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General Descent Method

The Algorithm

Given a starting point x € dom f
Repeat
1. Determine a descent direction Ax.
2. Line search: Choose a step size t > 0.
3. Update: x = x + tAx.

until stopping criterion is satisfied.

Descent Direction
vf(x®) Ax® < 0




Gradient Descent Method

The Algorithm

Given a starting point x € dom f
Repeat
1. Ax = -Vf(x).
2. Line search: Choose step size t via exact or
backtracking line search.

3. Update: x := x + tAx.
until stopping criterion is satisfied.

Stopping Criterion
IVl <7
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Preliminary

x(BFD) = () L tFAx(E) = ¥+ = x + tAx
Ax = =Vf(x)
f () Is both strongly convex and
SMOOth )/ < v2F(x) < MI, Vx€S
Define f:R - R as

f@) = f(x —tVf(x))

B A quadratic upper bound on f

3 Mt?
f@) < fx) —tlvfolls +T||Vf(x)||§




Analysis for Exact Line Search &

1. Minimize Both Sides of
5 , Mt? ,
(@) < flx)—tl|lVF(x)ll5 +T||Vf(x)||z

B Left side: f(texact), Where teeac is the step
length that minimizes f

B Right side: t = 1/M is the solution
i 1
f(x+) = f(texact) < f(x) — M ”Vf(x)”%
2. Subtracting p* from Both Sides

1
fx)—p" < f(x)—p’ —mllVf(x)II%



Analysis for Exact Line Search &

3. f(-) I1s strongly convex on §
V2f(x) = ml, Vx €S
= |[Vf)lI3= 2m(f (x) — p”)
4. Combining
f&) —p* <A —m/M)(f(x) —p7)
5. Applying it Recursively
f(x)) =p* < *(f(x(9) —p*)
Bc=1-m/M<1
B f(x")) coverges to p*as k — «



Discussions

Iteration Complexity
B f(x®)) —p* < e after at most

log((f (') —p")/¢)
log(1/c)
B log((f(x®) —p*)/e) indicates that
Initialization is important

B log(1/c) is a function of the condition
number M /m

B When M/m is large
log(1/c) = —log(1 —m/M) = m/M

Iiterations




Discussions

Iteration Complexity
B f(x®) —p* <€ after at most

| (0) M
U D) M og((1(x) - pe) iterations

B log((f(x©@)—p )/e) indicates that
Initialization is important

B log(1/c) is a function of the condition
number M /m

B When M/m is large
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Discussions

Iteration Complexity
B f(x®)) —p* < e after at most

log((f (x”) —p")/e)
log(1/c)
B log((f(x®) —p*)/e) indicates that
Initialization is important
B log(1/c) is a function of the condition
number M /m

B Linear Convergence

v Error lies below a line on a log-linear plot of
error versus iteration number

Iiterations



Analysis for Backtracking Line (g
Search

Backtracking Line Search
given a descent direction Ax for fat x e dom f,a €
(0,0.5),8 € (0,1)

t=1

while f(x + tAx) > f(x) + atVf(x)"Ax, t := Bt

1 f(O) < f) —at||lVFfx)|3 forall 0 <t <1/M
1 Mt? t —

0<t—> —t+—< ——
M 2 2 :

3 Mt?
f@) < flx) —tlvFColls + - VOl ——



Analysis for Backtracking Line (g
Search

Backtracking Line Search

given a descent direction Ax for fat x e dom f,a €
(0,0.5),8 € (0,1)

t=1

while f(x + tAx) > f(x) + atVf(x)"Ax, t := Bt

1 f(O) < f) —at||lVFfx)|3 forall 0 <t <1/M
f@) <) = t/2IVF I3

< f(x) — at||VF()II5
ma<1/2



Analysis for Backtracking Line (g
Search

2. Backtracking Line Search Terminates

B Eitherwitht =1

f(x™) < fx) —allvfoll3
B Orwithavaluet>pg/M
fx) < fx) = Ba/MVFIZ
E So,
f(x™) < f(x) — min{a, Ba/M}||Vf (X)]I5

3. Subtracting p* from Both Sides

f(x™) —p* < f(x) —p* — min{a, fa/M} IV (0)II2



Analysis for Backtracking Line |’
Search

4. Combining with Strong Convexity

20am

fxT)—p* < (1 — min {Zma, T }) (f(x) —p)

5. Applying it Recursively
F0) = p" < *(F(x9) = p)

23}3’"} <1

B c=1-—min {Zma,

B f(x(™) converges to p* with an exponent
that depends on the condition number M/m

B Linear Convergence
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A Quadratic Problem in R?

A Quadratic Objective Function

1
f@) =5t +yxz),  v>0

B The optimal point x* =0
The optimal value is 0

B The Hessian of f is constant and has
eigenvalues 1 and y

B m = min{l,y},M = max{1,y)}
B Condition number

max{1l,y} 1
min{1,y} ax y’y




A Quadratic Problem in R?

A Quadratic Objective Function

1
f@) =5t +yxz),  v>0

Gradient Descent Method
B Exact line search starting at x(® = (y,1)

1\° —1\"
x(k) — Y — x(k) — _)/ Convergence is
1 % +1 ’r2 % +1 [ exactly linear

B Reduced by the factor |(y — 1)/(y + D|?



A Quadratic Problem in R?

Comparisons
B m=min{l,y}, M = max{1,y}

B From our general analysis, the error is
reduced by m

1 — —
M

B From the closed-form solution, the error
IS reduced by

y—12_ 1—m/M2_ , 2m/M 2
y+1) \1+m/M) 1+m/M
® When M/m is large, the iteration
complexity differs by a factor of 4




A Quadratic Problem in R?

Experiments
B For y not far from one, convergence is rapid
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Figure 9.2 Some contour lines of the function f(z) = (1/2)(z7 + 10z3). The
condition number of the sublevel sets, which are ellipsoids, is exactly 10.
The figure shows the iterates of the gradient method with exact line search,

started at =" = (10, 1).



A Non-Quadratic Problem in R%'

The Objective Function
f(xl; xz) — ex1+3x2—0.1 + ex1—3x2—0.1 + e—xl—O.l

B Gradient descent method with
backtracking line search




A Non-Quadratic Problem in R%'

The Objective Function
f(xl; xz) — ex1+3x2—0.1 + ex1—3x2—0.1 + e—xl—O.l

B Gradient descent method with exact line
search




A Non-Quadratic Problem in R%'

Comparisons
B Both are linear, and exact |.s. I1s faster

10°

—15 I ! ! . .
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A Problem in R19Y

A Larger Problem
fx) =c"x— ) log(b; — a/ x)
2

B m=500andn=100

B Gradient descent method with
backtracking line search

v a=01,8=0.5

B Gradient descent method with exact line
search



A Problem in R190

Comparisons
B Both are linear, and exact |.s. Is only a
bit faster 104
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Gradient Method and Condition’
Number

A Larger Problem

f(x) =c"x — 2 log(b; — a;' x)
i=1

B Replace x by Tx
T = diag(1,yY/",y?/™, ...,y(m-D/n)

A Family of Optimization Problems

m
f(x) =c"Tx — ) log(b; — a; Tx)
l
i=1

B Indexed by y



Gradient Method and Conditio
Number

Number of iterations required to
obtain f(x*)—p* < 107°

FR

Backtracking line search -
with ¢ = 0.3 and g = 0.7 . \

103+

iterations
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Gradient Method and Conditio
Number

Thg condition number of the Hessian
V2f(x*)at the optimum

104E iaian
The larger the condition _\ ﬁ )
number, the larger the - /
number of iterations 9
—~ 10°F / ]
O ’
|::: |
B |
< 102} —
10!

101 100 10!
v



Conclusions

1.

2.

The gradient method often exhibits
approximately linear convergence.

The convergence rate depends greatly on
the condition number of the Hessian, or the
sublevel sets.

. An exact line search sometimes improves

the convergence of the gradient method,
but the effect is not large.

. The choice of backtracking parameters

a, [ has a noticeable but not dramatic effect
on the convergence.
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General Convex Functions

f () Is convex
f(+) 1s Lipschitz continuous

IVFllz <G

Gradient Descent Method
Given a starting point x(Y) € dom f

For k=1,2,..,K do

Update: x®+D = x®) _ ¢y f (500
End for
Return x = %Zgzlx(k)




Analysis

Define D = ||x() — x*

Let t() =nk=1,.. K
f(x®) = f(x™)
< VF(x®) (x® — x*)

2

=100 )T (00 _
—( ) () —x7)

2 — D — 2 + || ® — x(k+1)||§)

1
=5 (||x<k> oyt



Analysis

Define D = ||x() — x*

Let t®) =n,k=1,..,K
f(x®) = FGe)
< 7f(x®)" (x® - x7)

= L (x0 — x0erD)T (0 _ x)
n
1
= Z(Hx(") —x
< %(Hx(") e

||x(k+1)

II3) + 5 17 )]

)+ZG2

||x(k+1)




Analysis

SO0,
F0) = £ < o
Summing over k =1,. K

z FE) = Kf () < _—02 "502
O D|V|d|ng both sides by K

||x(k+1)




Analysis

By Jensen’s Inequality

1 K
F@ - f(x) = f (Ezkﬂx“‘)) - @)

T
< %;f(x(")) )

D? 7
< ——+—(G2
_ZUK-I_Z
_GD



Discussions

How to Ensure |[Vf(x)]|l, < G?

Add a Domain Constraint
min f(x)

s.t. xeX
B Can model any constrained convex
optimization problem

Gradient Descent with Projection
gk+1) — (k) _ t(k)Vf(x(")), x kD = p (g k+1)

B Property of Euclidean Projection

||x(k+1) < ||5C\(k+1) ot

2



Gradient Descent with
Projection

The Problem . £(x)
s.t. xeX
The Algorithm

Given a starting point x(Y) € dom f
For k=1,2,..,K do
Update: 2*+1 = x(®) — ¢RIy f(00)
Projection: x&+1 = p, (x(k+1)
End for
Return x = %Zgzlx(k)

Assumptions IVf(®)ll, <G vxeX




Analysis

Define D = ||x() — x*

Let t¥) =n,k=1,..,K
f(x®) = f(x)
< 7f(x®)" (x® - x*)

X" = argmingey f (x)

1 Property of Euclidean
— (x(k) _ ,g(k+1))T(x(k) —x*) |Projection

—2 (”x(‘c) ||x(k+1) ) |_ ] 2/
_(”x(k) ||x(k+1) ) L ” Gz
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Motivation

The First-order Taylor Approximation
fx+v) = flx+v)=f)+Vf(x)Tv
B Vf(x)"v is the directional derivative of f at
x In the direction v

B It gives the approximate change in f for a
small step v

B v is a descent direction if Vf(x) v is
negative

A Good Search Direction v
B Make Vf(x)"v as negative as possible




Steepest Descent Method

Normalized Steepest Descent Direction
B with respect to the norm |||

Axpsq = argmin{Vf (x) "v||lv]| = 1}
B Equivalent to

Axpsg = argmin{Vf (x) "v|llv]l < 1}

v The direction in the unit ball of ||-|| that
extends farthest in the direction —Vf(x)

Unnormalized Steepest Descent
Direction  Axgy = I7f(0)1l.A%nsq

Vf(x)TAde — |||7f(x)||*\7f(x)TAand — —||\7f(x)||§




Steepest Descent Method

The Algorithm

Given a starting point x € dom f
Repeat

1. Compute steepest descent direction Axg.

2. Line search: Choose t via exact or
backtracking line search.

3. Update: x := x + tAx 4.
until stopping criterion is satisfied.

B \When exact line search iIs used, scale
factors In the direction have no effect.



Outline

Gradient Descent Method
B Convergence Analysis

B Examples
B General Convex Functions

Steepest Descent Method
B Euclidean and Quadratic Norms

B /,-norm
B Convergence Analysis
B Discussion and Examples



Steepest Descent Method

Steepest Descent for Euclidean Norm

AXxpsd = argmin{Vf(x)Tv‘llsz <1}

1
= Treon, W

Axgq = IV (x)|l2Axpsq = =V (x)

B The steepest descent method coincides
with the gradient descent method



Steepest Descent Method

Steepest Descent for Quadratic Norm
B P-quadratic norm, where P € S,

Izllp = (zTP2)Y2 = ||PY2||

B The dual norm ||z, = ||z]lp-1 = HP‘l/ZzH2
B Normalized Steepest Descent Direction
Mnsa = —(VFOTPIVF(0) " PIF (x)
B Unnormalized Steepest Descent Direction
Axsq = ||V (O |[Axpsqa = =P~V f (x)



Steepest Descent Method

Steepest Descent for Quadratic Norm

\\'\

™ \_——Vf(z)

\ 7~ | Ax,q  extends as far as
\\\_ / Alnsd possible in the direction —Vf(x)
— while staying in the ellipsoid.

'\‘I

‘\‘

\

B The ellipsoid is the unit ball of the norm



Steepest Descent Method

Steepest Descent for Quadratic Norm
B Interpretation via Change of Coordinates
B Define x = P?x, so ||x|l, = ||%ll,
B An Equivalent Problem
min f(x) = f(P~/2x) = £ (x)

v' Gradient descent method
Ax = —Vf(x) = —P 12vf(P~12%) = —P~1/27f (x)

v' Correspond to the direction

Ax = P~Y2(—p~127f(x)) = =P~V f(x)
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Steepest Descent Method

Steepest Descent for £,-norm
B Normalized Steepest Descent Direction
Axnsq = argmin{Vf () Tv|||v|l, < 1)

= —sign <0f(x)> e
6xl- l

v i be any index for which ||[Vf(x)]|le = [(Vf(x));]
v e; is the i-th standard basis vector

B Unnormalized Steepest Descent Direction

df (x)
Axgq = Axnsd”Vf(x)”oo = — O, €i
i




Steepest Descent Method

Steepest Descent for £,-norm

\.,
.\
\
" —V f(z)
= .;\\ Az nsd
N\ | Axpsq can always be chosen in
Y the direction of a standard
A \ basis vector (or a negative one).
N \
\\\ \I‘I“:

\
B The diamond is the unit ball of £;-norm



Steepest Descent Method

Steepest Descent for £,-norm

Coordinate-descent Algorithm

1. Select a component of VVf(x) with
maximum absolute value

2. Decrease or increase the corresponding
component of x

B Simplify, or even trivialize, the line
search
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Convergence Analysis

1. Any norm can be bounded in terms of
the Euclidean norm

B Existy,7 € (0,1]
lxll = vllxll,  llxll = 7llxll;

2. f(-) is smooth, i.e, V*f(x) < MI,Vx € S
M||Axgqll3 2

2

M||Ax.ql|?
< f(x)+tVf(x)TAxgq + llzy;d” t?

M
= f() = tllf OlIZ + tzIIf(X)II2

flx + thxgg) < f(x) +tVfF(x) TAxgq +




Convergence Analysis

3. Exit Condition for the Backtracking
Line Search
flx + tAxgg) < f(x) + atVf(x) T Axgy, vVt <y?/M

Ha<1/2
y? Mt? t —

0<tL—>> —t+—7=<—=
M +2y2_ 2

fla+ ttx) < £ = GOIE + 2 IF I
= f(x + thxse) < f() =3 IIf(x)IIE

= f(x + tAxgq) < f(x) + % Vf(x) Axgq



Convergence Analysis

3. Exit Condition for the Backtracking
Line Search

flx + tAxgg) < f(x) + atVf(x) T Axgy, vVt <y?/M
Ha<1/2
B Backtracking line search terminates

t > min{1, By?/M}
B So

N % ,
f(x™) = fx + thxsq) < f(x) — amin 1= I f ()l

2
< f) - amin {1%} GOl



Fail to illustrate

Convergence AnalysI> the advantage
— /\ ™

4. Subtracting p* from Both Sides
2
fx™) —p" < f(x) —p" — ay’min {1%} 1f COlI3
5. Combining with Strong Convexity
f&P) —p"<c(f(x) —p")
B c=1-2may’min{l,py?/M} < 1
6. Applying it Recursively
F0) = p" < S (F(x9) = p)

B Linear convergence
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Choice of Norm for Steepest
Descent

Steepest Descent Method with
Quadratic P-norm

B Equivalent to gradient method after the
change of coordinates

Gradient Method Works Well

B When the condition numbers of the
sublevel sets (or Hessian) are moderate

Steepest Descent Method will Work Well

B When the sublevel sets, after the change of
coordinates, are moderately conditioned




Choice of Norm for Steepest
Descent

Choosing P to make the sublevel sets
of f are well conditioned

B If an approximation H of the Hessian at the
optimal point H(x*) were known

B A good choice of P would be P = H
B The Hessian of f at the optimum
ﬁ_l/zvzf(x*)ﬁ_l/z ~ |
Choosing P to make the ellipsoid
€ ={x|x"Px < 1}
approximate the the sublevel set of f




Example

The Objective Function

Fxy, xy) = e*¥1+3%2701 | x1-3%3-01 4 o=%;-0.1

B Steepest descent method
v" Using the two quadratic norms

2 0 8 0
Pl:[o 8|’ PZ:[O 2

B Backtracking line search
v a =0l1land g = 0.7



Example

The Objective Function

f(xl:xz) — ex1+3x2—0.1 + ex1—3x2—0.1 + e—x1—0.1

Figure 9.11 Steepest descent method with a quadratic norm || - ||p,. The

ellipses are the boundaries of the norm balls {z | ||z — 2™ ||p, < 1} at 2%

and z'V.



Example

The Objective Function

f(xl:xz) — ex1+3x2—0.1 + ex1—3x2—0.1 + e—x1—0.1
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Figure 9.12 Steepest descent method, with quadratic norm || - || p,.



Example

The Objective Function

f(xpxz) — ex1+3x2—0.1 + ex1—3x2—0.1 + e—x1—0.1

10°
100 oo,
x ‘ o
::‘ < C-6-g.4
I . Py " Teeess,
< 1072 71
= Py
10—“);
10— ; = =
0 10 20 30 40
L
Figure 9.13 Error f(z'*)) — p* versus iteration k, for the steepest descent
method with the quadratic norm || - ||p, and the quadratic norm || - || p,.

Convergence is rapid for the norm || - ||p, and very slow for || - || p,.



Example

Why P, Is better than P,?
B Problems after the changes of coordinates

L '--\\\
~£ B \
f =2z (0)
AR
/,\;f; _-ﬁ /,/f e =T
ff - \\ /’//
adl ”-/f\‘\t‘/ IS 7I’:7 = .'t“v.lﬁ'(' )
/ f”f ‘,l\ ~ - :."_-i &
P1 \:;/?(' ) \ *\3‘.\‘3- 7
G =
| | / - — L[Sf "'ﬂ:':/
¥ L /,// [~ 1—,( )
ll iy L : l
\ ) KT E 2=
- = //

v The change of variables associated with P; yields
sublevel sets with modest condition number
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