Introduction

Lijun Zhang <u>zlj@nju.edu.cn</u> <u>https://ai.nju.edu.cn/zlj</u>

Outline

- Mathematical Optimization
- Least-squares
- Linear Programming
- Convex Optimization
- Nonlinear Optimization
- **Summary**

Outline

- □ Mathematical Optimization
- Least-squares
- Linear Programming
- Convex Optimization
- Nonlinear Optimization
- **Summary**

Mathematical Optimization (1)

□ Optimization Problem min $f_0(x)$ s.t. $f_i(x) \le b_i$, i = 1, ..., m

Optimization Variable: $x = (x_1, ..., x_n)$

• Objective Function: $f_0: \mathbf{R}^n \to \mathbf{R}$

Constraint Functions: $f_i: \mathbf{R}^n \to \mathbf{R}$

 $\Box x^*$ is called optimal or a solution

■ $f_i(x^*) \le b_i, i = 1, ..., m$

For any z with $f_i(z) \le b_i$, we have $f_0(z) \ge f_0(x^*)$

Mathematical Optimization (2)

Linear Program

$$f_i(\alpha x + \beta y) = \alpha f_i(x) + \beta f_i(y)$$

for all $x, y \in \mathbf{R}^n$ and all $\alpha, \beta \in \mathbf{R}$

Nonlinear Program

If the optimization problem is not linear

Convex Optimization Problem

 $f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$

for all $x, y \in \mathbf{R}^n$ and all $\alpha, \beta \in \mathbf{R}$ with $\alpha + \beta = 1, \alpha \ge 0, \beta \ge 0$

Applications

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq b_i, \qquad i = 1, \dots, m \end{array}$$

Abstraction

- x represents the choice made
- $f_i(x) \le b_i$ represent firm requirements that limit the possible choices
- $f_0(x)$ represents the cost of choosing x
- A solution corresponds to a choice that has minimum cost, among all choices that meet the requirements

Portfolio Optimization

Variables

- x_i represents the investment in the *i*-th asset
- $x \in \mathbf{R}^n$ describes the overall portfolio allocation across the set of asset
- Constraints
 - A limit on the budget the requirement
 - Investments are nonnegative
 - A minimum acceptable value of expected return for the whole portfolio
- □ Objective
 - Minimize the variance of the portfolio return

Device Sizing

Variables

• $x \in \mathbf{R}^n$ describes the widths and lengths of the devices

Constraints

- Limits on the device sizes
- Timing requirements
- A limit on the total area of the circuit

Objective

Minimize the total power consumed by the circuit

Data Fitting

Variables

• $x \in \mathbf{R}^n$ describes parameters in the model

Constraints

- Prior information
- Required limits on the parameters (such as nonnegativity)

Objective

Minimize the prediction error between the observed data and the values predicted by the model

Solving Optimization Problem

General Optimization Problem

- Very difficult to solve
- Constraints can be very complicated, the number of variables can be very large
- Methods involve some compromise, e.g., computation time, or suboptimal solution

Exceptions

- Least-squares problems
- Linear programming problems
- Convex optimization problems

Outline

- Mathematical Optimization
- □ Least-squares
- Linear Programming
- Convex Optimization
- Nonlinear Optimization
- **Summary**

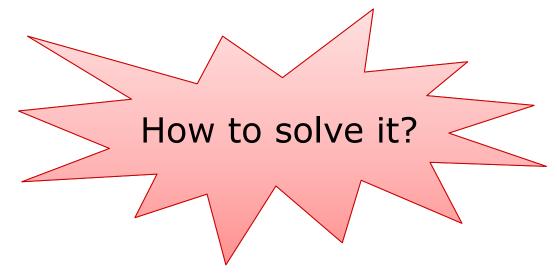
Least-squares Problems (1)

□ The Problem

min
$$||Ax - b||_2^2 = \sum_{i=1}^k (a_i^T x - b_i)^2$$

• $A \in \mathbf{R}^{k \times n}$, a_i^{\top} is the *i*-th row of A, $b \in \mathbf{R}^k$

• $x \in \mathbf{R}^n$ is the optimization variable



Least-squares Problems (1)

□ The Problem

min
$$||Ax - b||_2^2 = \sum_{i=1}^k (a_i^T x - b_i)^2$$

A ∈ R^{k×n}, a_i^T is the *i*-th row of A, b ∈ R^k
 x ∈ Rⁿ is the optimization variable
 Setting the gradient to be 0

$$2A^{\top}(Ax - b) = 0$$

$$\Rightarrow A^{\top}Ax = A^{\top}b$$

$$\Rightarrow x = (A^{\top}A)^{-1}A^{\top}b$$

Least-squares Problems (2)

- $\Box A \text{ Set of Linear Equations} \\ A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$
- □ Solving least-squares problems
 - Reliable and efficient algorithms and software
 - Computation time proportional to $n^2k \ (A \in \mathbf{R}^{k \times n})$; less if structured
 - A mature technology
 - Challenging for extremely large problems

Using Least-squares

Easy to RecognizeWeighted least-squares

$$\sum_{i=1}^k w_i (a_i^{\mathsf{T}} x - b_i)^2$$

Different importance

Using Least-squares

Easy to RecognizeWeighted least-squares

$$\sum_{i=1}^{k} w_i (a_i^{\mathsf{T}} x - b_i)^2 = \sum_{i=1}^{k} (\sqrt{w_i} a_i^{\mathsf{T}} x - \sqrt{w_i} b_i)^2$$

Different importance

Regularization

$$\sum_{i=1}^{k} (a_i^{\mathsf{T}} x - b_i)^2 + \rho \sum_{i=1}^{n} x_i^2$$

More stable

Outline

- Mathematical Optimization
- Least-squares
- □ Linear Programming
- Convex Optimization
- Nonlinear Optimization
- **Summary**

Linear Programming

 $\square \text{ The Problem} \\ \min c^{\top} x \\ \text{s.t.} a_i^{\top} x \le b_i, \qquad i = 1, \dots, m$

 $c, a_1, \dots, a_m \in \mathbf{R}^n, b_1, \dots, b_m \in \mathbf{R}$

□ Solving Linear Programs

- No analytical formula for solution
- Reliable and efficient algorithms and software
- Computation time proportional to n^2m if $m \ge n$; less with structure
- A mature technology
- Challenging for extremely large problems

Using Linear Programming

Not as easy to recognize
 Chebyshev Approximation Problem

$$\min \max_{i=1,\dots,k} |a_i^{\mathsf{T}} x - b_i|$$
$$\iff \min t$$
$$s.t. \quad t = \max_{i=1,\dots,k} |a_i^{\mathsf{T}} x - b_i|$$

$$\iff \begin{array}{l} \min \quad t \\ \text{s.t.} \quad t \ge \left| a_i^{\mathsf{T}} x - b_i \right|, i = 1, \dots, k \end{array}$$

 $\iff \begin{array}{l} \min \quad t \\ \text{s.t.} \quad -t \leq a_i^{\mathsf{T}} x - b_i \leq t, i = 1, \dots, k \end{array}$

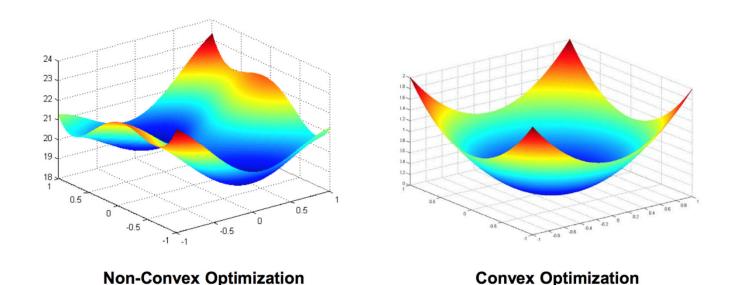
Outline

- Mathematical Optimization
- Least-squares
- Linear Programming
- □ Convex Optimization
- Nonlinear Optimization
- **Summary**

Convex Optimization

□ Why Convexity?

" The great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." — R. Rockafellar, SIAM Review 1993



٥d

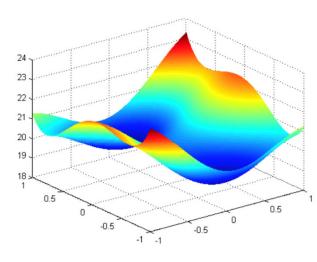
)3

Convex Optimization

□ Why Convexity?

"The great watershed in optimizat" Local mining nonlinearity, but convexity and not -R.

Local minimizers are also global minimizers.



Non-Convex Optimization

Convex Optimization

Convex Optimization Problems (1)

□ The Problem

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \le b_i, \qquad i = 1, \dots, m \end{array}$

Functions $f_0, ..., f_m: \mathbb{R}^n \to \mathbb{R}$ are convex:

 $f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$

for all $x, y \in \mathbf{R}^n$ and all $\alpha, \beta \in \mathbf{R}$ with $\alpha + \beta = 1, \alpha \ge 0, \beta \ge 0$

Least-squares and linear programs as special cases

Convex Optimization Problems (2)

Solving Convex Optimization Problems

- No analytical solution
- Reliable and efficient algorithms (e.g., interior-point methods)
- Computation time (roughly) proportional to max{n³, n²m, F}
 - ✓ F is cost of evaluating the first and second derivatives of f'_i s

Almost a technology

Using Convex Optimization

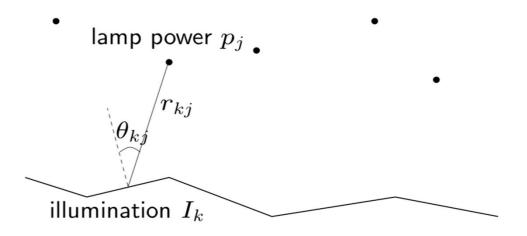
□ Often difficult to recognize

Many tricks for transforming problems into convex form

Surprisingly many problems can be solved via convex optimization

An Example (1)

$\square m$ lamps illuminating n patches



Intensity I_k at patch k depends linearly on lamp powers p_i

$$I_{k} = \sum_{j=1}^{m} a_{kj} p_{j}, \qquad a_{kj} = r_{kj}^{-2} \max\{\cos\theta_{kj}, 0\}$$

An Example (2)

Achieve desired illumination I_{des} with bounded lamp powers

$$\begin{array}{ll} \min & \max_{k=1,\dots,n} |\log I_k - \log I_{des}| \\ \text{s.t.} & 0 \le p_j \le p_{\max}, j = 1,\dots,m \end{array}$$

$$\begin{array}{l} \min & \max_{k=1,\dots,n} \\ \log \sum_{j=1}^{m} a_{kj} p_j - \log I_{des} \\ \text{s.t.} & 0 \leq p_j \leq p_{\max}, j = 1,\dots,m \end{array}$$

An Example (2)

Achieve desired illumination I_{des} with bounded lamp powers

$$\begin{array}{ll} \min & \max_{k=1,\dots,n} |\log I_k - \log I_{\mathrm{des}}| \\ \mathrm{s.t.} & 0 \le p_j \le p_{\mathrm{max}} & i = 1 \end{array}$$

$$\begin{array}{l} \text{How to solve it?} \\ \text{How to solve it?} \\ \mathrm{min} & \max_{k=1,\dots,n} \left| \log \sum_{j=1}^{j} a_{kj} - h \right|_{\mathrm{des}} \\ \mathrm{s.t.} & 0 \le p_j \le p_{\mathrm{max}}, j = 1,\dots,m \end{array}$$

An Example (3)

1. Use uniform power: $p_j = p$, vary p2. Use least-squares

min
$$\sum_{i=1}^{k} (I_k - I_{des})^2 = \sum_{i=1}^{k} \left(\sum_{j=1}^{m} a_{kj} p_j - I_{des} \right)^2$$

Round p_j if $p_j > p_{max}$ or $p_j < 0$ 3. Use weighted least-squares

min
$$\sum_{i=1}^{k} (I_k - I_{des})^2 + \sum_{j=1}^{m} w_j \left(p_j - \frac{p_{max}}{2} \right)^2$$

Adjust weights w_j until $0 \le p_j \le p_{max}$

An Example (4)

4. Use linear programming min $\max_{k=1\dots n} |I_k - I_{des}|$ s.t. $0 \le p_j \le p_{\max}, j = 1, ..., m$ 5. Use convex optimization min $\max_{k=1,\dots,n} |\log I_k - \log I_{des}|$ s.t. $0 \le p_j \le p_{\max}, j = 1, ..., m$ $\begin{array}{ll} \min & \max_{k=1,\dots,n} \left| \log \frac{I_k}{I_{des}} \right| \\ \text{s.t.} & 0 \le p_j \le p_{\max}, j = 1,\dots,m \end{array}$

An Example (5)

$$\iff \min \max_{k=1,\dots,n} \max\left(\log \frac{I_k}{I_{des}}, -\log \frac{I_k}{I_{des}}\right)$$

s.t. $0 \le p_j \le p_{max}, j = 1, \dots, m$

$$\begin{array}{l} \min \quad \max_{k=1,\ldots,n} \max\left(\log \frac{I_k}{I_{des}}, \log \frac{I_{des}}{I_k}\right) \\ \Rightarrow \quad \text{s.t.} \quad 0 \leq p_j \leq p_{\max}, j = 1, \ldots, m \end{array}$$

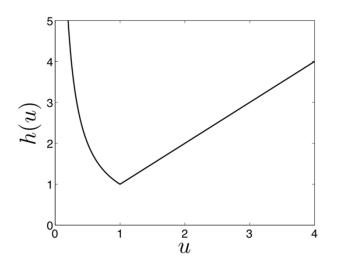
$$\iff \min \max_{k=1,\dots,n} \max\left(\frac{I_k}{I_{des}}, \frac{I_{des}}{I_k}\right)$$

s.t. $0 \le p_j \le p_{max}, j = 1, \dots, m$

An Example (5) $\implies \min \max_{k=1,\dots,n} h\left(\frac{l_k}{l_{des}}\right)$ s.t. $0 \le p_j \le p_{\max}, j = 1,\dots,m$

$$I_k = \sum_{j=1}^{k} a_{kj} p_j$$

$$h(u) = \max\left(u, \frac{1}{u}\right)$$



Outline

- Mathematical Optimization
- Least-squares
- Linear Programming
- Convex Optimization
- □ Nonlinear Optimization
- **Summary**

Nonlinear Optimization

- An optimization problem when the objective or constraint functions are not linear, but not known to be convex
- Sadly, there are no effective methods for solving the general nonlinear programming problem
 - Could be NP-hard

□ We need compromise

Local Optimization Methods

- □ Find a point that minimizes f_0 among feasible points near it
 - The compromise is to give up seeking the optimal x
- □ Fast, can handle large problems
 - Differentiability
- Require initial guess, Provide no information about distance to (global) optimum, Sensitive to parameter values
- Local optimization methods are more art than technology

Comparisons

	Problem Formulation	Solving the Problem
Local Optimization Methods for Nonlinear Programming	Straightforward	Art
Convex Optimization	Art	Standard

Global Optimization (1)

 Find the global solution
 The compromise is efficiency
 Worst-case complexity grows exponentially with problem size

Applications

- A small number of variables, where computing time is not critical
- The value of finding the true global solution is very high

Global Optimization (2)

- Worst-case Analysis of a high value or safety-critical system
 - Variables represent uncertain parameters
 - Objective function is a utility function
 - Constraints represent prior knowledge
 - If the worst-case value is acceptable, we can certify the system as safe or reliable

Local optimization methods can be tried

- If finding values that yield unacceptable performance, then the system is not reliable
- But it cannot certify the system as reliable

Role of Convex Optimization in Nonconvex Problems

Initialization for local optimization
 An approximate, but convex, formulation

- Convex heuristics for nonconvex optimization
 - Sparse solutions (compressive sensing)

Lower Bounds for global optimization

- Relaxation
- Lagrangian relaxation

Outline

- Mathematical Optimization
- Least-squares
- Linear Programming
- Convex Optimization
- Nonlinear Optimization
- □ Summary

Summary

Mathematical Optimization

- Least-squares
 - Closed-form Solution
- Linear Programming
 - Efficient algorithms
- Convex Optimization
 - Efficient algorithms, Modeling is an art
- Nonlinear Optimization
 - Compromises, Optimization is an art