# Applications (I)

Lijun Zhang <u>zlj@nju.edu.cn</u> <u>http://cs.nju.edu.cn/zlj</u>





### Outline

#### □ Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
- Least-norm Problems
- Regularized Approximation
- Classification
  - Linear Discrimination
  - Support Vector Classifier
  - Logistic Regression



□ Norm Approximation Problem min ||Ax - b||

•  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$  are problem data

- $x \in \mathbf{R}^n$  is the variable
- **I**  $\|\cdot\|$  is a norm on  $\mathbf{R}^n$

Approximation solution of  $Ax \approx b$ , in  $\|\cdot\|$ 

 $\Box$  Residual r =

$$r = Ax - b$$

- □ A Convex Problem
  - $b \in \mathcal{R}(A)$ , the optimal value is 0
  - $b \notin \mathcal{R}(A)$ , more interesting



Approximation Interpretation

 $Ax = x_1a_1 + \dots + x_na_n$ 

 $a_1, \dots, a_n \in \mathbf{R}^m$  are the columns of A

Approximate the vector b by a linear combination

#### Regression problem

- $\checkmark$   $a_1, \ldots, a_n$  are regressors
- ✓  $x_1a_1 + \dots + x_na_n$  is the regression of *b*



#### **Estimation Interpretation**

Consider a linear measurement model

y = Ax + v

- $y \in \mathbf{R}^m$  is a vector measurement
- $x \in \mathbf{R}^n$  is a vector of parameters to be estimated
- $v \in \mathbb{R}^m$  is some measurement error that is unknown, but presumed to be small
- Assume smaller values of v are more plausible  $\hat{x} = \operatorname{argmin}_{z} ||Az - y||$



□ Geometric Interpretation

- Consider the subspace  $\mathcal{A} = \mathcal{R}(A) \subseteq \mathbb{R}^m$ , and a point  $b \in \mathbb{R}^m$
- A projection of the point b onto the subspace A, in the norm ||·||

```
\begin{array}{ll} \min & \|u - b\| \\ \text{s.t.} & u \in \mathcal{A} \end{array}
```

Parametrize an arbitrary element of  $\mathcal{R}(A)$ as u = Ax, we see that norm approximation is equivalent to projection



- □ Weighted Norm Approximation Problems  $\min ||W(Ax - b)||$ 
  - $W \in \mathbb{R}^{m \times m}$  is called the weighting matrix
  - A norm approximation problem with norm  $\|\cdot\|$ , and data  $\tilde{A} = WA$ ,  $\tilde{b} = Wb$
  - A norm approximation problem with data A and b, and the W-weighted norm

 $\|z\|_W = \|Wz\|$ 



 $\Box \text{ Least-Squares Approximation} \\ \min \|Ax - b\|_2^2 = r_1^2 + r_2^2 + \dots + r_m^2$ 

The minimization of a convex quadratic function

$$f(x) = x^{\mathsf{T}}A^{\mathsf{T}}Ax - 2b^{\mathsf{T}}Ax + b^{\mathsf{T}}b$$

A point x minimizes f if and only if  $\nabla f(x) = 2A^{T}Ax - 2A^{T}b = 0$ 

Normal equations

$$A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$$



Chebyshev or Minimax Approximation min  $||Ax - b||_{\infty} = \max\{|r_1|, \dots, |r_m|\}$ Be cast as an LP min t s.t.  $-t1 \leq Ax - b \leq t1$ with variables  $x \in \mathbf{R}^n$  and  $t \in \mathbf{R}$ Sum of Absolute Residuals Approximation min  $||Ax - b||_1 = |r_1| + \dots + |r_m|$ Be cast as an LP min  $1^{\mathsf{T}}t$ s.t.  $-t \leq Ax - b \leq t$ with variables  $x \in \mathbf{R}^n$  and  $t \in \mathbf{R}^m$ 



### Outline

#### □ Norm Approximation **Basic Norm Approximation** Penalty Function Approximation **Approximation with Constraints** Least-norm Problems Regularized Approximation Classification Linear Discrimination Support Vector Classifier

Logistic Regression



 $l_p$ -norm Approximation

- □  $l_p$ -norm approximation, for  $1 \le p \le \infty$  $(|r_1|^p + \dots + |r_m|^p)^{1/p}$
- □ The equivalent problem with objective  $|r_1|^p + \dots + |r_m|^p$ 
  - A separable and symmetric function of the residuals
  - Objective depends only on the amplitude distribution of the residuals



## Penalty Function Approximation

#### The Problem

min  $\phi(r_1) + \dots + \phi(r_m)$ s.t. r = Ax - b

- $\phi: \mathbf{R} \to \mathbf{R}$  is called the penalty function
- φ is convex
- $\phi$  is symmetric, nonnegative, and satisfies  $\phi(0) = 0$
- A penalty function assesses a cost or penalty for each component of residual

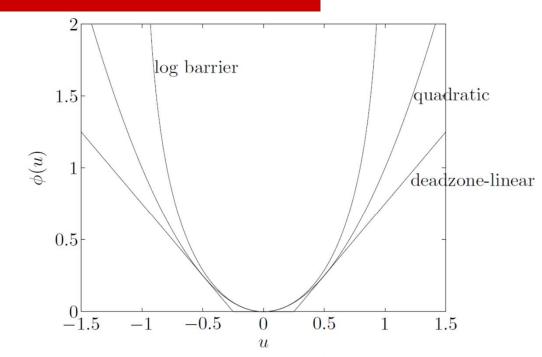


## Example

 $\square \ell_p$ -norm Approximation  $\phi(u) = |u|^p$ Quadratic penalty:  $\phi(u) = u^2$ Absolute value penalty:  $\phi(u) = |u|$ Deadzone-linear Penalty Function  $\phi(u) = \begin{cases} 0 & |u| \le a \\ |u| - a & |u| > a \end{cases}$ The Log Barrier Penalty Function  $\phi(u) = \begin{cases} -a^2 \log(1 - (u/a)^2) & |u| < a \\ \infty & |u| \ge a \end{cases}$ 



### Example



**Figure 6.1** Some common penalty functions: the quadratic penalty function  $\phi(u) = u^2$ , the deadzone-linear penalty function with deadzone width a = 1/4, and the log barrier penalty function with limit a = 1.

- Log barrier penalty function assesses an infinite penalty for residuals larger than a
- Log barrier function is very close to the quadratic penalty for  $|u/a| \le 0.25$



### Discussions

- □ Roughly speaking,  $\varphi(u)$  is a measure of our dislike of a residual of value u
- □ If  $\varphi$  is very small for small u, it means we care very little if residuals have these values
- If  $\varphi(u)$  grows rapidly as u becomes large, it means we have a strong dislike for large residuals
- If φ becomes infinite outside some interval, it means that residuals outside the interval are unacceptable



#### Discussions

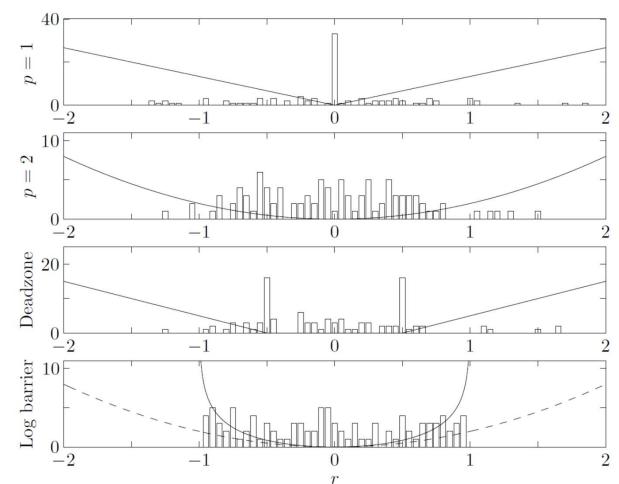
 $\Box \phi_1(u) = |u|, \ \phi_2(u) = u^2$ 

- For small u we have  $\phi_1(u) \gg \phi_2(u)$ , so  $\ell_1$ -norm approximation puts relatively larger emphasis on small residuals
- The optimal residual for the l<sub>1</sub>-norm approximation problem will tend to have more zero and very small residuals
- For large u we have  $\phi_2(u) \gg \phi_1(u)$ , so  $\ell_1$ -norm approximation puts less weight on large residuals
- The l<sub>2</sub>-norm solution will tend to have relatively fewer large residuals



### Example

#### $\Box A \in \mathbf{R}^{100 \times 30}$ , be $\mathbf{R}^{100}$



## Observations of Penalty Functions



- □ The  $\ell_1$ -norm penalty puts the most weight on small residuals and the least weight on large residuals.
- □ The ℓ<sub>2</sub>-norm penalty puts very small weight on small residuals, but strong weight on large residuals.
- The deadzone-linear penalty function puts no weight on residuals smaller than 0.5, and relatively little weight on large residuals.
- □ The log barrier penalty puts weight very much like the ℓ<sub>2</sub>-norm penalty for small residuals, but puts very strong weight on residuals larger than around 0.8, and infinite weight on residuals larger than 1.

## Observations of Amplitude Distributions



- □ For the  $\ell_1$ -optimal solution, many residuals are either zero or very small. The  $\ell_1$ -optimal solution also has relatively more large residuals.
- □ The  $\ell_2$ -norm approximation has many modest residuals, and relatively few larger ones.
- □ For the deadzone-linear penalty, we see that many residuals have the value ±0.5, right at the edge of the 'free' zone, for which no penalty is assessed.
- □ For the log barrier penalty, we see that no residuals have a magnitude larger than 1, but otherwise the residual distribution is similar to the residual distribution for  $\ell_2$ -norm approximation.



### Outline

#### □ Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
- Least-norm Problems
- Regularized Approximation
- Classification
  - Linear Discrimination
  - Support Vector Classifier
  - Logistic Regression



Add Constraints to

min ||Ax - b||

Rule out certain unacceptable approximations of the vector b

- Ensure that the approximator Ax satisfies certain properties
- Prior knowledge of the vector x to be estimated
- Prior knowledge of the estimation error v
- Determine the projection of a point b on a set more complicated than a subspace



- - Estimate a vector x of parameters known to be nonnegative
  - Determine the projection of a vector b onto the cone generated by the columns of A
  - Approximate b using a nonnegative linear combination of the columns of A



Variable Bounds

 $\begin{array}{ll} \min & \|Ax - b\| \\ \text{s.t.} & l \leq x \leq u \end{array}$ 

- Prior knowledge of intervals in which each variable lies
- Determine the projection of a vector b onto the image of a box under the linear mapping induced by A



- □ Probability Distribution min ||Ax - b||s.t.  $x \ge 0, 1^T x = 1$ 
  - Estimation of proportions or relative frequencies
  - Approximate b by a convex combination of the columns of A
- □ Norm Ball Constraint

min ||Ax - b||s.t.  $||x - x_0|| \le d$ 

x<sub>0</sub> is prior guess of what the parameter x is, and d is the maximum plausible deviation



### Outline

#### □ Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
- Least-norm Problems
- Regularized Approximation
- Classification
  - Linear Discrimination
  - Support Vector Classifier
  - Logistic Regression



Basic least-norm Problem

 $\begin{array}{ll} \min & \|x\|\\ \text{s.t.} & Ax = b \end{array}$ 

- $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$
- $x \in \mathbf{R}^n$ ,  $\|\cdot\|$  is a norm on  $\mathbf{R}^n$
- The solution is called a least-norm solution of Ax = b.
- A convex optimization problem
- Interesting when  $m \leq n$



- Reformulation as Norm Approximation Problem
  - Let  $x_0$  be any solution of Ax = b
  - Let  $Z \in \mathbb{R}^{n \times k}$  be a matrix whose columns are a basis for the nullspace of A.

$${x|Ax = b} = {x_0 + Zu|u \in \mathbf{R}^k}$$

The least-norm problem can be expressed as

$$\min \|x_0 + Zu\|$$



#### Estimation interpretation

- We have m < n perfect linear measurement, given by Ax = b
- Our measurements do not completely determine x
- Suppose our prior information, is that x is more likely to be small than large.
- Choose the parameter vector x which is smallest among all parameter vectors that are consistent with the measurements



#### □ Geometric interpretation

- The feasible set  $\{x | Ax = b\}$  is affine
- The objective is the distance between x and the point 0
- Find the point in the affine set with minimum distance to 0
- Determine the projection of the point 0 on the affine set {x|Ax = b}



- Least-squares Solution of Linear Equations min  $||x||_2^2$ s.t. Ax = b
  - The optimality conditions

$$2x^* + A^{\mathsf{T}}v^* = 0$$
  $Ax^* = b$ 

- $\checkmark$  v is the dual variable
- The Solution

$$x^{*} = -\frac{1}{2}A^{\top}v^{*} \implies -\frac{1}{2}AA^{\top}v^{*} = b$$
$$\implies v^{*} = -2(AA^{\top})^{-1}b, x^{*} = A^{\top}(AA^{\top})^{-1}b$$



Least-penalty Problems

min  $\phi(x_1) + \dots + \phi(x_n)$ s.t. Ax = b

- $\phi: \mathbf{R} \to \mathbf{R}$  is convex, nonnegative and satisfies  $\phi(0) = 0$
- The penalty function value φ(u) quantifies our dislike of a component of x having value u
- Find x that has least total penalty, subject to the constraint Ax = b



- Sparse Solutions via Least  $\ell_1$ -norm min  $||x||_1$ s.t. Ax = b
  - Tend to produce a solution x with a large number of components equal to 0
  - Tend to produce sparse solutions of Ax = b, often with *m* nonzero components



□ Sparse Solutions via Least  $\ell_1$ -norm min  $||x||_1$ s.t. Ax = b□ Find solutions of Ax = b that have

only *m* nonzero components

- $\blacksquare$   $\tilde{A}$  is a submatrix of A
- $\tilde{x}$  and subvector of x
- Solve  $\tilde{A}\tilde{x} = b$ 
  - ✓ If there is a solution, we are done
- Complexity: n!/(m!(n-m)!)



### Outline

#### □ Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
- Least-norm Problems
- Regularized Approximation
- Classification
  - Linear Discrimination
  - Support Vector Classifier
  - Logistic Regression



## **Bi-criterion Formulation**

A (convex) Vector Optimization Problem with Two Objectives

min(w.r.t.  $\mathbf{R}^2_+$ ) (||Ax - b||, ||x||)

- Find a vector x that is small
- Make the residual Ax b small
- Optimal trade-off between the two objectives
  - ✓ The minimum value of ||x|| is 0 and the residual norm is ||b||
  - ✓ Let C denote the set of minimizers of ||Ax − b||, and then any minimum norm point in C is Pareto optimal



## Regularization

Weighted Sum of the Objectives

 $\min \||Ax - b\| + \gamma \|x\|$ 

•  $\gamma > 0$  is a problem parameter

- A common scalarization method used to solve the bi-criterion problem
- As γ varies over (0,∞), the solution traces out the optimal trade-off curve
- Weighted Sum of Squared Norms

min  $||Ax - b||^2 + \gamma ||x||^2$ 



# Regularization

□ Tikhonov Regularization

min  $||Ax - b||_2^2 + \delta ||x||_2^2 = x^{\mathsf{T}} (A^{\mathsf{T}}A + \delta I)x - 2b^{\mathsf{T}}Ax + b^{\mathsf{T}}b$ 

Analytical solution

 $x = (A^{\mathsf{T}}A + \delta I)^{-1}A^{\mathsf{T}}b$ 

Since  $A^T A + \delta I > 0$  for any  $\delta > 0$ , the Tikhonov regularized least-squares solution requires no rank assumptions on the matrix A



# Regularization

 $\square$   $\ell_1$ -norm Regularization

min  $||Ax - b||_2 + \gamma ||x||_1$ 

Find a sparse solution

- The residual is measured with the Euclidean norm and the regularization is done with an  $\ell_1$ -norm
- By varying the parameter  $\gamma$  we can sweep out the optimal trade-off curve between  $||Ax - b||_2$  and  $||x||_1$



#### □ Regressor Selection Problem min $||Ax - b||_2$ s.t. card(x) ≤ k

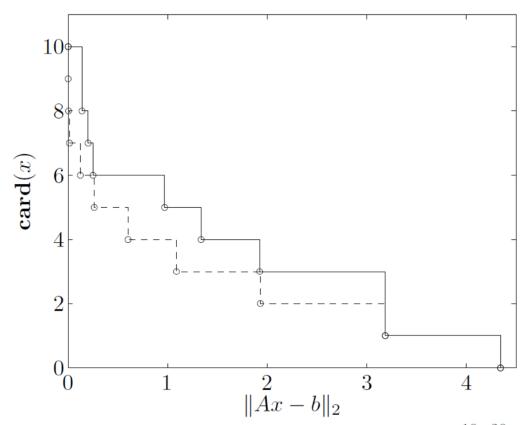
- One straightforward approach is to check every possible sparsity pattern in x with k nonzero entries
- For a fixed sparsity pattern, we can find the optimal x by solving a least-squares problem
- Complexity: n!/(k!(n-k)!)



#### □ Regressor Selection Problem min $||Ax - b||_2$ s.t. card(x) ≤ k

- A good heuristic approach is to solve the following problem for different  $\gamma$ min  $||Ax - b||_2 + \gamma ||x||_1$
- Find the smallest value of  $\gamma$  that results in a solution with  $card(x) \le k$
- We then fix this sparsity pattern and find the value of x that minimizes  $||Ax - b||_2$





**Figure 6.7** Sparse regressor selection with a matrix  $A \in \mathbb{R}^{10 \times 20}$ . The circles on the dashed line are the Pareto optimal values for the trade-off between the residual  $||Ax - b||_2$  and the number of nonzero elements  $\operatorname{card}(x)$ . The points indicated by circles on the solid line are obtained via the  $\ell_1$ -norm regularized heuristic.



### Outline

### □ Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
- Least-norm Problems
- Regularized Approximation
- Classification
  - Linear Discrimination
  - Support Vector Classifier
  - Logistic Regression



# Classification

□ Given two sets of points in  $\mathbb{R}^n$ { $x_1, ..., x_N$ } and { $y_1, ..., y_M$ } □ Find a function  $f: \mathbb{R}^n \longrightarrow \mathbb{R}$  $f(x_i) > 0, i = 1, ..., N, \quad f(y_i) < 0, i = 1, ..., M$ 

Positive on the first set and negative on the second

f or its 0-level set {x|f(x) = 0}, separates, classifies, or discriminates the two sets of points



# Linear Discrimination

 $\square \text{ Affine function } f(x) = a^{\mathsf{T}} x - b$  $a^{\mathsf{T}} x_i - b > 0, i = 1, \dots, N,$  $a^{\mathsf{T}} y_i - b < 0, i = 1, \dots, M$ 

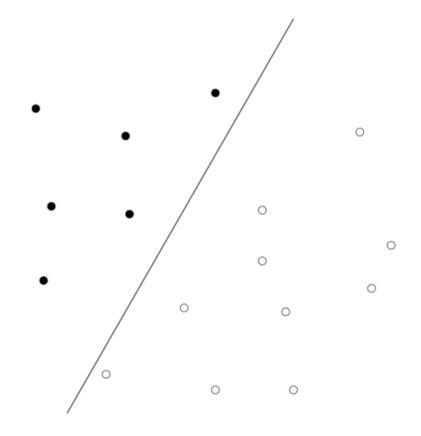
A hyperplane that separates the two sets of points

The strict inequalities are homogeneous in a and b

Equivalent conditions

$$a^{\top} x_i - b \ge 1, i = 1, ..., N,$$
  
 $a^{\top} y_i - b \le -1, i = 1, ..., M$ 





**Figure 8.8** The points  $x_1, \ldots, x_N$  are shown as open circles, and the points  $y_1, \ldots, y_M$  are shown as filled circles. These two sets are classified by an affine function f, whose 0-level set (a line) separates them.



# **Robust Linear Discrimination**

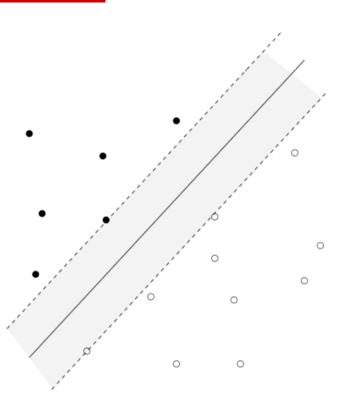
□ Seek the function that gives the maximum possible 'gap' between  $x_i$  and  $y_i$ s.t.  $a^T x_i - b \ge t, i = 1, ..., N$ 

$$a^{\top}y_i - b \le -t, i = 1, ..., M$$
  
 $\|a\|_2 \le 1$ 

- *a* is normalized
- The optimal value t\* is positive if and only if the two sets of points can be linearly discriminated



- If  $||a||_2 = 1$ ,  $a^T x_i b$  is the Euclidean distance from the point  $x_i$  to the separating hyperplane  $a^T z = b$
- $b a^{\mathsf{T}} y_i$  is the distance from  $y_i$  to the hyperplane



**Figure 8.9** By solving the robust linear discrimination problem (8.23) we find an affine function that gives the largest gap in values between the two sets (with a normalization bound on the linear part of the function). Geometrically, we are finding the thickest slab that separates the two sets of points.



### Outline

### □ Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
- Least-norm Problems
- Regularized Approximation
- Classification
  - Linear Discrimination
  - Support Vector Classifier
  - Logistic Regression



When the two sets of points cannot be linearly separated

One that minimizes the number of points misclassified

Unfortunately, this is in general a difficult combinatorial optimization problem



- When the two sets of points cannot be linearly separated
- $\square \text{ Relaxation } a^{\mathsf{T}}x_i b \ge 1, i = 1, \dots, N, \\ a^{\mathsf{T}}y_i b \le -1, i = 1, \dots, M$

$$a^{\mathsf{T}}x_i - b \ge 1 - u_i, i = 1, ..., N,$$
  
 $a^{\mathsf{T}}y_i - b \le -(1 - v_i), i = 1, ..., M$ 

- Nonnegative variables  $u_1, \ldots, u_N$  and  $v_1, \ldots, v_M$
- When u = v = 0, we recover the original constraints
- By making u and v large enough, these inequalities can always be made feasible

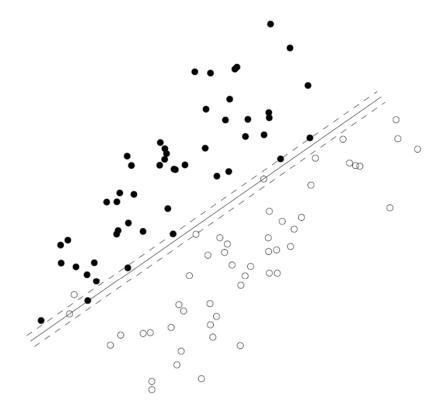


- Our goal is to find a, b and sparse nonnegative u and v that satisfy the inequalities
- □ We can minimize the sum of the variables  $u_i$  and  $v_i$

$$\min \quad 1^{\mathsf{T}}u + 1^{\mathsf{T}}v \\ \text{s.t.} \quad a^{\mathsf{T}}x_i - b \ge 1 - u_i, i = 1, \dots, N \\ a^{\mathsf{T}}y_i - b \le -(1 - v_i), i = 1, \dots, M \\ u \ge 0, v \ge 0$$

When  $0 < u_i < 1$ ,  $x_i$  is classified correctly by  $a^T x - b$ , but still incurs a loss  $u_i$ 





**Figure 8.10** Approximate linear discrimination via linear programming. The points  $x_1, \ldots, x_{50}$ , shown as open circles, cannot be linearly separated from the points  $y_1, \ldots, y_{50}$ , shown as filled circles. The classifier shown as a solid line was obtained by solving the LP (8.25). This classifier misclassifies one point. The dashed lines are the hyperplanes  $a^T z - b = \pm 1$ . Four points are correctly classified, but lie in the slab defined by the dashed lines.

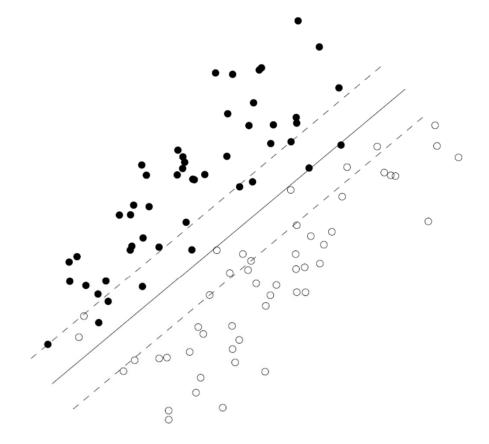


□ More generally, we can consider the trade-off between the number of misclassified points, and the width of the slab  $\{z - 1 \le a^T z - b \le 1\}$ , which is given by  $2/||a||_2$ 

$$\min \|a\|_{2} + \gamma (1^{\top} u + 1^{\top} v)$$
  
s.t.  $a^{\top} x_{i} - b \ge 1 - u_{i}, i = 1, ..., N$   
 $a^{\top} y_{i} - b \le -(1 - v_{i}), i = 1, ..., M$   
 $u \ge 0, v \ge 0$ 

We want to minimize the error and maximize the width of the slab and





**Figure 8.11** Approximate linear discrimination via support vector classifier, with  $\gamma = 0.1$ . The support vector classifier, shown as the solid line, misclassifies three points. Fifteen points are correctly classified but lie in the slab defined by  $-1 < a^T z - b < 1$ , bounded by the dashed lines.



### Outline

### □ Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
- Least-norm Problems
- Regularized Approximation
- Classification
  - Linear Discrimination
  - Support Vector Classifier
  - Logistic Regression



# Logistic Regression

□ *z* is a random variable with values 0 or 1, with a distribution that depends on  $u \in \mathbf{R}^n$ 

Logistic  
Model 
$$\operatorname{prob}(z=1) = \frac{\exp(a^{T}u - b)}{1 + \exp(a^{T}u - b)}$$
  
 $\operatorname{prob}(z=0) = \frac{1}{1 + \exp(a^{T}u - b)}$ 

Given sets of points,  $\{x_1, ..., x_N\}$  and  $\{y_1, ..., y_M\}$ , arise as samples from the logistic model



# Logistic Regression

Maximum Likelihood Estimation

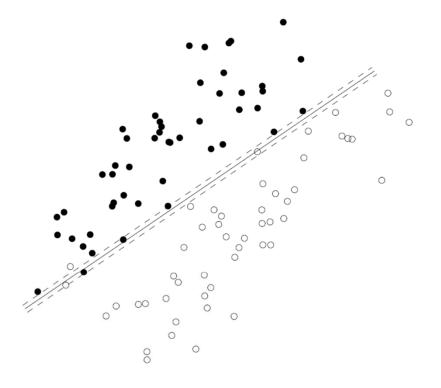
 $\min - l(a, b)$ 

 $\blacksquare$  *l* is the log-likelihood function

$$l(a,b) = \sum_{i=1}^{N} (a^{\mathsf{T}} x_i - b)$$
  
-  $\sum_{i=1}^{N} \log(1 + \exp(a^{\mathsf{T}} x_i - b)) - \sum_{i=1}^{M} \log(1 + \exp(a^{\mathsf{T}} y_i - b))$ 

- If the two sets of points can be linearly separated, then the optimization problem is unbounded below
  - Add domain constraints





**Figure 8.12** Approximate linear discrimination via logistic modeling. The points  $x_1, \ldots, x_{50}$ , shown as open circles, cannot be linearly separated from the points  $y_1, \ldots, y_{50}$ , shown as filled circles. The maximum likelihood logistic model yields the hyperplane shown as a dark line, which misclassifies only two points. The two dashed lines show  $a^T u - b = \pm 1$ , where the probability of each outcome, according to the logistic model, is 73%. Three points are correctly classified, but lie in between the dashed lines.



## Summary

### □ Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
- Least-norm Problems
- Regularized Approximation
- Classification
  - Linear Discrimination
  - Support Vector Classifier
  - Logistic Regression