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General Descent Method

 The Algorithm
Given a starting point 𝑥 ∈ dom 𝑓
Repeat

1. Determine a descent direction Δ𝑥.

2. Line search: Choose a step size 𝑡 ൒ 0.
3. Update: 𝑥 ൌ 𝑥 ൅ 𝑡∆𝑥.

until stopping criterion is satisfied.

 Descent Direction
𝛻𝑓 𝑥 ௞ ୃ

Δ𝑥ሺ௞ሻ ൏ 0



Gradient Descent Method

 The Algorithm
Given a starting point 𝑥 ∈ dom 𝑓
Repeat

1. Δ𝑥 ≔ െ𝛻𝑓ሺ𝑥ሻ.
2. Line search: Choose step size 𝑡 via exact or 

backtracking line search.
3. Update: 𝑥 ≔ 𝑥 ൅ 𝑡∆𝑥. 

until stopping criterion is satisfied.

 Stopping Criterion
ଶ
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Preliminary

 ሺ௞ାଵሻ ሺ௞ሻ ሺ௞ሻ ሺ௞ሻ ା



 is both strongly convex and 
smooth

 Define as

 A quadratic upper bound on 

ଶ

ଶ
ଶ

ଶ

ଶ
ଶ



Analysis for Exact Line Search

1. Minimize Both Sides of

 Left side: ୣ୶ୟୡ୲ , where ୣ୶ୟୡ୲ is the step 
length that minimizes 

 Right side: is the solution

2. Subtracting ∗ from Both Sides

ଶ
ଶ

ଶ

ଶ
ଶ

ା
ୣ୶ୟୡ୲ ଶ

ଶ

ା ∗ ∗
ଶ
ଶ



Analysis for Exact Line Search

is strongly convex on 

4. Combining

5. Applying it Recursively



 ሺ௞ሻ coverges to ∗ as 

⇒ 𝛻𝑓 𝑥 ଶ
ଶ൒ 2𝑚 𝑓 𝑥 െ 𝑝∗

ଶ

ା ∗ ∗

ሺ௞ሻ ∗ ௞ ሺ଴ሻ ∗



Discussions

 Iteration Complexity
 ௞ ∗ after at most

 ሺ଴ሻ ∗ indicates that 
initialization is important

 is a function of the condition 
number 

 When is large

ሺ଴ሻ ∗
iterations

log 1/𝑐 ൌ െ logሺ1 െ 𝑚/𝑀ሻ ൎ 𝑚/𝑀
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Discussions

 Iteration Complexity
 ௞ ∗ after at most

 ሺ଴ሻ ∗ indicates that 
initialization is important

 is a function of the condition 
number 

 Linear Convergence
 Error lies below a line on a log-linear plot of 

error versus iteration number

ሺ଴ሻ ∗
iterations



Analysis for Backtracking Line 
Search

 Backtracking Line Search
given a descent direction ∆𝑥 for 𝑓 at 𝑥 ∈ 𝐝𝐨𝐦 𝑓, 𝛼 ∈
0, 0.5 , 𝛽 ∈ 0, 1
𝑡 ≔ 1

while 𝑓 𝑥 ൅ 𝑡Δ𝑥 ൐ 𝑓 𝑥 ൅ 𝛼𝑡𝛻𝑓 𝑥 ୃ∆𝑥, 𝑡 ≔ 𝛽𝑡

ଶ
ଶ for all 

0 ൑ 𝑡 ൑
1
𝑀 ⇒ െ𝑡 ൅

𝑀𝑡ଶ

2 ൑ െ
𝑡
2

𝑓ሚ 𝑡 ൑ 𝑓 𝑥 െ 𝑡 𝛻𝑓 𝑥 ଶ
ଶ ൅

𝑀𝑡ଶ

2 𝛻𝑓 𝑥 ଶ
ଶ



Analysis for Backtracking Line 
Search

 Backtracking Line Search
given a descent direction ∆𝑥 for 𝑓 at 𝑥 ∈ 𝐝𝐨𝐦 𝑓, 𝛼 ∈
0, 0.5 , 𝛽 ∈ 0, 1
𝑡 ≔ 1

while 𝑓 𝑥 ൅ 𝑡Δ𝑥 ൐ 𝑓 𝑥 ൅ 𝛼𝑡𝛻𝑓 𝑥 ୃ∆𝑥, 𝑡 ≔ 𝛽𝑡

ଶ
ଶ for all 



𝑓ሚ 𝑡 ൑ 𝑓 𝑥 െ ሺ𝑡/2ሻ 𝛻𝑓 𝑥 ଶ
ଶ

൑ 𝑓 𝑥 െ 𝛼𝑡 𝛻𝑓 𝑥 ଶ
ଶ



Analysis for Backtracking Line 
Search

2. Backtracking Line Search Terminates
 Either with 

 Or with a value 

 So,

3. Subtracting ∗ from Both Sides

ା
ଶ
ଶ

ା
ଶ
ଶ

ା
ଶ
ଶ

ା ∗ ∗
ଶ
ଶ



Analysis for Backtracking Line 
Search

4. Combining with Strong Convexity

5. Applying it Recursively


ଶఉఈ௠

ெ

 ሺ௞ሻ converges to ∗ with an exponent 
that depends on the condition number 

 Linear Convergence

ା ∗ ∗

ሺ௞ሻ ∗ ௞ ሺ଴ሻ ∗
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A Quadratic Problem in 

 A Quadratic Objective Function

 The optimal point ∗

 The optimal value is 
 The Hessian of is constant and has 

eigenvalues and 
 minሼ1, 𝛾ሽ , 𝑀 ൌ maxሼ1, 𝛾ሽ
 Condition number

ଵ
ଶ

ଶ
ଶ



A Quadratic Problem in 

 A Quadratic Objective Function

 Gradient Descent Method
 Exact line search starting at ሺ଴ሻ

 Reduced by the factor ଶ

ଵ
ଶ

ଶ
ଶ

𝑥ଵ
ሺ௞ሻ ൌ 𝛾

𝛾 െ 1
𝛾 ൅ 1

௞

, 𝑥ଶ
ሺ௞ሻ ൌ 𝛾 െ

𝛾 െ 1
𝛾 ൅ 1

௞

𝑓 𝑥 ௞ ൌ
𝛾 𝛾 ൅ 1

2
𝛾 െ 1
𝛾 ൅ 1

ଶ௞

ൌ
𝛾 െ 1
𝛾 ൅ 1

ଶ௞

𝑓ሺ𝑥ሺ଴ሻሻ

Convergence is
exactly linear



A Quadratic Problem in 

 Comparisons


 From our general analysis, the error is 
reduced by

 From the closed-form solution, the error 
is reduced by

 When is large, the iteration 
complexity differs by a factor of 

𝛾 െ 1
𝛾 ൅ 1

ଶ

ൌ
1 െ 𝑚/𝑀
1 ൅ 𝑚/𝑀

ଶ

ൌ 1 െ
2𝑚/𝑀

1 ൅ 𝑚/𝑀

ଶ

1 െ
𝑚
𝑀



A Quadratic Problem in 

 Experiments
 For not far from one, convergence is rapid



A Non-Quadratic Problem in 

 The Objective Function

 Gradient descent method with 
backtracking line search
 𝛼 ൌ 0.1, 𝛽 ൌ 0.7

ଵ ଶ
௫భାଷ௫మି଴.ଵ ௫భିଷ௫మି଴.ଵ ି௫భି଴.ଵ



A Non-Quadratic Problem in 

 The Objective Function

 Gradient descent method with exact line 
search

ଵ ଶ
௫భାଷ௫మି଴.ଵ ௫భିଷ௫మି଴.ଵ ି௫భି଴.ଵ



A Non-Quadratic Problem in 

 Comparisons
 Both are linear, and exact l.s. is faster



A Problem in 

 A Larger Problem

 and 

 Gradient descent method with 
backtracking line search
 𝛼 ൌ 0.1, 𝛽 ൌ 0.5

 Gradient descent method with exact line 
search

ୃ
௜ ௜

ୃ
௠

௜ୀଵ



A Problem in 

 Comparisons
 Both are linear, and exact l.s. is only a 

bit faster



Gradient Method and Condition 
Number

 A Larger Problem

 Replace by 

 A Family of Optimization Problems

 Indexed by 

ୃ
௜ ௜

ୃ
௠

௜ୀଵ

ଵ/௡ ଶ/௡ ሺ௡ିଵሻ/௡

ୃ
௜ ௜

ୃ
௠

௜ୀଵ



Gradient Method and Condition 
Number

 Number of iterations required to 
obtain ௞ ∗ ିହ

Backtracking line search
with 𝛼 ൌ 0.3 and 𝛽 ൌ 0.7



Gradient Method and Condition 
Number

 The condition number of the Hessian 
ଶ ∗ at the optimum

The larger the condition
number, the larger the
number of iterations



Conclusions
1. The gradient method often exhibits 

approximately linear convergence.
2. The convergence rate depends greatly on 

the condition number of the Hessian, or the 
sublevel sets.

3. An exact line search sometimes improves 
the convergence of the gradient method, 
but the effect is not large.

4. The choice of backtracking parameters 
has a noticeable but not dramatic effect 

on the convergence.
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General Convex Functions

 is convex
 is Lipschitz continuous

 Gradient Descent Method
Given a starting point 𝑥ሺଵሻ ∈ dom 𝑓
For 𝑘 ൌ 1,2, … , 𝐾 do

Update: 𝑥ሺ௞ାଵሻ ൌ 𝑥ሺ௞ሻ െ 𝑡ሺ௞ሻ𝛻𝑓ሺ𝑥ሺ௞ሻሻ
End for
Return ଵ

௄
ሺ௞ሻ௄

௞ୀଵ

𝛻𝑓 𝑥 ଶ ൑ 𝐺



Analysis

 Define ଵ ∗
ଶ

 Let ሺ௞ሻ

𝑓 𝑥ሺ௞ሻ െ 𝑓 𝑥∗

൑ 𝛻𝑓 𝑥ሺ௞ሻ ୃ 𝑥ሺ௞ሻ െ 𝑥∗

ൌ
1
𝜂 𝑥ሺ௞ሻ െ 𝑥ሺ௞ାଵሻ ୃ 𝑥ሺ௞ሻ െ 𝑥∗

ൌ
1

2𝜂 𝑥 ௞ െ 𝑥∗
ଶ
ଶ

െ 𝑥 ௞ାଵ െ 𝑥∗
ଶ
ଶ

൅ 𝑥 ௞ െ 𝑥 ௞ାଵ
ଶ
ଶ



Analysis

 Define ଵ ∗
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൑ 𝛻𝑓 𝑥ሺ௞ሻ ୃ 𝑥ሺ௞ሻ െ 𝑥∗

ൌ
1

2𝜂 𝑥 ௞ െ 𝑥∗
ଶ
ଶ

െ 𝑥 ௞ାଵ െ 𝑥∗
ଶ
ଶ

൅
𝜂
2 𝛻𝑓 𝑥 ௞

ଶ
ଶ

൑
1

2𝜂 𝑥 ௞ െ 𝑥∗
ଶ
ଶ

െ 𝑥 ௞ାଵ െ 𝑥∗
ଶ
ଶ

൅
𝜂
2 𝐺ଶ

ൌ
1
𝜂 𝑥ሺ௞ሻ െ 𝑥ሺ௞ାଵሻ ୃ 𝑥ሺ௞ሻ െ 𝑥∗



Analysis

 So,

 Summing over 

 Dividing both sides by 

𝑓 𝑥ሺ௞ሻ െ 𝑓 𝑥∗ ൑
1

2𝜂 𝑥 ௞ െ 𝑥∗
ଶ
ଶ

െ 𝑥 ௞ାଵ െ 𝑥∗
ଶ
ଶ

൅
𝜂
2 𝐺ଶ

෍ 𝑓 𝑥ሺ௞ሻ െ 𝐾𝑓 𝑥∗
௄

௞ୀଵ
൑

1
2𝜂 𝐷ଶ ൅

𝜂𝐾
2 𝐺ଶ

1
𝐾 ෍ 𝑓 𝑥ሺ௞ሻ െ 𝑓 𝑥∗

௄

௞ୀଵ
൑

1
𝐾

1
2𝜂 𝐷ଶ ൅

𝜂𝐾
2 𝐺ଶ

ൌ
𝐷ଶ

2𝜂𝐾 ൅
𝜂
2 𝐺ଶ



Analysis

 By Jensen’s Inequality


஽

ீ ௄

𝑓 𝑥 െ 𝑓 𝑥∗ ൌ 𝑓
1
𝐾 ෍ 𝑥 ௞

௄

௞ୀଵ
െ 𝑓 𝑥∗

൑
1
𝐾 ෍ 𝑓 𝑥 ௞ െ 𝑓 𝑥∗

்

௧ୀଵ

൑
𝐷ଶ

2𝜂𝐾 ൅
𝜂
2 𝐺ଶ

ൌ
𝐺𝐷

𝐾



Discussions

 How to Ensure ଶ ?
 Add a Domain Constraint 

 Can model any constrained convex 
optimization problem

 Gradient Descent with Projection

 Property of Euclidean Projection

min 𝑓ሺ𝑥ሻ 
s. t. 𝑥 ∈ 𝑋

ሺ௞ାଵሻ ሺ௞ሻ ௞ ௞ ௞ାଵ
௑

ሺ௞ାଵሻ

𝑥ሺ௞ାଵሻ െ 𝑥∗
ଶ ൌ 𝑃௑ 𝑥ොሺ௞ାଵሻ െ 𝑃௑ 𝑥∗

ଶ
൑ 𝑥ොሺ௞ାଵሻ െ 𝑥∗

ଶ



Gradient Descent with 
Projection

 The Problem

 The Algorithm
Given a starting point 𝑥ሺଵሻ ∈ dom 𝑓

For 𝑘 ൌ 1,2, … , 𝐾 do
Update: 𝑥ොሺ௞ାଵሻ ൌ 𝑥ሺ௞ሻ െ 𝑡 ௞ 𝛻𝑓 𝑥 ௞

Projection: 𝑥 ௞ାଵ ൌ 𝑃௑ሺ𝑥ොሺ௞ାଵሻሻ
End for
Return ଵ

௄
ሺ௞ሻ௄

௞ୀଵ

 Assumptions 𝛻𝑓 𝑥 ଶ ൑ 𝐺, ∀𝑥 ∈ 𝑋

 



Analysis

 Define ଵ ∗
ଶ
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ଶ
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𝜂
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1
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ଶ
ଶ

െ 𝑥 ௞ାଵ െ 𝑥∗
ଶ
ଶ

൅
𝜂
2 𝐺ଶ

Property of Euclidean
Projection
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Motivation

 The First-order Taylor Approximation

 ୃ is the directional derivative of at 
in the direction 

 It gives the approximate change in for a 
small step 

 is a descent direction if ୃ is 
negative

 A Good Search Direction 
 Make ୃ as negative as possible

ୃ



Steepest Descent Method

 Normalized Steepest Descent Direction
 with respect to the norm 

 Equivalent to

 The direction in the unit ball of ⋅ that 
extends farthest in the direction െ𝛻𝑓ሺ𝑥ሻ

 Unnormalized Steepest Descent 
Direction 

୬ୱୢ
ୃ

୬ୱୢ
ୃ

ୱୢ ∗ ୬ୱୢ

ୃ
ୱୢ ∗

ୃ
୬ୱୢ ∗

ଶ



Steepest Descent Method

 The Algorithm
Given a starting point 𝑥 ∈ dom 𝑓
Repeat

1. Compute steepest descent direction Δ𝑥ୱୢ.
2. Line search: Choose 𝑡 via exact or 

backtracking line search. 
3. Update: 𝑥 ≔ 𝑥 ൅ 𝑡Δ𝑥ୱୢ. 

until stopping criterion is satisfied.

 When exact line search is used, scale 
factors in the direction have no effect.
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Steepest Descent Method

 Steepest Descent for Euclidean Norm

 The steepest descent method coincides 
with the gradient descent method

ୱୢ ଶ ୬ୱୢ

୬ୱୢ
ୃ

ଶ

ଶ



Steepest Descent Method

 Steepest Descent for Quadratic Norm
 -quadratic norm, where ାା

௡

 The dual norm ∗ ௉షభ ିଵ/ଶ
ଶ

 Normalized Steepest Descent Direction

 Unnormalized Steepest Descent Direction 

୬ୱୢ
ୃ ିଵ ିଵ/ଶ ିଵ

ୱୢ ∗ ୬ୱୢ ൌ െ𝑃ିଵ𝛻𝑓 𝑥

௉
ୃ ଵ/ଶ ଵ/ଶ

ଶ



Steepest Descent Method

 Steepest Descent for Quadratic Norm

 The ellipsoid is the unit ball of the norm

Δ𝑥୬ୱୢ extends as far as
possible in the direction െ𝛻𝑓 𝑥
while staying in the ellipsoid.



Steepest Descent Method

 Steepest Descent for Quadratic Norm
 Interpretation via Change of Coordinates
 Define ଵ/ଶ , so ௉ ଶ

 An Equivalent Problem

 Gradient descent method

 Correspond to the direction

ିଵ/ଶ

ିଵ/ଶ ିଵ/ଶ ିଵ/ଶ

ିଵ/ଶ ିଵ/ଶ ିଵ
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Steepest Descent Method

 Steepest Descent for ଵ-norm
 Normalized Steepest Descent Direction

 𝑖 be any index for which 𝛻𝑓 𝑥 ஶ ൌ 𝛻𝑓ሺ𝑥ሻ ௜

 𝑒௜ is the 𝑖-th standard basis vector

 Unnormalized Steepest Descent Direction 

୬ୱୢ
ୃ

ଵ

௜
௜

ୱୢ ୬ୱୢ ஶ
௜

௜



Steepest Descent Method

 Steepest Descent for ଵ-norm

 The diamond is the unit ball of ℓଵ-norm

Δ𝑥୬ୱୢ can always be chosen in 
the direction of a standard 
basis vector (or a negative one).



Steepest Descent Method

 Steepest Descent for ଵ-norm

 Coordinate-descent Algorithm
1. Select a component of with 

maximum absolute value
2. Decrease or increase the corresponding 

component of 

 Simplify, or even trivialize, the line 
search
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Convergence Analysis

1. Any norm can be bounded in terms of 
the Euclidean norm
 Exist 

is smooth, i.e, ଶ
ଶ ∗ ଶ

ୱୢ
ୃ

ୱୢ
ୱୢ ଶ

ଶ
ଶ

ୃ
ୱୢ

ୱୢ
ଶ

ଶ
ଶ

∗
ଶ

ଶ
ଶ

∗
ଶ



Convergence Analysis

3. Exit Condition for the Backtracking 
Line Search



ୱୢ
ୃ

ୱୢ
ଶ

0 ൑ 𝑡 ൑
𝛾ଶ

𝑀 ⇒ െ𝑡 ൅
𝑀𝑡ଶ

2𝛾ଶ ൑ െ
𝑡
2

ୱୢ ∗
ଶ

ଶ
ଶ

∗
ଶ

ୱୢ ∗
ଶ

ୱୢ
ୃ

ୱୢ



Convergence Analysis

3. Exit Condition for the Backtracking 
Line Search



 Backtracking line search terminates

 So

ୱୢ
ୃ

ୱୢ
ଶ

ଶ

𝑓 𝑥ା ൌ 𝑓 𝑥 ൅ 𝑡Δ𝑥ୱୢ ൑ 𝑓 𝑥 െ 𝛼 min 1,
𝛽𝛾ଶ

𝑀 𝑓 𝑥 ∗
ଶ

൑ 𝑓 𝑥 െ 𝛼 𝛾෤ଶmin 1,
𝛽𝛾ଶ

𝑀 𝑓 𝑥 ଶ
ଶ



Convergence Analysis

4. Subtracting ∗ from Both Sides

5. Combining with Strong Convexity

 ଶ ଶ

6. Applying it Recursively

 Linear convergence

ା ∗ ∗

𝑓 𝑥ା െ 𝑝∗ ൑ 𝑓 𝑥 െ 𝑝∗ െ 𝛼 𝛾෤ଶmin 1,
𝛽𝛾ଶ

𝑀 𝑓 𝑥 ଶ
ଶ

ሺ௞ሻ ∗ ௞ ሺ଴ሻ ∗

Fail to illustrate
the advantage



Outline

 Gradient Descent Method
 Convergence Analysis
 Examples
 General Convex Functions

 Steepest Descent Method
 Euclidean and Quadratic Norms
 ଵ-norm
 Convergence Analysis
 Discussion and Examples



Choice of Norm for Steepest 
Descent

 Steepest Descent Method with 
Quadratic -norm
 Equivalent to gradient method after the 

change of coordinates
 Gradient Method Works Well 
 When the condition numbers of the 

sublevel sets (or Hessian) are moderate
 Steepest Descent Method will Work Well
 When the sublevel sets, after the change of 

coordinates, are moderately conditioned



Choice of Norm for Steepest 
Descent

 Choosing to make the sublevel sets 
of are well conditioned
 If an approximation of the Hessian at the 

optimal point ∗ were known
 A good choice of would be 
 The Hessian of at the optimum

 Choosing to make the ellipsoid 

approximate the the sublevel set of 

ିଵ/ଶ ଶ ∗ ିଵ/ଶ

ୃ



Example

 The Objective Function

 Steepest descent method
 Using the two quadratic norms

 Backtracking line search 
 𝛼 ൌ  0.1 and 𝛽 ൌ  0.7

ଵ ଶ
௫భାଷ௫మି଴.ଵ ௫భିଷ௫మି଴.ଵ ି௫భି଴.ଵ

ଵ ଶ



Example

 The Objective Function
ଵ ଶ

௫భାଷ௫మି଴.ଵ ௫భିଷ௫మି଴.ଵ ି௫భି଴.ଵ



Example

 The Objective Function
ଵ ଶ

௫భାଷ௫మି଴.ଵ ௫భିଷ௫మି଴.ଵ ି௫భି଴.ଵ



Example

 The Objective Function
ଵ ଶ

௫భାଷ௫మି଴.ଵ ௫భିଷ௫మି଴.ଵ ି௫భି଴.ଵ



Example

 Why ଵ is better than ଶ?
 Problems after the changes of coordinates

 The change of variables associated with 𝑃ଵ yields 
sublevel sets with modest condition number

ଵ

ଶ



Summary

 Gradient Descent Method
 Convergence Analysis
 General Convex Functions

 Steepest Descent Method
 Euclidean and Quadratic Norms
 ଵ-norm
 Convergence Analysis


