Introduction to Optimization Methods

Fall 2024

Homework 3

Instructor: Lijun Zhang

Name: Student name, StudentId: Student id

Notice

- The submission email is: optfall24@163.com
- Please use the provided ${\rm I\!AT}_{\rm E}\!{\rm X}$ file as a template.
- If you are not familiar with $I\!\!AT_{E\!}X$, you can also use Word to generate a **PDF** file.

Problem 1: Linear optimization problem

Consider minimizing a linear function over an affine set.

$$\begin{array}{ll} \min & c^{\top} x \\ \text{s.t.} & Ax = b. \end{array}$$

Provide the specific form of the optimal value p_{\star} .

Problem 2: Strong duality and Slater's condition

Consider the optimization problem

$$\begin{array}{ll} \min & e^{-x} \\ \text{s.t.} & x^2/y \le 0 \end{array}$$

with variables x and y, and domain $\mathcal{D} = \{(x, y) | y > 0\}.$

- (1) Verify that this is a convex optimization problem and find the optimal value.
- (2) Give the Lagrange dual problem. Find the optimal solution λ^* and optimal value d^* of the dual problem. What is the optimal duality gap?
- (3) Does Slater's condition hold for this problem?

Problem 3: KKT conditions

Consider the problem

$$\min_{x \in \mathbb{R}^2} \quad x_1^2 + x_2^2 \text{s.t.} \quad (x_1 - 1)^2 + (x_2 - 1)^2 \le 2 \quad (x_1 - 1)^2 + (x_2 + 1)^2 \le 2$$

where $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^\top \in \mathbb{R}^2$.

- (1) Write the Lagrangian for this problem.
- (2) Does strong duality hold in this problem?
- (3) Write the KKT conditions for this optimization problem.

Problem 4: Equality Constrained Least-squares

Consider the equality constrained least-squares problem

minimize
$$\frac{1}{2} \|Ax - b\|_2^2$$

subject to $Gx = h$

where $A \in \mathbf{R}^{m \times n}$ with rank A = n, and $G \in \mathbf{R}^{p \times n}$ with rank G = p.

(1) Derive the Lagrange dual problem with Lagrange multiplier vector v.

(2) Derive expressions for the primal solution x^* and the dual solution v^* .

Problem 5: Negative-entropy Regularization

Please show how to compute

$$\underset{x \in \Delta^n}{\operatorname{argmin}} \quad b^\top x + c \cdot \sum_{i=1}^n x_i \ln x_i$$

where $\Delta^n = \{x | \sum_{i=1}^n x_i = 1, x_i \ge 0, i = 1, \dots, n\}, b \in \mathbb{R}^n \text{ and } c \in \mathbb{R}.$

Problem 6: Support Vector Machines

Consider the following optimization problem

minimize
$$\sum_{i=1}^{n} \max(0, 1 - y_i(w^T x_i + b)) + \frac{\lambda}{2} ||w||_2^2$$

where $x_i \in \mathbf{R}^d, y_i \in \mathbf{R}, i = 1, \cdots, n$ are given, and $w \in \mathbf{R}^d, b \in \mathbf{R}$ are the variables.

(1) Derive an equivalent problem by introducing new variables $u_i, i = 1, \dots, n$ and equality constraints

$$u_i = y_i(w^T x_i + b), i = 1, \cdots, n.$$

- (2) Derive the Lagrange dual problem of the above equivalent problem.
- (3) Give the Karush-Kuhn-Tucker conditions.

Hint: Let $\ell(x) = \max(0, 1 - x)$. Its conjugate function $\ell^*(y) = \sup_x (yx - \ell(x)) = \begin{cases} y, & -1 \le y \le 0 \\ \infty, & otherwise \end{cases}$