onto the image of a box under the linear
mapping induced by A



Approximation with Constraints

Probability Distribution
min ||[Ax — b||
s.t. x=0,1"x=1
B Estimation of proportions or relative frequencies

B Approximate b by a convex combination of the
columns of A

Norm Ball Constraint
min ||Ax — b||
s.t. |lx—x0ll £d

B x, Is prior guess of what the parameter x is, and
d I1s the maximum plausible deviation
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| east-norm Problems

Basic least-norm Problem

min ||x||
s.t. Ax=0>b

B AeR™" peR™
x € RY ||]| is a norm on R"

B The solution is called a least-norm
solution of Ax = b.

B A convex optimization problem
B Interesting when m <n



| east-norm Problems

Reformulation as Norm
Approximation Problem
B Let x, be any solution of Ax =b

B Let Z € R™* be a matrix whose columns
are a basis for the nullspace of A.

{x|Ax = b} = {xy + Zu|u € R¥}

B The least-norm problem can be
expressed as

min ||xo + Zu||



| east-norm Problems

Estimation interpretation

B We have m < n perfect linear measurement,
given by Ax = b

B Our measurements do not completely
determine x

B Suppose our prior information, is that x Is
more likely to be small than large.

B Choose the parameter vector x which is
smallest among all parameter vectors that
are consistent with the measurements



| east-norm Problems

Geometric interpretation

The feasible set {x|Ax = b} is affine

The objective Is the distance between x
and the point 0

Find the point in the affine set with
minimum distance to 0

Determine the projection of the point O
on the affine set {x|Ax = b}



| east-norm Problems

Least-squares Solution of Linear
Equations min x|
s.t. Ax=0b
B The optimality conditions
2x*+ATv* =0 Ax* =D

v" v is the dual variable

B The Solution
1

1
x* = —EATU* — —EAATU* =b

—> v*=-2(44")"1h,x* = AT(AA")1b



| east-norm Problems

Least-penalty Problems

min = ¢ (x1) + -+ p(xy)
s.t. Ax=0b>

B ¢:R - R is convex, honnegative and
satisfies ¢(0) =0
B The penalty function value ¢(u)

quantifies our dislike of a component of x
having value u

B Find x that has least total penalty,
subject to the constraint Ax = b



| east-norm Problems

Sparse Solutions via Least £{-norm
min ||x|l;
s.t. Ax=0b

B Tend to produce a solution x with a large
number of components equal to 0

B Tend to produce sparse solutions of Ax =
b, often with m nonzero components



| east-norm Problems

Sparse Solutions via Least £{-norm
min  [Jx|[;
s.t. Ax=0b

Find solutions of Ax = b that have
only m nonzero components

B /is a submatrix of 4
B X and subvector of x
B Solve A¥=b
v If there is a solution, we are done
B Complexity: n!/(m!(n —m)!)
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Bi-criterion Formulation

A (convex) Vector Optimization
Problem with Two Objectives

min(w.r.t.R%) (||4x = b||, [IxID

B Find a vector x that is small
B Make the residual Ax — b small

B Optimal trade-off between the two
objectives

v' The minimum value of ||x|| is 0 and the residual
norm is ||b||

v Let C denote the set of minimizers of ||Ax — b|],
and then any minimum norm point in C is
Pareto optimal




Regularization

Weighted Sum of the Objectives
min |[Ax — b|| + y||x|l

B y > 0is a problem parameter

B A common scalarization method used to
solve the bi-criterion problem

B As y varies over (0,), the solution
traces out the optimal trade-off curve

Weighted Sum of Squared Norms

min ||Ax — bl|* + y||x||?



Regularization

Tikhonov Regularization
min |[Ax — b|l5 + Sl|x||5 = xT(ATA+6Dx —2bTAx +bTh
B Analytical solution

x=(ATA+60)71ATD

B Since A"A + 61 > 0 for any § > 0, the
Tikhonov regularized least-squares
solution requires no rank assumptions on
the matrix A



Regularization

£,-norm Regularization
min ||[Ax — bl|, + yllxl;

B Find a sparse solution

B The residual is measured with the
Euclidean norm and the regularization is
done with an ¢;-norm

B By varying the parameter y we can
sweep out the optimal trade-off curve
between ||Ax — b||, and ||x]|,



Example

Regressor Selection Problem
min ||Ax — b||,
s.t. card(x) <k

B One straightforward approach is to check
every possible sparsity pattern in x with
k nonzero entries

B For a fixed sparsity pattern, we can find
the optimal x by solving a least-squares
problem

B Complexity: n!/(k!(n — k)!)




Example

Regressor Selection Problem
min ||Ax — b||,
s.t. card(x) <k

B A good heuristic approach is to solve the
following problem for different y
min ||[Ax — bll; + yllx|l;
B Find the smallest value of y that results
in a solution with card(x) <k

B We then fix this sparsity pattern and find
the value of x that minimizes ||Ax — b||,




Example
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Figure 6.7 Sparse regressor selection with a matrix A € R'""**°. The circles
on the dashed line are the Pareto optimal values for the trade-off between
the residual ||Ax — bl|2 and the number of nonzero elements card(z). The
points indicated by circles on the solid line are obtained via the /;-norm
regularized heuristic.



Outline

Norm Approximation

B Basic Norm Approximation

B Penalty Function Approximation
B Approximation with Constraints

Least-norm Problems
Regularized Approximation

Classification

B |Linear Discrimination

B Support Vector Classifier
B Logistic Regression




Classification

1 Given two sets of points in R"
{x{, ..., xy} @aNd {yq, ..., yir}

1 Find a function f:R" — R
f(x)>0,i=1,..,N, f(y)<0,i=1,..,M

B Positive on the first set and negative on
the second

B f orits O-level set {x|f(x) = 0},
separates, classifies, or discriminates the
two sets of points



Linear Discrimination

1 Affine function f(x) = a'x—b

a'x;—b>0,i=1,..,N,
a'y, -b<0,i=1,..,M

B A hyperplane that separates the two
sets of points

1 The strict inequalities are
homogeneous In a and b

B Equivalent conditions

a'x;,—-b=>1,i=1,..,N,
a'y, -b<-1,i=1,..,.M




Example

Figure 8.8 The points x1,...,zn are shown as open circles, and the points
Y1, ...,yn are shown as filled circles. These two sets are classified by an
affine function f, whose O-level set (a line) separates them.



Robust Linear Discrimination

Seek the function that gives the
maximum possible ‘gap’ between

x; and y; o

s.t. a'x;—b=>ti=1,..,N
a'y, -b<—-t,i=1,...M
lall; =1

B o IS normalized

B The optimal value t* is positive if and
only if the two sets of points can be
linearly discriminated



Example

If |lall, =1, a"x; — b is the
Euclidean distance from
the point x; to the
separating hyperplane
a'z=>b

b —a'y; is the distance

from y; to the hyperplane

Figure 8.9 By solving the robust linear discrimination problem (8.23) we
find an affine function that gives the largest gap in values between the two
sets (with a normalization bound on the linear part of the function). Ge-
ometrically, we are finding the thickest slab that separates the two sets of

points.
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Support Vector Classifier

1 When the two sets of points
cannot be linearly separated

1 One that minimizes the number of
points misclassified
B Unfortunately, this is in general a

difficult combinatorial optimization
problem



Support Vector Classifier

1 When the two sets of points
cannot be linearly separated

] Relaxation a'x;—-b=1,i=1,..,N,
a'y, -b<-1,i=1,..,.M

a'x;—b>1-u;,i=1,..,N,
a'y,—-b<-(1-v),i=1,...M
Nonnegative variables u4,...,uy and v, ..., vy

B When u =v =0, we recover the original
constraints

B By making u and v large enough, these
Inequalities can always be made feasible



Support Vector Classifier

Our goal Is to find a,b and sparse
nonnegative u and v that satisfy the
Inequalities
We can minimize the sum of the
variables u; and v;
min 1'u+1"v
s.t. a'x;—-b=1-u,i=1,..,N
a'y, -b<-(1-v),i=1,..,.M
uz0,v>=0

B When 0 <u; <1, x; Is classified correctly
by a’x — b, but still incurs a loss u;




Example
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Figure 8.10 Approximate linear discrimination via linear programming. The
points xy,...,: r50, shown as open circles, cannot be linearly separated from
the points .. ... ys0. shown as filled circles. The classifier shown as a solid
line was obtained by solving the LP (8.25). This classifier misclassifies one
point. The dashed lines are the hyperplanes a’ z — b = 1. Four points are

correctly classified, but lie in the slab defined by the dashed lines.



Support Vector Classifier

More generally, we can consider the
trade-off between the number of
misclassified points, and the width of
theslab {z —1< a'z—b < 1},which is
given by 2/||all,
min |la]l, + y(1Tu + 1Tv)
s.t. a'x;—b=1-u,i=1,..,N
a'y, -b<-(1-v),i=1,..,.M
uz0,vE0

B \We want to minimize the error and
maximize the width of the slab and




Example

Figure 8.11 Approximate linear discrimination via support vector classifier,
with v = 0.1. The support vector classifier, shown as the solid line, misclas-
sifies three points. Fifteen points are correctly classified but lie in the slab
defined by —1 < a”z — b < 1, bounded by the dashed lines.
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Logistic Regression

1z 1S a random variable with values
O or 1, with a distribution that
depends on u € R"
B Logistic exp(a'u — b)
Model prob(z =1) = 1+ exp(a™u —b)
1
1+ exp(a™u —b)
Given sets of points, {x4,...,xy5} and

{yi, ...,Yu}, arise as samples from the
logistic model

prob(z = 0) =




Logistic Regression

1 Maximum Likelihood Estimation
min — [(a, b)
B [ is the log-likelihood function

N

[(a,b) = Z.zl(aTxi _b)

N M
— z log(1 + exp(a'x; — b)) — z log(1 + exp(a'y; — b))
i=1

i=1
B If the two sets of points can be linearly
separated, then the optimization problem is
unbounded below
v Add domain constraints



Example
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Figure 8.12 Approximate linear discrimination via logistic modeling. The

points x1, ..., x50, shown as open circles, cannot be linearly separated from
the points v, ..., ys0, shown as filled circles. The maximum likelihood lo-

gistic model yields the hyperplane shown as a dark line, which misclassifies
only two points. The two dashed lines show a’ v —b = +1, where the proba-
bility of each outcome, according to the logistic model, is 73%. Three points
are correctly classified, but lie in between the dashed lines.
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