Convex Optimization Problems (I)

Lijun Zhang <u>zlj@nju.edu.cn</u> <u>https://ai.nju.edu.cn/zlj</u>

Outline

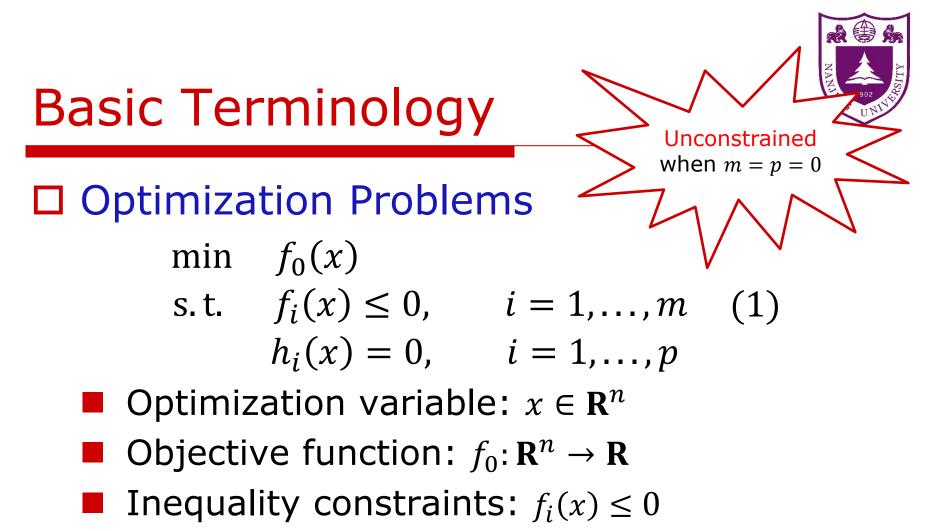
Optimization Problems

- Basic Terminology
- Equivalent Problems
- Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Outline

Optimization Problems

- Basic Terminology
- Equivalent Problems
- Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization



- Inequality constraint functions: $f_i: \mathbf{R}^n \to \mathbf{R}$
- Equality constraints: $h_i(x) = 0$
- Equality constraint functions: $h_i: \mathbf{R}^n \to \mathbf{R}$

Optimization Problems

min $f_0(x)$ s.t. $f_i(x) \le 0$, i = 1, ..., m (1) $h_i(x) = 0$, i = 1, ..., p

Domain

$$\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}$$

- $x \in D$ is feasible if it satisfies all the constraints
- The problem is feasible if there exists at least one feasible point

\Box Optimal Value p^*

 $p^{\star} = \inf \{ f_0(x) | f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p \}$

- Infeasible problem: $p^* = \infty$
- Unbounded below: if there exist x_k with $f_0(x_k) \rightarrow -\infty$ as $k \rightarrow \infty$, then $p^* = -\infty$
- Optimal Points

• x^* is feasible and $f_0(x^*) = p^*$

Optimal Set

 $X_{\text{opt}} = \{x | f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p, f_0(x) = p^*\}$

 $\square p^*$ is achieved if X_{opt} is nonempty

 $\Box \varepsilon$ -suboptimal Points • a feasible x with $f_0(x) \le p^* + \varepsilon$ $\Box \epsilon$ -suboptimal Set \blacksquare the set of all ε -suboptimal points Locally Optimal Points min $f_0(z)$ s.t. $f_i(z) \le 0$, i = 1, ..., m $h_i(z) = 0, \qquad i = 1, \dots, p$ $\|z - x\|_2 \le R$

x is feasible and solves the above problem
Globally Optimal Points

□ Types of Constraints

- If $f_i(x) = 0$, $f_i(x) \le 0$ is active at x
- If $f_i(x) < 0$, $f_i(x) \le 0$ is inactive at x
- $h_i(x) = 0$ is active at all feasible points
- Redundant constraint: deleting it does not change the feasible set

 \square Examples on $x \in \mathbf{R}$ and dom $f_0 = \mathbf{R}_{++}$

• $f_0(x) = 1/x$: $p^* = 0$, the optimal value is not achieved

• $f_0(x) = -\log x : p^* = -\infty$, unbounded blow

• $f_0(x) = x \log x : p^* = -1/e, x^* = 1/e$ is optimal

□ Feasibility Problems

find xs.t. $f_i(x) \le 0$, i = 1,...,m $h_i(x) = 0$, i = 1,...,p

Determine whether constraints are consistent

Maximization Problems

$$\begin{array}{ll} \max & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, & i = 1, \dots, m \\ & h_i(x) = 0, & i = 1, \dots, p \end{array}$$

It can be solved by minimizing $-f_0$

• Optimal Value p^*

 $p^* = \sup \{f_0(x) | f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p\}$

Standard Form

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \qquad i = 1, \dots, m \\ & h_i(x) = 0, \qquad i = 1, \dots, p \end{array}$$

Box constraints

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & l_i \leq x_i \leq u_i, \qquad i=1,\ldots,n \end{array}$$

Reformulation

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & l_i - x_i \leq 0, \qquad i = 1, \dots, n \\ & x_i - u_i \leq 0, \qquad i = 1, \dots, n \end{array}$$

Outline

Optimization Problems

- Basic Terminology
- Equivalent Problems
- Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Equivalent Problems

- □ Two Equivalent Problems
 - If from a solution of one, a solution of the other is readily found, and vice versa
- □ A Simple Example

$$\begin{array}{ll} \min & \tilde{f}(x) = \alpha_0 f_0(x) \\ \text{s.t.} & \tilde{f}_i(x) = \alpha_i f_i(x) \leq 0, \qquad i = 1, \dots, m \\ & \tilde{h}_i(x) = \beta_i h_i(x) = 0, \qquad i = 1, \dots, p \end{array}$$

$$\alpha_i > 0, i = 0, ..., m$$

- $\beta_i \neq 0, i = 1, \dots, p$
- Equivalent to the problem (1)

Change of Variables

 $\Box \phi: \mathbf{R}^n \to \mathbf{R}^n \text{ is one-to-one and} \\ \phi(\operatorname{dom} \phi) \supseteq \mathcal{D}, \text{ and define}$

$$\begin{split} \tilde{f}_i(z) &= f_i(\phi(z)), & i = 0, \dots, m \\ \tilde{h}_i(z) &= h_i(\phi(z)), & i = 1, \dots, p \end{split}$$

□ An Equivalent Problem

$$\begin{array}{ll} \min & \tilde{f}_0(z) \\ \text{s.t.} & \tilde{f}_i(z) \leq 0, \qquad i=1,\ldots,m \\ & \tilde{h}_i(z)=0, \qquad i=1,\ldots,p \end{array}$$

If *z* solves it, $x = \phi(z)$ solves the problem (1)

If x solves (1), $z = \phi^{-1}(x)$ solves it

Transformation of Functions

- \square $\psi_0: \mathbf{R} \to \mathbf{R}$ is monotone increasing
- $\label{eq:phi} \begin{array}{ll} \square & \psi_1, \dots, \psi_m : \mathbf{R} \to \mathbf{R} \text{ satisfy } \psi_i(u) \leq 0 \text{ if and only if} \\ & u \leq 0 \end{array}$
- $\label{eq:phi} \begin{array}{ll} \square & \psi_{m+1}, \dots, \psi_{m+p} \colon \mathbf{R} \to \mathbf{R} \text{ satisfy } \psi_i(u) = 0 \text{ if and only} \\ & \text{if } u = 0 \end{array}$
- $\square \text{ Define } \tilde{f}_i(x) = \psi_i(f_i(x)), \qquad i = 0, \dots, m$ $\tilde{h}_i(x) = \psi_{m+i}(h_i(x)), \qquad i = 1, \dots, p$
- □ An Equivalent Problem

$$\begin{array}{ll} \min & \tilde{f}_0(x) \\ \text{s.t.} & \tilde{f}_i(x) \leq 0, \qquad i = 1, \dots, m \\ & \tilde{h}_i(x) = 0, \qquad i = 1, \dots, p \end{array}$$

Example

Least-norm Problems

$$\min \|Ax - b\|_2$$

Not differentiable at any x with Ax - b = 0

Least-norm-squared Problems

min
$$||Ax - b||_2^2 = (Ax - b)^T (Ax - b)$$

Differentiable for all *x*

Slack Variables

□ $f_i(x) \le 0$ if and only if there is an $s_i \ge 0$ that satisfies $f_i(x) + s_i = 0$ □ An Equivalent Problem

min
$$f_0(x)$$

s.t. $s_i \ge 0$, $i = 1, ..., m$
 $f_i(x) + s_i = 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- s_i is the slack variable associated with the inequality constraint $f_i(x) \le 0$
- x is optimal for the problem (1) if and only if (x,s) is optimal for the above problem, where $s_i = -f_i(x)$

Eliminating Equality Constraints

□ Assume ϕ : $\mathbb{R}^k \to \mathbb{R}^n$ is such that x satisfies $h_i(x) = 0, \quad i = 1,...,p$ if and only if there is some $z \in \mathbb{R}^k$ such that $x = \phi(z)$ □ An Equivalent Problem min $\tilde{f}_0(z) = f_0(\phi(z))$ s.t. $\tilde{f}_i(z) = f_i(\phi(z)) \le 0, \quad i = 1,...,m$

- If z is optimal for this problem, $x = \phi(z)$ is optimal for the problem (1)
- If x is optimal for (1), there is at least one z which is optimal for this problem

Eliminating linear equality constraints

- □ Assume the equality constraints are all linear Ax = b, and x_0 is one solution
- □ Let $F \in \mathbf{R}^{n \times k}$ be any matrix with $\mathcal{R}(F) = \mathcal{N}(A)$, then

$${x|Ax = b} = {Fz + x_0 | z \in \mathbf{R}^k}$$

□ An Equivalent Problem $(x = Fz + x_0)$ min $f_0(Fz + x_0)$ s.t. $f_i(Fz + x_0) \le 0$, i = 1, ..., m

 $k = n - \operatorname{rank}(A)$

Linear algebra

 $\mathcal{N}(A) = \mathcal{R}(A^{\mathsf{T}})^{\perp}$

□ Range and nullspace

Let $A \in \mathbb{R}^{m \times n}$, the range of A, denoted $\mathcal{R}(A)$, is the set of all vectors in \mathbb{R}^m that can be written as linear combinations of the columns of A:

 $\mathcal{R}(A) = \{Ax | x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$

The nullspace (or kernel) of A, denoted *N*(*A*), is the set of all vectors *x* mapped into zero by A:

 $\mathcal{N}(A) = \{x | Ax = 0\} \subseteq \mathbf{R}^n$

■ if \mathcal{V} is a subspace of \mathbb{R}^n , its orthogonal complement, denoted \mathcal{V}^{\perp} , is defined as: $\mathcal{V}^{\perp} = \{x | z^{\top} x = 0 \text{ for all } z \in \mathcal{V}\}$

Introducing Equality Constraints

Consider the problem min $f_0(A_0x + b_0)$ s.t. $f_i(A_i x + b_i) \le 0$, i = 1, ..., m $h_i(x) = 0, \qquad \qquad i = 1, \dots, p$ • $x \in \mathbf{R}^n, A_i \in \mathbf{R}^{k_i \times n}$ and $f_i: \mathbf{R}^{k_i} \to \mathbf{R}$ An Equivalent Problem min $f_0(y_0)$ s.t. $f_i(y_i) \le 0$, i = 1, ..., m $y_i = A_i x + b_i, \qquad i = 0, \dots, m$ $h_i(x) = 0, \qquad i = 1, \dots, p$ Introduce $y_i \in \mathbf{R}^{k_i}$ and $y_i = A_i x + b_i$

Optimizing over Some Variable

- □ Suppose $x \in \mathbf{R}^n$ is partitioned as $x = (x_1, x_2)$, with $x_1 \in \mathbf{R}^{n_1}, x_2 \in \mathbf{R}^{n_2}$ and $n_1 + n_2 = n$
- Consider the problem

$$\begin{array}{ll} \min & f_0(x_1, x_2) \\ \text{s.t.} & f_i(x_1) \le 0, \qquad i = 1, \dots, m_1 \\ & \tilde{f}_i(x_2) \le 0, \qquad i = 1, \dots, m_2 \end{array}$$

□ An Equivalent Problem

$$\begin{array}{ll} \min \quad \tilde{f}_0(x_1) \\ \text{s.t.} \quad f_i(x_1) \leq 0, \qquad i=1,\ldots,m_1 \\ \text{where} \end{array}$$

 $\tilde{f}_0(x_1) = \inf \left\{ f_0(x_1, z) | \tilde{f}_i(z) \le 0, i = 1, \dots, m_2 \right\}$

Example

Minimize a Quadratic Function

min
$$x_1^{\mathsf{T}} P_{11} x_1 + 2x_1^{\mathsf{T}} P_{12} x_2 + x_2^{\mathsf{T}} P_{22} x_2$$

s.t. $f_i(x_1) \le 0, \quad i = 1, ..., m$

\Box Minimize over x_2

$$\inf_{x_2} \left(x_1^\top P_{11} x_1 + 2 x_1^\top P_{12} x_2 + x_2^\top P_{22} x_2 \right) \\ = x_1^\top \left(P_{11} - P_{12} P_{22}^{-1} P_{12}^\top \right) x_1$$

$\square \text{ An Equivalent Problem}$ $\min \quad x_1^{\mathsf{T}} \left(P_{11} - P_{12} P_{22}^{-1} P_{12}^{\mathsf{T}} \right) x_1$ s.t. $f_i(x_1) \le 0, \qquad i = 1, \dots, m$

Epigraph Problem Form

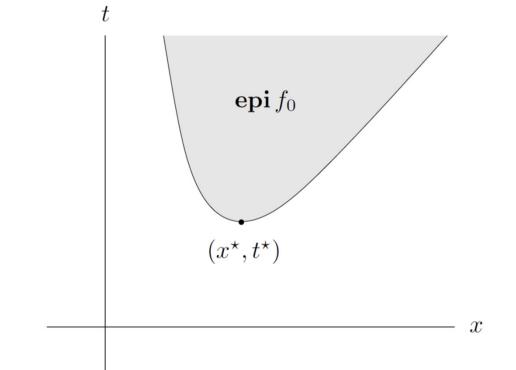
Epigraph Form

min t

- s.t. $f_0(x) t \le 0$ $f_i(x) \le 0, \quad i = 1, ..., m$ $h_i(x) = 0, \quad i = 1, ..., p$
- Introduce a variable $t \in \mathbf{R}$
- (*x*, *t*) is optimal for this problem if and only if *x* is optimal for (1) and $t = f_0(x)$
- The objective function of the epigraph form problem is a linear function of x, t

Epigraph Problem Form

□ Geometric Interpretation



Find the point in the epigraph that minimizes *t*

Making Constraints Implicit

Unconstrained problem

min F(x)

- dom $F = \{x \in \text{dom } f_0 | f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}$
- $F(x) = f_0(x)$ for $x \in \text{dom } F$
- It has not make the problem any easier
- It could make the problem more difficult, because F is probably not differentiable

Making Constraints Explicit

A Unconstrained Problem

 $\min f(x)$

where

$$f(x) = \begin{cases} x^{\top}x & Ax = b\\ \infty & \text{otherwise} \end{cases}$$

An implicit equality constraint Ax = b

An Equivalent Problem

$$\begin{array}{ll} \min & x^{\top}x \\ \text{s.t.} & Ax = b \end{array}$$

Objective and constraint functions are differentiable

Outline

Optimization Problems

- Basic Terminology
- Equivalent Problems
- Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Problem Descriptions

Parameter Problem Description

- Functions have some analytical or closed form
- Example: $f_0(x) = x^T P x + q^T x + r$, where $P \in \mathbf{S}^n, q \in \mathbf{R}^n$ and $r \in \mathbf{R}$
- Give the values of the parameters
- □ Oracle Model (Black-box Model)
 - Can only query the objective and constraint functions by an oracle/subroutine
 - Evaluate f(x) and its gradient $\nabla f(x)$
 - Know some prior information (convexity)

Outline

Optimization Problems

- Basic Terminology
- Equivalent Problems
- Problem Descriptions
- □ Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Convex Optimization Problems

- Standard Form
 - $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \qquad i = 1, \dots, m \\ & a_i^{\mathsf{T}} x = b_i, \qquad i = 1, \dots, p \end{array}$
 - The objective function must be convex
 - The inequality constraint functions must be convex
 - The equality constraint functions $h_i(x) = a_i^T x b_i$ must be affine

Convex Optimization Problems

Properties

Feasible set of a convex optimization problem is convex

$$\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{m} \{x | f_{i}(x) \leq 0\} \cap \bigcap_{i=1}^{p} \{x | a_{i}^{\top} x = b_{i}\}$$

Minimize a convex function over a convex set

- ϵ -suboptimal set is convex
- The optimal set is convex
- If the objective is strictly convex, then the optimal set contains at most one point

Concave Maximization Problem

- Standard Form
 - $\begin{array}{ll} \max & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, & i = 1, \dots, m \\ & a_i^{\mathsf{T}} x = b_i, & i = 1, \dots, p \end{array}$
 - It is referred as a convex optimization problem if f_0 is concave and f_1, \ldots, f_m are convex
 - It is readily solved by minimizing the convex objective function $-f_0$

Abstract Form Convex Optimization Problem

- Consider the Problem min $f_0(x) = x_1^2 + x_2^2$ s.t. $f_1(x) = x_1/(1 + x_2^2) \le 0$ $h_1(x) = (x_1 + x_2)^2 = 0$
 - Not a convex optimization problem
 - ✓ f_1 is not convex and h_1 is not affine
 - But the feasible set is indeed convex
 - Abstract convex optimization problem
- An Equivalent Convex Problem

min $f_0(x) = x_1^2 + x_2^2$ s.t. $f_1(x) = x_1 \le 0$ $h_1(x) = x_1 + x_2 = 0$

Outline

Optimization Problems

- Basic Terminology
- Equivalent Problems
- Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Local and Global Optima

- Any locally optimal point of a convex problem is also (globally) optimal
- Proof by Contradiction
 - x is locally optimal implies

 $f_0(x) = \inf\{f_0(z) \mid z \text{ feasible, } \|z - x\|_2 \le R\}$ for some *R*

- Suppose x is not globally optimal, i.e., there exists $f_0(y) < f_0(x)$ and $||y - x||_2 > R$
- Define

$$z = (1 - \theta)x + \theta y, \theta = \frac{R}{2\|y - x\|_2} \in (0, 1)$$

n

Local and Global Optima

By convexity of the feasible set z is feasible

It is easy to check

$$||z - x||_2 = ||\theta(y - x)||_2 = \left\|\frac{R(y - x)}{2||y - x||_2}\right\|_2 = \frac{R}{2} < R$$

Thus, $f_0(x) < f_0(z)$ $f_0(x) = \inf\{f_0(z) \mid z \text{ feasible, } \|z - x\|_2 \le R\}$ Contradiction

By convexity of f_0

 $f_0(z) \le (1 - \theta)f_0(x) + \theta f_0(y) < f_0(x)$

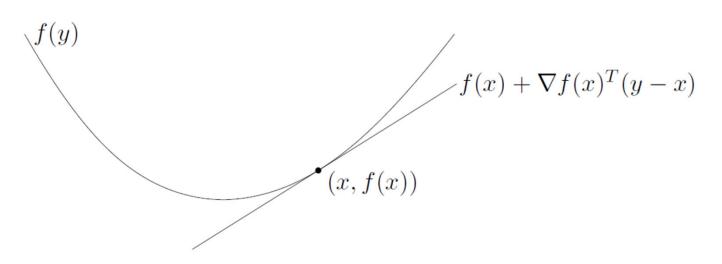
Outline

Optimization Problems

- Basic Terminology
- Equivalent Problems
- Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

An Optimality Criterion for Differentiable f_0

□ Suppose f_0 is differentiable $f_0(y) \ge f_0(x) + \nabla f_0(x)^\top (y - x), \forall x, y \in \text{dom } f_0$



An Optimality Criterion for Differentiable f_0

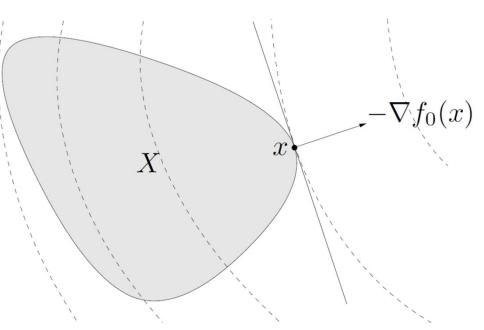
□ Suppose f_0 is differentiable $f_0(y) \ge f_0(x) + \nabla f_0(x)^{\top}(y-x), \forall x, y \in \text{dom } f_0$

 $\Box \text{ Let } X \text{ denote the feasible set}$ $X = \{x | f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p\}$

□ x is optimal if and only if $x \in X$ and $\nabla f_0(x)^\top (y - x) \ge 0$ for all $y \in X$ An Optimality Criterion for Differentiable f_0

□ x is optimal if and only if $x \in X$ and $\nabla f_0(x)^{\top}(y-x) \ge 0$ for all $y \in X$ □ $-\nabla f_0(x)$ defines a supporting hyperplane to the feasible set at x

If $a \neq 0$ satisfies $a^{T}x \leq a^{T}x_{0}$ for all $x \in C$. The hyperplane $\{x|a^{T}x = a^{T}x_{0}\}$ is called a supporting hyperplane to C at x_{0}



Proof of Optimality Condition

Sufficient Condition $\left. \begin{array}{c} \nabla f_0(x)^\top (y-x) \ge 0\\ f_0(y) \ge f_0(x) + \nabla f_0(x)^\top (y-x) \end{array} \right\} \Rightarrow f_0(y) \ge f_0(x)$ Necessary Condition Suppose x is optimal but $\exists y \in X, \nabla f_0(x)^{\top}(y-x) < 0$ Define $z(t) = ty + (1 - t)x, t \in [0, 1]$ $f_0(z(0)) = f_0(x), \qquad \frac{d}{dt} f_0(z(t))\Big|_{t=0} = \nabla f_0(x)^{\mathsf{T}}(y-x) < 0$ So, for small positive t, $f_0(z(t)) < f_0(x)$

Unconstrained Problems

 $\Box x$ is optimal if and only if $\nabla f_0(x) = 0$ Consider $y = x - t\nabla f_0(x)$ and t > 0When t is small, y is feasible $\nabla f_0(x)^{\mathsf{T}}(y-x) = -t \|\nabla f_0(x)\|_2^2 \ge 0 \Leftrightarrow \nabla f_0(x) = 0$ Unconstrained Quadratic Optimization min $f_0(x) = (1/2)x^T P x + q^T x + r$, where $P \in \mathbf{S}^n_+$ • x is optimal if and only if $\nabla f_0(x) = Px + q = 0$ **1.** If $q \notin \mathcal{R}(P)$, no solution, f_0 is unbound below 2. If P > 0, unique minimizer $x^* = -P^{-1}q$ **3.** If *P* is singular, but $q \in \mathcal{R}(P)$, $X_{opt} = -P^{\dagger}q + \mathcal{N}(P)$

Linear Equality Constraints

□ Let $F \in \mathbf{R}^{n \times k}$ be any matrix with $\mathcal{R}(F) = \mathcal{N}(A)$, then

$$\{x | Ax = b\} = \{Fz + x_0 | z \in \mathbf{R}^k\}$$

$$= \{ v + x_0 | v \in \mathcal{N}(A) \}$$

 $\Box \text{ Consider } Px + q = 0$

$$X_{\rm opt} = -P^{\dagger}q + \mathcal{N}(P)$$

Problems with Equality Constraints Only

□ Consider the Problem min $f_0(x)$ s.t. Ax = b□ x is optimal if and only if $\nabla f_0(x)^T(y-x) \ge 0, \forall Ay = b$

Problems with Equality Constraints Only

Lagrange Multiplier Consider the Problem **Optimality Condition** min $f_0(x)$ Ax = bs.t. Ax = b $\nabla f_0(x) + A^{\mathsf{T}}v = 0$ $\Box x$ is optimal if and only if $\nabla f_0(x)^\top (y - x) \ge 0, \forall Ay = b$ $\{y|Ay = b\} = \{x + v | v \in \mathcal{N}(A)\}$ $\Leftrightarrow \nabla f_0(x)^\top v \ge 0, \forall v \in \mathcal{N}(A)$ $\Leftrightarrow \nabla f_0(x)^\top v = 0, \forall v \in \mathcal{N}(A)$ $\Leftrightarrow \nabla f_0(x) \perp \mathcal{N}(A) \Leftrightarrow \nabla f_0(x) \in \mathcal{N}(A)^{\perp} = \mathcal{R}(A^{\top})$ $\Leftrightarrow \exists v \in \mathbf{R}^p, \nabla f_0(x) + A^\top v = 0$

Minimization over the Nonnegative Orthant

□ Consider the Problem $\min_{x \in Y_0} f_0(x)$ s.t. $x \ge 0$ □ x is optimal if and only if $\nabla f_0(x)^{\mathsf{T}}(y-x) \ge 0, \forall y \ge 0$ $\Leftrightarrow \begin{cases} \nabla f_0(x) \ge 0 \\ -\nabla f_0(x)^{\mathsf{T}}x \ge 0 \end{cases} \Leftrightarrow \begin{cases} \nabla f_0(x) \ge 0 \\ \nabla f_0(x)^{\mathsf{T}}x = 0 \end{cases}$

The Optimality Condition

 $x \ge 0$, $\nabla f_0(x) \ge 0$, $x_i (\nabla f_0(x))_i = 0, i = 1, ..., n$ The last condition is called complementarity

Outline

Optimization Problems

- Basic Terminology
- Equivalent Problems
- Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Equivalent Convex Problems

□ Standard Form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$
 $a_i^{\top} x = b_i$, $i = 1, ..., p$

Eliminating Equality Constraints

min
$$f_0(Fz + x_0)$$

s.t. $f_i(Fz + x_0) \le 0$, $i = 1, ..., m$

- $A = [a_1^{\mathsf{T}}; ...; a_p^{\mathsf{T}}], b = (b_1; ...; b_p), Ax_0 = b, \mathcal{R}(F) = \mathcal{N}(A)$
- The composition of a convex function with an affine function is convex
- At least in principle, we can restrict our attention to convex problems with no equality constraints

Equivalent Convex Problems

- □ Introducing Equality Constraints
 - If an objective or constraint function has the form $f_i(A_ix + b_i)$, where $A_i \in \mathbf{R}^{k_i \times n}$, we can replace it with $f_i(y_i)$ and add the constraint $y_i = A_ix + b_i$, where $y_i \in \mathbf{R}^{k_i}$
- □ Slack Variables
 - Introduce new constraints $f_i(x) + s_i = 0$
 - Introduce slack variables for linear inequalities preserves convexity of a problem
- □ Minimizing over Some Variables
 - It preserves convexity
 - $f_0(x_1, x_2)$ needs to be jointly convex in x_1 and x_2

Equivalent Convex Problems

- Epigraph Problem Form
 - min ts.t. $f_0(x) - t \le 0$ $f_i(x) \le 0, \quad i = 1, ..., m$ $a_i^{\mathsf{T}} x = b_i, \quad i = 1, ..., p$
 - The objective is linear (hence convex)
 - The new constraint function $f_0(x) t$ is also convex in (x, t)
 - This problem is convex
 - Any convex optimization problem is readily transformed to one with linear objective

Outline

Optimization Problems

- Basic Terminology
- Equivalent Problems
- Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Quasiconvex Optimization

- □ Standard Form min $f_0(x)$ s.t. $f_i(x) \le 0$, i = 1, ..., m Ax = b
 - f_0 is quasiconvex and f_1, \dots, f_m are convex
 - Have locally optimal solutions that are not (globally) optimal

(x, f(x))

Quasiconvex Optimization

Standard Form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

- f_0 is quasiconvex and f_1, \dots, f_m are convex
- Have locally optimal solutions that are not (globally) optimal
- \Box Optimality Conditions for Differentiable f_0
 - Let X denote the feasible set, x is optimal if
 - $x \in X$, $\nabla f_0(x)^\top (y x) > 0$ for all $y \in X \setminus \{x\}$
 - 1. Only a sufficient condition
 - **2.** Requires $\nabla f_0(x)$ to be nonzero

Representation via family of convex functions

- Represent the sublevel sets of a quasiconvex function *f* via inequalities of convex functions.
 - $\phi_t : \mathbf{R}^n \to \mathbf{R}$ is convex, $t \in \mathbf{R}$

 $f(x) \leq t \Leftrightarrow \phi_t(x) \leq 0$

- ϕ_t is a nonincreasing function of t
- Examples

$$\phi_t(x) = \begin{cases} 0 & f(x) \le t \\ \infty & \text{otherwise} \end{cases}$$
$$\phi_t(x) = \operatorname{dist}(x, \{z | f(z) \le t\})$$

Quasiconvex Optimization via Convex Feasibility Problems

 \Box Let ϕ_t : $\mathbf{R}^n \to \mathbf{R}, t \in \mathbf{R}$, be a family of convex functions such that

 $f_0(x) \le t \Leftrightarrow \phi_t(x) \le 0$

and for each x, $\phi_s(x) \leq \phi_t(x)$ whenever $s \geq t$

- Let p^* be the optimal value of quasiconvex problem
- Consider the feasibility problem

find
$$x$$

s.t. $\phi_t(x) \le 0$
 $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

If it is feasible, $p^* \leq t$. Conversely, $p^* \geq t$

Bisection for Quasiconvex Optimization

□ Algorithm

given $l \le p^*, u \ge p^*$, tolerance $\epsilon > 0$ **repeat**

1. t := (l + u)/2

2. Solve the convex feasibility problem

3. **if** it is feasible, $u \coloneqq t$; **else** $l \coloneqq t$

until $u - l \le \epsilon$

- The interval [l, u] is guaranteed to contain p^*
- The length of the interval after k iterations is $2^{-k}(u-l)$
- $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations are required

Bisection for Quasiconvex Optimization

 \Box An ϵ -suboptimal Solution $l \leq p^* \leq u$ $u - l \leq \epsilon$ $u - p^* \leq \epsilon$ find *x* s.t. $\phi_u(x) \leq 0$ $f_i(x) \le 0, \qquad i = 1, \dots, m$ Ax = b $f_0(x) \le u = p^* + u - p^* \le p^* + \epsilon$

Summary

Optimization Problems

- Basic Terminology
- Equivalent Problems
- Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization