Introduction to Optimization Methods

Homework 1

Instructor: Lijun Zhang

Name: Student name, StudentId: Student id

Notice

- The submission email is: optfall24@163.com.
- Please use the provided ${\rm I\!AT}_{\rm E}\!{\rm X}$ file as a template.
- If you are not familiar with LATEX, you can also use Word to generate a PDF file.

Problem 1: Inequalities.

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\|\cdot\|$ denote the Euclidean norm.

a) Prove the Schwarz's inequality $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

b) Prove the triangle inequality $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

Notice: You cannot use $|\mathbf{x} \cdot \mathbf{y}| = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$ to complete the proof in problem a).

Problem 2: Convex sets

- a) Show that a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m\}$ is convex.
- b) Show that if $S \subseteq \mathbb{R}^n$ is convex, and $A \in \mathbb{R}^{m \times n}$, then $A(S) = \{Ax : x \in S\}$, is convex.
- c) Show that if $S \subseteq \mathbb{R}^m$ is convex, and $A \in \mathbb{R}^{m \times n}$, then $A^{-1}(S) = \{x : Ax \in S\}$, is convex.

Problem 3: Hyperplane

What is the distance between two parallel hyperplanes, i.e., $\{x | a^{\top}x = b\}$ and $\{x | a^{\top}x = c\}$?

Problem 4: Examples

Let $S \subseteq \mathbb{R}^n$, and let $\|\cdot\|$ be a norm on \mathbb{R}^n .

- a) For $a \ge 0$ we define S_a as $\{x | \operatorname{dist}(x, S) \le a\}$, where $\operatorname{dist}(x, S) = \inf_{y \in S} ||x y||$. We refer to S_a as S expanded or extended by a. Show that if S is convex, then S_a is convex.
- b) For $a \ge 0$ we define S_{-a} as $\{x | B(x, a) \subseteq S\}$, where B(x, a) is the ball (in the norm $\|\cdot\|$), with radius a. We refer to S_{-a} as S shrunk or restricted by a, since S_{-a} consists of all points that are at least a distance a from $\mathbb{R}^n \setminus S$. Show that if S is convex, then S_{-a} is convex.

Problem 5: Generalized Inequalities

Let K^* be the dual cone of a convex cone K. Prove the following,

- a) K^* is indeed a convex cone.
- b) $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$.