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Basic Norm Approximation

 Norm Approximation Problem

 ௠ൈ௡ ௠ are problem data
 ௡ is the variable
 is a norm on ௡

 Approximation solution of , in 
 Residual

 A Convex Problem
 , the optimal value is 0
 , more interesting

min 𝐴𝑥 െ 𝑏

𝑟 ൌ 𝐴𝑥 െ 𝑏



Basic Norm Approximation

 Approximation Interpretation

 ଵ ௡
௠ are the columns of 

 Approximate the vector by a linear 
combination

 Regression problem
 𝑎ଵ, … , 𝑎௡ are regressors
 𝑥ଵ𝑎ଵ ൅ ⋯ ൅ 𝑥௡𝑎௡ is the regression of 𝑏

𝐴𝑥 ൌ 𝑥ଵ𝑎ଵ ൅ ⋯ ൅ 𝑥௡𝑎௡



Basic Norm Approximation

 Estimation Interpretation
 Consider a linear measurement model

 ௠ is a vector measurement
 ௡ is a vector of parameters to be 

estimated
 ௠ is some measurement error that is 

unknown, but presumed to be small
 Assume smaller values of are more 

plausible

𝑦 ൌ 𝐴𝑥 ൅ 𝑣

𝑥ො ൌ argmin௭ 𝐴𝑧 െ 𝑦



Basic Norm Approximation

 Geometric Interpretation
 Consider the subspace ௠, and 

a point ௠

 A projection of the point onto the 
subspace , in the norm 

 Parametrize an arbitrary element of 
as , we see that norm approximation 
is equivalent to projection

min 𝑢 െ 𝑏
s. t. 𝑢 ∈ 𝒜 



Basic Norm Approximation

 Weighted Norm Approximation 
Problems

 ௠ൈ௠ is called the weighting matrix

 A norm approximation problem with 
norm , and data 

 A norm approximation problem with data 
and , and the -weighted norm

𝑧 ௐ ൌ 𝑊𝑧

min 𝑊ሺ𝐴𝑥 െ 𝑏ሻ



Basic Norm Approximation

 Least-Squares Approximation

 The minimization of a convex quadratic 
function

 A point minimizes if and only if

 Normal equations

𝑓 𝑥 ൌ 𝑥ୃ𝐴ୃ𝐴𝑥 െ 2𝑏ୃ𝐴𝑥 ൅ 𝑏ୃ𝑏

𝛻𝑓 𝑥 ൌ 2𝐴ୃ𝐴𝑥 െ 2𝐴ୃ𝑏 ൌ 0

𝐴ୃ𝐴𝑥 ൌ 𝐴ୃ𝑏

min 𝐴𝑥 െ 𝑏 ଶ
ଶ ൌ 𝑟ଵ

ଶ ൅ 𝑟ଶ
ଶ ൅ ⋯ ൅ 𝑟௠

ଶ



Basic Norm Approximation

 Chebyshev or Minimax Approximation

 Be cast as an LP

with variables ௡ and 
 Sum of Absolute Residuals Approximation

 Be cast as an LP

with variables 𝑥 ∈ 𝐑௡ and 𝑡 ∈ 𝐑௠

min 𝐴𝑥 െ 𝑏 ଵ ൌ 𝑟ଵ ൅ ⋯ ൅ 𝑟௠  

min 𝑡                                     
s. t. െ𝑡1 ≼ 𝐴𝑥 െ 𝑏 ≼ 𝑡1 

min 𝐴𝑥 െ 𝑏 ஶ ൌ maxሼ 𝑟ଵ , … , 𝑟௠ ሽ 

min 1ୃ𝑡                           
s. t. െ𝑡 ≼ 𝐴𝑥 െ 𝑏 ≼ 𝑡 
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-norm Approximation

 ௣-norm approximation, for 

 The equivalent problem with objective

 A separable and symmetric function of the 
residuals

 Objective depends only on the amplitude
distribution of the residuals

𝑟ଵ
௣ ൅ ⋯ ൅ 𝑟௠

௣ ଵ/௣

𝑟ଵ
௣ ൅ ⋯ ൅ 𝑟௠

௣



Penalty Function Approximation

 The Problem

 is called the penalty function
 is convex
 is symmetric, nonnegative, and 

satisfies 

 A penalty function assesses a cost or 
penalty for each component of residual

min 𝜙 𝑟ଵ ൅ ⋯ ൅ 𝜙 𝑟௠
s. t. 𝑟 ൌ 𝐴𝑥 െ 𝑏            



Example

 ௣-norm Approximation

 Quadratic penalty: ଶ

 Absolute value penalty: 
 Deadzone-linear Penalty Function

 The Log Barrier Penalty Function

𝜙 𝑢 ൌ 𝑢 ௣

𝜙 𝑢 ൌ ቊ0               𝑢 ൑ 𝑎
𝑢 െ 𝑎    𝑢 ൐ 𝑎

𝜙 𝑢 ൌ ൝െ𝑎ଶ log 1 െ 𝑢/𝑎 ଶ     𝑢 ൏ 𝑎
∞                                         𝑢 ൒ 𝑎



Example

 Log barrier penalty function assesses an infinite 
penalty for residuals larger than 𝑎

 Log barrier function is very close to the 
quadratic penalty for |𝑢/𝑎| ൑ 0.25



Discussions

 Roughly speaking, is a measure of 
our dislike of a residual of value 

 If is very small for small , it means 
we care very little if residuals have 
these values

 If grows rapidly as becomes 
large, it means we have a strong dislike 
for large residuals

 If becomes infinite outside some 
interval, it means that residuals outside 
the interval are unacceptable



Discussions

 ଵ 、 ଶ
ଶ

 For small 𝑢 we have 𝜙ଵ 𝑢 ≫ 𝜙ଶ 𝑢 , so ℓଵ-norm 
approximation puts relatively larger emphasis 
on small residuals 

 The optimal residual for the ℓଵ-norm 
approximation problem will tend to have more 
zero and very small residuals

 For large 𝑢 we have 𝜙ଶ 𝑢 ≫ 𝜙ଵ 𝑢 , so ℓଵ-norm 
approximation puts less weight on large 
residuals

 The ℓଶ-norm solution will tend to have 
relatively fewer large residuals



Example

 ଵ଴଴ൈଷ଴, b ଵ଴଴



Observations of Penalty 
Functions
 The ℓଵ-norm penalty puts the most weight on small 

residuals and the least weight on large residuals.
 The ℓଶ-norm penalty puts very small weight on 

small residuals, but strong weight on large 
residuals.

 The deadzone-linear penalty function puts no 
weight on residuals smaller than 0.5, and relatively 
little weight on large residuals.

 The log barrier penalty puts weight very much like 
the ℓଶ-norm penalty for small residuals, but puts 
very strong weight on residuals larger than around 
0.8, and infinite weight on residuals larger than 1.



Observations of Amplitude 
Distributions
 For the ℓଵ-optimal solution, many residuals are 

either zero or very small. The ℓଵ-optimal solution 
also has relatively more large residuals.

 The ℓଶ-norm approximation has many modest 
residuals, and relatively few larger ones.

 For the deadzone-linear penalty, we see that 
many residuals have the value േ0.5, right at the 
edge of the ‘free’ zone, for which no penalty is 
assessed.

 For the log barrier penalty, we see that no 
residuals have a magnitude larger than 1, but 
otherwise the residual distribution is similar to the 
residual distribution for ℓଶ-norm approximation.



Outline

 Norm Approximation
 Basic Norm Approximation
 Penalty Function Approximation
 Approximation with Constraints

 Least-norm Problems
 Regularized Approximation
 Classification
 Linear Discrimination
 Support Vector Classifier
 Logistic Regression



Approximation with Constraints

 Add Constraints to

 Rule out certain unacceptable 
approximations of the vector 

 Ensure that the approximator satisfies 
certain properties

 Prior knowledge of the vector to be 
estimated

 Prior knowledge of the estimation error 
 Determine the projection of a point on 

a set more complicated than a subspace

min 𝐴𝑥 െ 𝑏



Approximation with Constraints

 Nonnegativity Constraints on 
Variables

 Estimate a vector of parameters known 
to be nonnegative

 Determine the projection of a vector 
onto the cone generated by the columns 
of 

 Approximate using a nonnegative 
linear combination of the columns of 

min 𝐴𝑥 െ 𝑏
s. t. 𝑥 ≽ 0     



Approximation with Constraints

 Variable Bounds

 Prior knowledge of intervals in which 
each variable lies

 Determine the projection of a vector 
onto the image of a box under the linear 
mapping induced by 

min 𝐴𝑥 െ 𝑏
s. t. 𝑙 ≼ 𝑥 ≼ 𝑢



Approximation with Constraints

 Probability Distribution

 Estimation of proportions or relative frequencies
 Approximate 𝑏 by a convex combination of the 

columns of 𝐴

 Norm Ball Constraint

 𝑥଴ is prior guess of what the parameter 𝑥 is, and 
𝑑 is the maximum plausible deviation

min 𝐴𝑥 െ 𝑏             
s. t. 𝑥 ≽ 0, 1ୃ𝑥 ൌ 1 

min 𝐴𝑥 െ 𝑏          
s. t. 𝑥 െ 𝑥଴ ൑ 𝑑 
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Least-norm Problems

 Basic least-norm Problem

 ௠ൈ௡ ௠

 ௡ is a norm on ௡

 The solution is called a least-norm 
solution of .

 A convex optimization problem
 Interesting when 

min 𝑥       
s. t. 𝐴𝑥 ൌ 𝑏



Least-norm Problems

 Reformulation as Norm 
Approximation Problem
 Let ଴ be any solution of 
 Let ௡ൈ௞ be a matrix whose columns 

are a basis for the nullspace of . 

 The least-norm problem can be 
expressed as 

𝑥|𝐴𝑥 ൌ 𝑏 ൌ ሼ𝑥଴ ൅ 𝑍𝑢|𝑢 ∈ 𝐑௞ሽ

min 𝑥଴ ൅ 𝑍𝑢



Least-norm Problems

 Estimation interpretation
 We have 𝑚 ൏ 𝑛 perfect linear measurement, 

given by 𝐴𝑥 ൌ 𝑏
 Our measurements do not completely 

determine 𝑥

 Suppose our prior information, is that 𝑥 is 
more likely to be small than large. 

 Choose the parameter vector 𝑥 which is 
smallest among all parameter vectors that 
are consistent with the measurements



Least-norm Problems

 Geometric interpretation
 The feasible set is affine
 The objective is the distance between 

and the point 

 Find the point in the affine set with 
minimum distance to 

 Determine the projection of the point 0 
on the affine set 



Least-norm Problems

 Least-squares Solution of Linear 
Equations

 The optimality conditions

 𝑣 is the dual variable
 The Solution

min 𝑥 ଶ
ଶ    

s. t. 𝐴𝑥 ൌ 𝑏

2𝑥∗ ൅ 𝐴ୃ𝑣∗ ൌ 0 𝐴𝑥∗ ൌ 𝑏

𝑥∗ ൌ െ
1
2 𝐴ୃ𝑣∗ െ

1
2 𝐴𝐴ୃ𝑣∗ ൌ 𝑏

𝑣∗ ൌ െ2 𝐴𝐴ୃ ିଵ𝑏, 𝑥∗ ൌ 𝐴ୃ 𝐴𝐴ୃ ିଵ𝑏



Least-norm Problems

 Least-penalty Problems

 is convex, nonnegative and 
satisfies 

 The penalty function value 
quantifies our dislike of a component of 
having value 

 Find that has least total penalty, 
subject to the constraint 

min 𝜙 𝑥ଵ ൅ ⋯ ൅ 𝜙 𝑥௡
s. t. 𝐴𝑥 ൌ 𝑏                      



Least-norm Problems

 Sparse Solutions via Least ଵ-norm

 Tend to produce a solution with a large 
number of components equal to 

 Tend to produce sparse solutions of 
, often with nonzero components

min 𝑥 ଵ    
s. t. 𝐴𝑥 ൌ 𝑏



Least-norm Problems

 Sparse Solutions via Least ଵ-norm

 Find solutions of that have 
only nonzero components
 is a submatrix of 
 and subvector of 
 Solve 
 If there is a solution, we are done

 Complexity: 

min 𝑥 ଵ    
s. t. 𝐴𝑥 ൌ 𝑏
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Bi-criterion Formulation

 A (convex) Vector Optimization 
Problem with Two Objectives

 Find a vector that is small
 Make the residual small
 Optimal trade-off between the two 

objectives
 The minimum value of 𝑥 is 0 and the residual 

norm is 𝑏
 Let 𝐶 denote the set of minimizers of 𝐴𝑥 െ 𝑏 , 

and then any minimum norm point in 𝐶 is 
Pareto optimal

minሺw. r. t. 𝐑ା
ଶ ሻ ሺ 𝐴𝑥 െ 𝑏 , 𝑥 ሻ



Regularization

 Weighted Sum of the Objectives

 is a problem parameter
 A common scalarization method used to 

solve the bi-criterion problem
 As varies over , the solution 

traces out the optimal trade-off curve
 Weighted Sum of Squared Norms

min 𝐴𝑥 െ 𝑏 ଶ ൅ 𝛾 𝑥 ଶ

min 𝐴𝑥 െ 𝑏 ൅ 𝛾 𝑥



Regularization

 Tikhonov Regularization

 Analytical solution

 Since ୃ for any , the 
Tikhonov regularized least-squares 
solution requires no rank assumptions on 
the matrix 

min 𝐴𝑥 െ 𝑏 ଶ
ଶ ൅ 𝛿 𝑥 ଶ

ଶ ൌ 𝑥ୃ 𝐴ୃ𝐴 ൅ 𝛿𝐼 𝑥 െ 2𝑏ୃ𝐴𝑥 ൅ 𝑏ୃ𝑏 

𝑥 ൌ 𝐴ୃ𝐴 ൅ 𝛿𝐼 ିଵ𝐴ୃ𝑏



Regularization

 ଵ-norm Regularization

 Find a sparse solution
 The residual is measured with the 

Euclidean norm and the regularization is 
done with an ଵ-norm

 By varying the parameter we can 
sweep out the optimal trade-off curve 
between ଶ and ଵ

min 𝐴𝑥 െ 𝑏 ଶ ൅ 𝛾 𝑥 ଵ



Example

 Regressor Selection Problem

 One straightforward approach is to check 
every possible sparsity pattern in with 

nonzero entries
 For a fixed sparsity pattern, we can find 

the optimal by solving a least-squares 
problem

 Complexity: 

min 𝐴𝑥 െ 𝑏 ଶ     
s. t. card 𝑥 ൑ 𝑘 



Example

 Regressor Selection Problem

 A good heuristic approach is to solve the 
following problem for different 

 Find the smallest value of that results 
in a solution with 

 We then fix this sparsity pattern and find 
the value of that minimizes ଶ

min 𝐴𝑥 െ 𝑏 ଶ     
s. t. card 𝑥 ൑ 𝑘 

min 𝐴𝑥 െ 𝑏 ଶ ൅ 𝛾 𝑥 ଵ



Example
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Classification

 Given two sets of points in ௡

 Find a function ௡

 Positive on the first set and negative on 
the second

 or its 0-level set , 
separates, classifies, or discriminates the 
two sets of points

𝑓 𝑥௜ ൐ 0, 𝑖 ൌ 1, … , 𝑁, 𝑓 𝑦௜ ൏ 0, 𝑖 ൌ 1, … , 𝑀

ଵ ே and ଵ ெ



Linear Discrimination

 Affine function ୃ

 A hyperplane that separates the two 
sets of points

 The strict inequalities are 
homogeneous in and 
 Equivalent conditions

𝑎ୃ𝑥௜ െ 𝑏 ൐ 0, 𝑖 ൌ 1, … , 𝑁,
𝑎ୃ𝑦௜ െ 𝑏 ൏ 0, 𝑖 ൌ 1, … , 𝑀

𝑎ୃ𝑥௜ െ 𝑏 ൒ 1, 𝑖 ൌ 1, … , 𝑁,
𝑎ୃ𝑦௜ െ 𝑏 ൑ െ1, 𝑖 ൌ 1, … , 𝑀



Example



Robust Linear Discrimination

 Seek the function that gives the 
maximum possible ‘gap’ between 

௜ and ௜

 is normalized
 The optimal value ∗ is positive if and 

only if the two sets of points can be 
linearly discriminated

max 𝑡                                                 
s. t. 𝑎ୃ𝑥௜ െ 𝑏 ൒ 𝑡, 𝑖 ൌ 1, … , 𝑁    
            𝑎ୃ𝑦௜ െ 𝑏 ൑ െ𝑡, 𝑖 ൌ 1, … , 𝑀

𝑎 ଶ ൑ 1                     



Example
• If 𝑎 ଶ ൌ 1, 𝑎ୃ𝑥௜ െ 𝑏 is the 

Euclidean distance from 
the point 𝑥௜ to the 
separating hyperplane 
𝑎ୃ𝑧 ൌ 𝑏

• 𝑏 െ 𝑎ୃ𝑦௜ is the distance 
from 𝑦௜ to the hyperplane
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Support Vector Classifier

When the two sets of points 
cannot be linearly separated

 One that minimizes the number of 
points misclassified
 Unfortunately, this is in general a 

difficult combinatorial optimization 
problem



Support Vector Classifier

When the two sets of points 
cannot be linearly separated

 Relaxation

 Nonnegative variables 𝑢ଵ, … , 𝑢ே and 𝑣ଵ, … , 𝑣ெ

 When 𝑢 ൌ 𝑣 ൌ 0, we recover the original 
constraints

 By making 𝑢 and 𝑣 large enough, these 
inequalities can always be made feasible

𝑎ୃ𝑥௜ െ 𝑏 ൒ 1 െ 𝑢௜, 𝑖 ൌ 1, … , 𝑁,
𝑎ୃ𝑦௜ െ 𝑏 ൑ െ 1 െ 𝑣௜ , 𝑖 ൌ 1, … , 𝑀

𝑎ୃ𝑥௜ െ 𝑏 ൒ 1, 𝑖 ൌ 1, … , 𝑁,
𝑎ୃ𝑦௜ െ 𝑏 ൑ െ1, 𝑖 ൌ 1, … , 𝑀



Support Vector Classifier

 Our goal is to find and sparse 
nonnegative and that satisfy the 
inequalities

 We can minimize the sum of the 
variables ௜ and ୧

 When ௜ , ௜ is classified correctly 
by ୃ , but still incurs a loss ௜

min 1ୃ𝑢 ൅ 1ୃ𝑣                                             
s. t.   𝑎ୃ𝑥௜ െ 𝑏 ൒ 1 െ 𝑢௜, 𝑖 ൌ 1, … , 𝑁       

           𝑎ୃ𝑦௜ െ 𝑏 ൑ െ 1 െ 𝑣௜ , 𝑖 ൌ 1, … , 𝑀
𝑢 ≽ 0, 𝑣 ≽ 0                           



Example



Support Vector Classifier

 More generally, we can consider the 
trade-off between the number of 
misclassified points, and the width of 
the slab ୃ which is 
given by ଶ

 We want to minimize the error and 
maximize the width of the slab and

min 𝑎 ଶ ൅ 𝛾ሺ1ୃ𝑢 ൅ 1ୃ𝑣ሻ                          
s. t.   𝑎ୃ𝑥௜ െ 𝑏 ൒ 1 െ 𝑢௜, 𝑖 ൌ 1, … , 𝑁       

           𝑎ୃ𝑦௜ െ 𝑏 ൑ െ 1 െ 𝑣௜ , 𝑖 ൌ 1, … , 𝑀
𝑢 ≽ 0, 𝑣 ≽ 0                           



Example
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Logistic Regression

 is a random variable with values 
0 or 1, with a distribution that 
depends on ௡

 Logistic 
Model

 Given sets of points, ଵ ே and 
ଵ ெ , arise as samples from the 

logistic model

prob z ൌ 1 ൌ
exp 𝑎ୃ𝑢 െ 𝑏

1 ൅ exp 𝑎ୃ𝑢 െ 𝑏

prob z ൌ 0 ൌ
1

1 ൅ expሺ𝑎ୃ𝑢 െ 𝑏ሻ



Logistic Regression

 Maximum Likelihood Estimation

 is the log-likelihood function

 If the two sets of points can be linearly 
separated, then the optimization problem is 
unbounded below
 Add domain constraints

min െ 𝑙ሺ𝑎, 𝑏ሻ

𝑙 𝑎, 𝑏 ൌ ෍ ሺ𝑎ୃ𝑥௜ െ 𝑏ሻ
ே

௜ୀଵ

െ ෍ logሺ1 ൅ exp ሺ𝑎ୃ𝑥௜ െ 𝑏ሻሻ  െ ෍ logሺ1 ൅ expሺ𝑎ୃ𝑦௜ െ 𝑏ሻሻ
ெ

௜ୀଵ

ே

௜ୀଵ



Example



Summary

 Norm Approximation
 Basic Norm Approximation
 Penalty Function Approximation
 Approximation with Constraints

 Least-norm Problems
 Regularized Approximation
 Classification
 Linear Discrimination
 Support Vector Classifier
 Logistic Regression


