Convex optimization problems (II)

Lijun Zhang <u>zlj@nju.edu.cn</u> <u>http://cs.nju.edu.cn/zlj</u>

- Linear Optimization Problems
- Quadratic Optimization Problems
- **Geometric Programming**
- □ Generalized Inequality Constraints
- Vector Optimization

Linear Optimization Problems

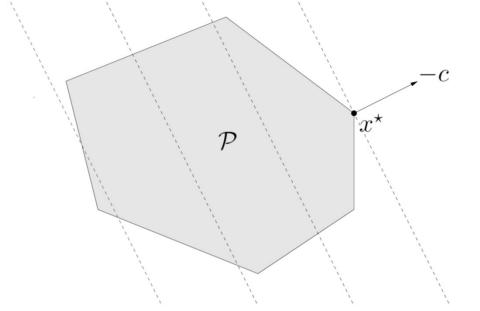
□ Linear Program (LP)

 $\begin{array}{ll} \min & c^{\top}x + d \\ \text{s.t.} & Gx \leqslant h \\ & Ax = b \end{array}$

- $G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$
- It is common to omit the constant d
- Maximization problem with affine objective and constraint functions is also an LP
- The feasible set of LP is a polyhedron \mathcal{P}

Linear Optimization Problems

□ Geometric Interpretation of an LP



- The objective $c^{T}x$ is linear, so its level curves are hyperplanes orthogonal to c
- x^* is as far as possible in the direction -c

Two Special Cases of LP

□ Standard Form LP

 $\begin{array}{ll} \min & c^{\top}x\\ \text{s.t.} & Ax = b\\ & x \ge 0 \end{array}$

• The only inequalities are $x \ge 0$

□ Inequality Form LP $\min_{x \in T} c^{\top}x$ s.t. $Ax \leq b$

No equality constraints

Converting to Standard Form

Conversion

To use an algorithm for standard LP

□ Introduce Slack Variables s

$$\begin{array}{lll} \min & c^{\top}x + d \\ \text{s.t.} & Gx \leqslant h \\ Ax = b \end{array} \xrightarrow{\qquad \text{min}} \begin{array}{ll} \cos x + d \\ \text{s.t.} & Gx + s = h \\ Ax = b \\ s \geqslant 0 \end{array}$$

Converting to Standard Form

 \Box Decompose x

$$x = x^+ - x^-, \qquad x^+, x^- \ge 0$$

□ Standard Form LP

 $\begin{array}{lll} \min & c^{\top}x + d & \min & c^{\top}x^{+} - c^{\top}x^{-} + d \\ \text{s.t.} & Gx + s = h \\ Ax = b & \text{s.t.} & Gx^{+} - Gx^{-} + s = h \\ x^{+} - Ax^{-} = b & x^{+} \ge 0, x^{-} \ge 0, s \ge 0 \end{array}$

Diet Problem

- Choose nonnegative quantities x_1, \dots, x_n of n foods
- One unit of food *j* contains amount a_{ij} of nutrient *i*, and costs c_j
- Healthy diet requires nutrient i in quantities at least b_i
- Determine the cheapest diet that satisfies the nutritional requirements

$$\begin{array}{ll} \min & c^{\top}x\\ \text{s.t.} & Ax \ge b\\ & x \ge 0 \end{array}$$

□ Chebyshev Center of a Polyhedron

Find the largest Euclidean ball that lies in the polyhedron

 $\mathcal{P} = \{ x \in \mathbf{R}^n | a_i^{\mathsf{T}} x \le b_i, i = 1, \dots, m \}$

- The center of the optimal ball is called the Chebyshev center of the polyhedron
- Represent the ball as $\mathcal{B} = \{x_c + u | ||u||_2 \le r\}$
- $x_c \in \mathbf{R}^n$ and r are variables, and we wish to maximize r subject to $\mathcal{B} \subseteq \mathcal{P}$
- Considering the simpler constraint that B lies in one halfspace, $\forall x \in \mathcal{B}, a_i^{\top}x \leq b_i$

□ Chebyshev Center of a Polyhedron $\forall x \in \mathcal{B}, a_i^T x \leq b_i$ $\Leftrightarrow a_i^T (x_c + u) \leq b_i, \forall ||u||_2 \leq r$ $\Leftrightarrow a_i^T x_c + \sup\{a_i^T u\|\|u\|_2 \leq r\} \leq b_i$ $\Leftrightarrow a_i^T x_c + r \|a_i\|_2 \leq b_i$

An LP problem

max rs.t. $a_i^{\mathsf{T}} \mathbf{x}_c + r ||a_i||_2 \le b_i$, i = 1, ..., m

Piecewise-linear Minimization

Consider the (unconstrained) problem

$$f(x) = \max_{i=1,\dots,m} (a_i^{\mathsf{T}} x + b_i)$$

The epigraph problem

$$\min t$$

s.t.
$$\max_{i=1,\dots,m} (a_i^{\mathsf{T}} x + b_i) \le t$$

An LP problem

$$\begin{array}{ll} \min & t \\ \text{s.t.} & a_i^\top x + b_i \leq t, \qquad i = 1, \dots, m \end{array}$$

Using Linear Programming

Not as easy to recognize
 Chebyshev Approximation Problem

$$\min \max_{i=1,\dots,k} |a_i^{\mathsf{T}}x - b_i|$$
$$\iff \min t$$
$$s.t. \quad t = \max_{i=1,\dots,k} |a_i^{\mathsf{T}}x - b_i|$$

$$\iff \begin{array}{l} \min \quad t \\ \text{s.t.} \quad t \ge \left| a_i^{\mathsf{T}} x - b_i \right|, i = 1, \dots, k \end{array}$$

 $\iff \begin{array}{l} \min \quad t \\ \text{s.t.} \quad -t \leq a_i^{\mathsf{T}} x - b_i \leq t, i = 1, \dots, k \end{array}$

Linear-fractional Programming

Linear-fractional Program

min
$$f_0(x)$$

s.t. $Gx \leq h$
 $Ax = b$

The objective function is a ratio of affine functions $f_0(x) = \frac{c^{\top}x + d}{e^{\top}x + f}$

The domain is

dom
$$f_0 = \{x | e^{\mathsf{T}} x + f > 0\}$$

A quasiconvex optimization problem

Linear-fractional Programming

Transforming to a linear program

min $f_0(x) = \frac{c^{\mathsf{T}}x + d}{e^{\mathsf{T}}x + f}$ s.t. $Gx \leq h$ Ax = bmin $c^{\mathsf{T}}y + dz$ s.t. $Gy - hz \leq 0$ Ay - bz = 0 $e^{\mathsf{T}}y + fz = 1$ Ax = b

 $z \geq 0$

Proof

x is feasible in LFP $\Rightarrow y = \frac{x}{e^{T}x+f}$, $z = \frac{1}{e^{T}x+f}$ is feasible in LP, $c^{\top}y + dz = f_0(x) \Rightarrow$ the optimal value of LFP is greater than or equal to the optimal value of LP

Linear-fractional Programming

□ Transforming to a linear program

min
$$f_0(x) = \frac{c^{\top}x + d}{e^{\top}x + f}$$

s.t. $Gx \leq h$
 $Ax = b$

min
$$c^{\top}y + dz$$

s.t. $Gy - hz \leq 0$
 $Ay - bz = 0$
 $e^{\top}y + fz = 1$
 $z \geq 0$

Proof

(y,z) is feasible in LP and $z \neq 0 \Rightarrow x = y/z$ is feasible in LFP, $f_0(x) = c^T y + dz \Rightarrow$ the optimal value of LFP is less than or equal to the optimal value of LP

(y,z) is feasible in LP, z = 0 and x_0 is feasible in LFP $\Rightarrow x = x_0 + ty$ is feasible in LFP for all $t \ge 0$, $\lim_{t\to\infty} f_0(x_0 + ty) = c^{\top}y + dz$

- Linear Optimization Problems
- Quadratic Optimization Problems
- **Geometric Programming**
- Generalized Inequality Constraints
- Vector Optimization

Quadratic Optimization Problems

Quadratic Program (QP)

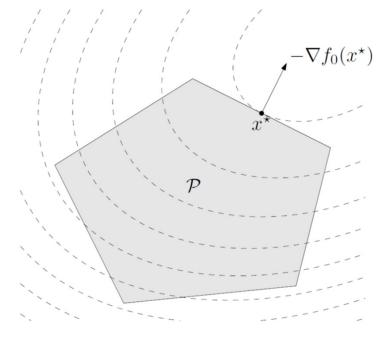
min
$$(1/2)x^{T}Px + q^{T}x + r$$

s.t. $Gx \leq h$
 $Ax = b$

- $\blacksquare P \in \mathbf{S}^n_+, G \in \mathbf{R}^{m \times n} \text{ and } A \in \mathbf{R}^{p \times n}$
- The objective function is (convex) quadratic
- The constraint functions are affine
- When P = 0, QP becomes LP

Quadratic Optimization Problems

□ Geometric Illustration of QP



- The feasible set \mathcal{P} is a polyhedron
- The contour lines of the objective function are shown as dashed curves

Quadratic Optimization Problems

- Quadratically Constrained Quadratic Program (QCQP)
 - min $(1/2)x^{\mathsf{T}}P_0x + q_0^{\mathsf{T}}x + r_0$
 - s.t. $(1/2)x^{\top}P_ix + q_i^{\top}x + r_i \le 0, \quad i = 1, ..., m$ Ax = b
 - $P_i \in \mathbf{S}^n_+, i = 0, \dots, m$
 - The inequality constraint functions are (convex) quadratic
 - The feasible set is the intersection of ellipsoids (when $P_i > 0$) and an affine set
 - Include QP as a special case

Least-squares and Regression min $||Ax - b||_2^2 = x^T A^T A x - 2b^T A x + b^T b$ Analytical solution: $x = A^{\dagger}b$ Can add linear constraints, e.g., $l \leq x \leq u$ Distance Between Polyhedra min $||x_1 - x_2||_2^2$ s.t. $A_1 x_1 \leq b_1$, $A_2 x_2 \leq b_2$ Find the distance between the polyhedra $\mathcal{P}_{1} = \{x | A_{1}x \leq b_{1}\} \text{ and } \mathcal{P}_{2} = \{x | A_{2}x \leq b_{2}\}$

 $\operatorname{dist}(\mathcal{P}_1, \mathcal{P}_2) = \inf\{\|x_1 - x_2\|_2 | x_1 \in \mathcal{P}_1, x_2 \in \mathcal{P}_2\}$

Second-order Cone Programming

$\Box \text{ Second-order Cone Program (SOCP)}$ min $f^{\mathsf{T}}x$

s.t. $||A_i x + b_i||_2 \le c_i^\top x + d_i, \quad i = 1, ..., m$ Fx = g

• $A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n}$

Second-order Cone (SOC) constraint: $||Ax + b||_2 \le c^{\top}x + d$ where $A \in \mathbb{R}^{k \times n}$, is same as requiring $(Ax + b, c^{\top}x + d) \in SOC$ in \mathbb{R}^{k+1}

SOC =
$$\{(x,t) \in \mathbf{R}^{k+1} | ||x||_2 \le t\}$$

= $\left\{ \begin{bmatrix} x \\ t \end{bmatrix} \mid \begin{bmatrix} x \\ t \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} I & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \le 0, t \ge 0 \right\}$

Second-order Cone Programming

□ Second-order Cone Program (SOCP) min $f^{T}x$

- s.t. $||A_i x + b_i||_2 \le c_i^\top x + d_i, \quad i = 1, ..., m$ Fx = g
- $A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n}$
- Second-order Cone (SOC) constraint: $||Ax + b||_2 \le c^{\top}x + d$ where $A \in \mathbb{R}^{k \times n}$, is same as requiring $(Ax + b, c^{\top}x + d) \in SOC$ in \mathbb{R}^{k+1}
- If $c_i = 0, i = 1, ..., m$, it reduces to QCQP by squaring each inequality constraint
- More general than QCQP and LP

Robust Linear Programming min $c^{\mathsf{T}}x$ s.t. $a_i^{\mathsf{T}} x \leq b_i$, $i = 1, \dots, m$ • There can be uncertainty in a_i Assume a_i are known to lie in ellipsoids $a_i \in \mathcal{E}_i = \{ \bar{a}_i + P_i u | ||u||_2 \le 1 \}, P_i \in \mathbf{R}^{n \times n}$ • The constraints must hold for all $a_i \in \mathcal{E}_i$ min $c^{\mathsf{T}}x$ s.t. $a_i^{\mathsf{T}} x \leq b_i$ for all $a_i \in \mathcal{E}_i$, i = 1, ..., mmin $c^{\mathsf{T}}x$ s.t. $\sup\{a_i^\top x | a_i \in \mathcal{E}_i\} \le b_i, \quad i = 1, ..., m$

Note that $\sup\{a_i^{\mathsf{T}}x | a_i \in \mathcal{E}_i\} = \overline{a}_i^{\mathsf{T}}x + \sup\{u^{\mathsf{T}}P_i^{\mathsf{T}}x | \|u\|_2 \le 1\}$ $= \overline{a}_i^{\mathsf{T}}x + \|P_i^{\mathsf{T}}x\|_2$

Robust linear constraint

 $\bar{a}_i^{\mathsf{T}} x + \left\| P_i^{\mathsf{T}} x \right\|_2 \le b_i$

SOCP

min
$$c^{\top} x$$

s.t. $\bar{a}_i^{\top} x + \|P_i^{\top} x\|_2 \le b_i, \quad i = 1, ..., m$

- Linear Optimization Problems
- Quadratic Optimization Problems
- □ Geometric Programming
- □ Generalized Inequality Constraints
- Vector Optimization

Definitions

Monomial Function

$$f(x) = c x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}$$

■ $f: \mathbb{R}^n \to \mathbb{R}$, dom $f = \mathbb{R}^n_{++}$, c > 0 and $a_i \in \mathbb{R}$

Closed under multiplication, division, and nonnegative scaling

Posynomial Function

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \dots x_n^{a_{nk}}$$

Closed under addition, multiplication, and nonnegative scaling

Geometric Programming (GP)

□ The Problem min $f_0(x)$ s.t. $f_i(x) \le 1$, i = 1, ..., m $h_i(x) = 1, \quad i = 1, ..., p$ f_0, \dots, f_m are posynomials \blacksquare h_1, \dots, h_p are monomials Domain of the problem $\mathcal{D} = \mathbf{R}^{n}_{++}$ Implicit constraint: x > 0

Extensions of GP

□ *f* is a posynomial and *h* is a monomial $f(x) \le h(x) \Leftrightarrow \frac{f(x)}{h(x)} \le 1$ □ *h*₁ and *h*₂ are nonzero monomials $h_1(x) = h_2(x) \Leftrightarrow \frac{h_1(x)}{h_2(x)} = 1$ □ Maximize a nonzero monomial objective

function by minimizing its inverse

GP in Convex Form

□ Change of Variables $y_i = \log x_i$ ■ *f* is the monomial function $f(x) = cx_1^{a_1}x_2^{a_2} \dots x_n^{a_n}, \quad x_i = e^{y_i}$ $f(x) = f(e^{y_1}, \dots, e^{y_n}) = c(e^{y_1})^{a_1} \dots (e^{y_n})^{a_n}$ $= e^{a_1y_1 + \dots + a_ny_n + \log c} = e^{a^Ty + b}$ ■ *f* is the posynomial function $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \dots x_n^{a_{nk}}$

$$f(x) = \sum_{k=1}^{K} e^{a_k^{\mathsf{T}} y + b_k}$$

GP in Convex Form

 $\square \text{ New Form}$ $\min \sum_{k=1}^{K_0} e^{a_{0k}^{\mathsf{T}} y + b_{0k}}$ s.t. $\sum_{k=1}^{K_i} e^{a_{ik}^{\mathsf{T}} y + b_{ik}} \le 1, \quad i = 1, ..., m$ $e^{g_i^{\mathsf{T}} y + h_i} = 1, \quad i = 1, ..., p$

□ Taking the Logarithm

$$\min \quad \tilde{f}_{0}(y) = \log \left(\sum_{k=1}^{K_{0}} e^{a_{0k}^{\mathsf{T}} y + b_{0k}} \right)$$
s.t.
$$\tilde{f}_{i}(y) = \log \left(\sum_{k=1}^{K_{i}} e^{a_{ik}^{\mathsf{T}} y + b_{ik}} \right) \le 0, \quad i = 1, ..., m$$

$$\tilde{h}_{i}(y) = g_{i}^{\mathsf{T}} y + h_{i} = 0, \quad i = 1, ..., p$$

Frobenius Norm Diagonal Scaling

- Given a matrix $M \in \mathbf{R}^{n \times n}$
- Choose a diagonal matrix D such that DMD^{-1} is small

$$\left\| DMD^{-1} \right\|_{F}^{2} = \operatorname{tr} \left((DMD^{-1})^{\mathsf{T}} (DMD^{-1}) \right) = \sum_{i,j=1}^{2} (DMD^{-1})_{ij}^{2}$$

$$=\sum_{i,j=1}^n M_{ij}^2 d_i^2 / d_j^2$$

Unconstrained GP

$$\min \sum_{i,j=1}^{n} M_{ij}^2 d_i^2 / d_j^2$$

- Linear Optimization Problems
- Quadratic Optimization Problems
- **Geometric Programming**
- □ Generalized Inequality Constraints
- Vector Optimization

Generalized Inequality Constraints

□ Convex Optimization Problem with Generalized Inequality Constraints

min
$$f_0(x)$$

s.t. $f_i(x) \leq_{K_i} 0$, $i = 1, ..., m$
 $Ax = b$

• $f_0: \mathbf{R}^n \to \mathbf{R}$ is convex;

- $K_i \subseteq \mathbf{R}^{k_i}$ are proper cones
- $f_i: \mathbb{R}^n \to \mathbb{R}^{k_i}$ is K_i -convex w.r.t. proper cone $K_i \subseteq \mathbb{R}^{k_i}$

Convexity with respect to a generalized inequality

□ *K*-convex

- $K \subseteq \mathbb{R}^m$ is a proper cone with associated generalized inequality \leq_K
- $f: \mathbf{R}^n \to \mathbf{R}^m$ is *K*-convex if $\forall x, y \in$ dom $f, 0 \le \theta \le 1$

 $f(\theta x + (1 - \theta)y) \leq_{K} \theta f(x) + (1 - \theta)f(y)$

f: ℝⁿ → ℝ^m is stricly K−convex if ∀x ≠ y ∈
 dom f, 0 < θ < 1
 f(θx + (1 − θ)y) ≺_K θf(x) + (1 − θ)f(y)

Generalized Inequality Constraints

□ Convex Optimization Problem with Generalized Inequality Constraints

min
$$f_0(x)$$

s.t. $f_i(x) \leq_{K_i} 0$, $i = 1, ..., m$
 $Ax = b$

- The feasible set, any sublevel set, and the optimal set are convex
- Any locally optimal is globally optimal
- The optimality condition for differentiable f₀ holds without change

Conic Form Problems

Conic Form Problems

min
$$c^{\top}x$$

s.t. $Fx + g \leq_{K} 0$
 $Ax = b$

- A linear objective
- One inequality constraint function which is affine
- A generalization of linear programs

Conic Form Problems

Conic Form Problems min $c^{\mathsf{T}}x$ s.t. $Fx + g \leq_K 0$ Ax = bStandard Form min $c^{\mathsf{T}}x$ s.t. $x \geq_K 0$ Ax = b□ Inequality Form min $c^{\mathsf{T}}x$ s.t. $Fx + g \leq_K 0$

Linear Optimization Problems

- $\Box \text{ Linear Program (LP)}$ $\min \quad c^{\top}x + d$ $\text{s.t.} \quad Gx \leq h$ Ax = b
- □ Standard Form LP
- $\begin{array}{ll} \min & c^{\top}x \\ \text{s.t.} & Ax = b \\ & x \ge 0 \end{array} \end{array}$
- □ Inequality Form LP min $c^{\top}x$ s.t. $Ax \leq b$

Semidefinite Program (SDP) min $c^{\mathsf{T}}x$ s.t. $x_1F_1 + \dots + x_nF_n + G \leq 0$ Ax = b $\blacksquare K = \mathbf{S}_{+}^{k}$ \blacksquare G, $F_1, \ldots, F_n \in \mathbf{S}^k$ and $A \in \mathbf{R}^{p \times n}$ Conic Form Problems min $c^{\mathsf{T}}x$ s.t. $Fx + g \leq_K 0$ Ax = b

Semidefinite Program (SDP)

min $c^{\top}x$ s.t. $x_1F_1 + \dots + x_nF_n + G \leq 0$ Ax = b

•
$$K = \mathbf{S}_{+}^{k}$$

G,
$$F_1$$
, ..., $F_n \in \mathbf{S}^k$ and $A \in \mathbf{R}^{p \times n}$

- Linear matrix inequality (LMI)
- If G, F₁, ..., F_n are all diagonal, LMI is equivalent to a set of n linear inequalities, and SDP reduces to LP

■ Standard From SDP min tr(*CX*) s.t. tr(*A_iX*) = *b_i*, *i* = 1, ..., *p* $X \ge 0$ ■ *X* ∈ Sⁿ is the variable and *C*, *A*₁, ..., *A_p* ∈ Sⁿ

- *p* linear equality constraints
- A nonnegativity constraint

□ A Conic Form Problem in Standard Form

$$\begin{array}{ll} \min & c^{\top}x\\ \text{s.t.} & x \geqslant_{K} 0\\ & Ax = b \end{array}$$

□ Standard From SDP min tr(CX)s.t. $tr(A_iX) = b_i$, i = 1, ..., p $X \geq 0$ $X \in \mathbb{S}^n$ is the variable and $C, A_1, \dots, A_p \in \mathbb{S}^n$ p linear equality constraints A nonnegativity constraint Inequality Form SDP min $c^{\mathsf{T}}x$ s.t. $x_1A_1 + \cdots + x_nA_n \leq B$ \blacksquare B, A₁, ..., A_p \in **S**^k and no equality constraint

■ Multiple LMIs and Linear Inequalities min $c^{\top}x$ s.t. $F^{(i)}(x) = x_1 F_1^{(i)} + \dots + x_n F_n^{(i)} + G^{(i)} \leq 0, i = 1, \dots, K$ $Gx \leq h, \quad Ax = b$ ■ It is referred as an SDP as well ■ Be transformed as min $c^{\top}x$ s.t. diag $(Gx - h, F^{(1)}(x), \dots, F^{(K)}(x)) \leq 0$

An SDP

Ax = b

□ Second-order Cone Programming min $c^{\top}x$ s.t. $||A_ix + b_i||_2 \le c_i^{\top}x + d_i$, i = 1, ..., mFx = g

A conic form problem

min $c^{\top}x$ s.t. $-(A_ix + b_i, c_i^{\top}x + d_i) \leq_{K_i} 0, \quad i = 1, ..., m$ Fx = gin which

$$K_i = \{(y, t) \in \mathbf{R}^{n_i + 1} | \|y\|_2 \le t\}$$

■ Matrix Norm Minimization min $||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}$ ■ $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$ and $A_i \in \mathbb{R}^{p \times q}$ ■ Fact: $||A||_2 \le t \Leftrightarrow A^T A \le t^2 I$ ■ A New Problem

 $\min \|A(x)\|_{2}^{2} \Leftrightarrow \min s \\ \text{s.t.} \|A(x)\|_{2}^{2} \leqslant s \stackrel{\min s}{\Leftrightarrow} \sup |A(x)\|_{2} \leqslant s \stackrel{\min s}{\Leftrightarrow} \operatorname{s.t.} \|A(x)\|_{2} \leqslant \sqrt{s}$

Matrix Norm Minimization min $||A(x)||_2 = (\lambda_{\max}(A(x)^{\mathsf{T}}A(x)))^{1/2}$ • $A(x) = A_0 + x_1A_1 + \dots + x_nA_n$ and $A_i \in \mathbb{R}^{p \times q}$ **Fact:** $||A||_2 \le t \Leftrightarrow A^{\mathsf{T}}A \le t^2 I$ □ A New Problem min s $\begin{array}{ccc} \min & s \\ \text{s.t.} & A(x)^{\mathsf{T}}A(x) \leq sI \end{array} \Leftrightarrow \begin{array}{c} \min & s \\ \text{s.t.} & A(x)^{\mathsf{T}}A(x) - sI \leq 0 \end{array}$

• $A(x)^{T}A(x) - sI$ is matrix convex

■ Matrix Norm Minimization min $||A(x)||_2 = (\lambda_{\max}(A(x)^{\mathsf{T}}A(x)))^{1/2}$ ■ $A(x) = A_0 + x_1A_1 + \dots + x_nA_n \text{ and } A_i \in \mathbb{R}^{p \times q}$ ■ Fact: $||A||_2 \le t \Leftrightarrow A^{\mathsf{T}}A \le t^2 I \Leftrightarrow \begin{bmatrix} tI & A \\ A^{\mathsf{T}} & tI \end{bmatrix} \ge 0$ ■ A New Problem min t

s.t. $||A(x)||_2 \leq t$

Matrix Norm Minimization min $||A(x)||_2 = (\lambda_{\max}(A(x)^{\mathsf{T}}A(x)))^{1/2}$ • $A(x) = A_0 + x_1A_1 + \dots + x_nA_n$ and $A_i \in \mathbb{R}^{p \times q}$ Fact: $||A||_2 \le t \Leftrightarrow A^{\mathsf{T}}A \le t^2 I \Leftrightarrow \left| \begin{array}{cc} tI & A \\ A^{\mathsf{T}} & tI \end{array} \right| \ge 0$ \Box SDP min t s.t. $\begin{bmatrix} tI & A(x) \\ A(x)^{\mathsf{T}} & tI \end{bmatrix} \ge 0$

A single linear matrix inequality

- Linear Optimization Problems
- Quadratic Optimization Problems
- **Geometric Programming**
- □ Generalized Inequality Constraints
- Vector Optimization

General and Convex Vector Optimization Problems

□ General Vector Optimization Problem

- $\begin{array}{ll} \min{(\text{w.r.t. }K)} & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \qquad i=1,\ldots,m \\ & h_i(x)=0, \qquad i=1,\ldots,p \end{array}$
- $f_0: \mathbf{R}^n \to \mathbf{R}^q$ is a vector-valued objective function
- K $\in \mathbf{R}^q$ is a proper cone, which is used to compare objective values
- $f_i: \mathbf{R}^n \to \mathbf{R}$ are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

General and Convex Vector Optimization Problems

Convex Vector Optimization Problem min (w.r.t. K) $f_0(x)$

- s.t. $f_i(x) \le 0, \quad i = 1, ..., m$ $h_i(x) = 0, \quad i = 1, ..., p$
- $f_0: \mathbf{R}^n \to \mathbf{R}^q$ is *K*-convex
- $f_i: \mathbf{R}^n \to \mathbf{R}$ are convex
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are affine
- *x* is better than or equal to *y f*₀(*x*) ≤_K *f*₀(*y*)
 Could be incomparable

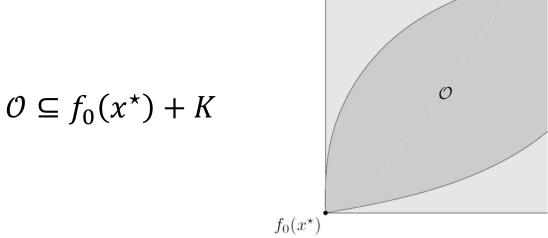
Optimal Points and Values

- Achievable Objective Values
- $\mathcal{O}=\{f_0(x)|\exists x\in\mathcal{D},f_i(x)\leq 0,i=1,\ldots,m,h_i(x)=0,i=1,\ldots,p\}$
 - \Box If \mathcal{O} has a minimum element $f_0(x)$
 - x is optimal and $f_0(x)$ is the optimal value
 - $\Box x^*$ is optimal if and only if it is feasible and $\Box \subseteq f_*(x^*) + K$

 $\mathcal{O} \subseteq f_0(x^\star) + K$

Optimal Points and Values

- Achievable Objective Values
- $\mathcal{O}=\{f_0(x)|\exists x\in\mathcal{D},f_i(x)\leq 0,i=1,\ldots,m,h_i(x)=0,i=1,\ldots,p\}$
 - \Box If \mathcal{O} has a minimum element $f_0(x)$
 - x is optimal and $f_0(x)$ is the optimal value • $K = \mathbb{R}^2_+$



Pareto Optimal Points and Values

- Achievable Objective Values
- $\mathcal{O}=\{f_0(x)|\exists x\in\mathcal{D},f_i(x)\leq 0,i=1,\ldots,m,h_i(x)=0,i=1,\ldots,p\}$
 - \Box $f_0(x)$ is a minimal element of \mathcal{O}
 - x is Pareto optimal
 - $f_0(x)$ is a Pareto optimal value
 - $\Box x$ is Pareto optimal if and only if it is feasible and

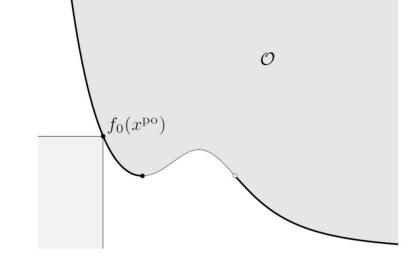
 $(f_0(x) - K) \cap \mathcal{O} = \{f_0(x)\}$

Pareto Optimal Points and Values

- $\Box \text{ Achievable Objective Values}$
- $\mathcal{O} = \{ f_0(x) | \exists x \in \mathcal{D}, f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p \}$
 - \Box $f_0(x)$ is a minimal element of \mathcal{O}
 - x is Pareto optimal
 - $f_0(x)$ is a Pareto optimal value

 $\square K = \mathbf{R}^2_+$

 $(f_0(x) - K) \cap \mathcal{O} = \{f_0(x)\}$



Pareto Optimal Points and Values

- Achievable Objective Values
- $\mathcal{O}=\{f_0(x)|\exists x\in\mathcal{D},f_i(x)\leq 0,i=1,\ldots,m,h_i(x)=0,i=1,\ldots,p\}$
 - \Box $f_0(x)$ is a minimal element of \mathcal{O}
 - x is Pareto optimal
 - $f_0(x)$ is a Pareto optimal value
 - x is Pareto optimal if and only if it is feasible and

 $(f_0(x) - K) \cap \mathcal{O} = \{f_0(x)\}$

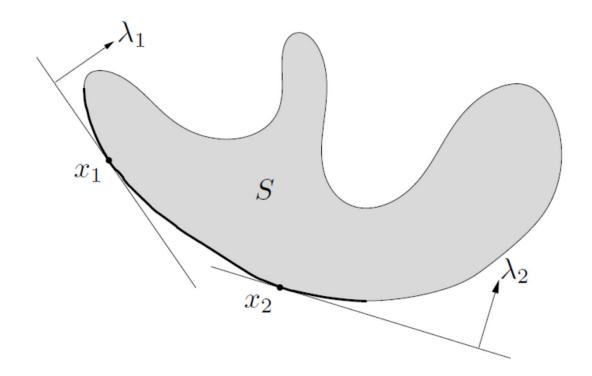
 $\Box \text{ Let } \mathcal{P} \text{ be the set of Pareto optimal values} \\ P \subseteq \mathcal{O} \cap \mathrm{bd}\mathcal{O}$

Scalarization

- A standard technique for finding Pareto optimal (or optimal) points
- Find Pareto optimal points for any vector optimization problem by solving the ordinary scalar optimization problem
- Characterization of minimum and minimal points via dual generalized inequalities

Dual Characterization of Minimal Elements (1)

□ If $\lambda \succ_{K^*} 0$, and x minimizes $\lambda^T z$ over $z \in S$, then x is minimal.



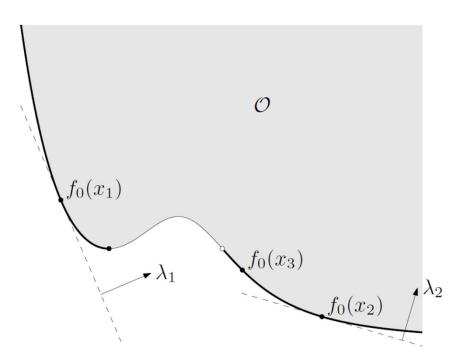
Scalarization

$\Box \text{ Choose any } \lambda \succ_{K^*} 0$

- $\begin{array}{ll} \min & \lambda^{\top} f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \qquad i = 1, \dots, m \\ & h_i(x) = 0, \qquad i = 1, \dots, p \end{array}$
- The optimal point x for this scalar problem is Pareto optimal for the vector optimization problem
- \checkmark *is* called the weight vector
- By varying λ we obtain (possibly) different Pareto optimal solutions

Scalarization

 $\Box K = \mathbf{R}^2_+$



Scalarization cannot find $f_0(x_3)$

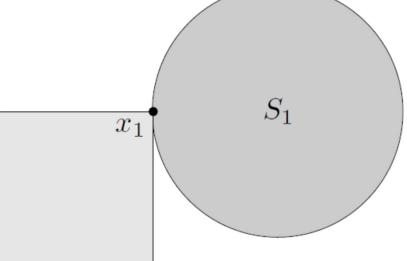
Scalarization of Convex Vector

 $\Box \text{ Choose any } \lambda \succ_{K^*} 0$

- $\begin{array}{ll} \min & \lambda^{\top} f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \qquad i = 1, \dots, m \\ & h_i(x) = 0, \qquad i = 1, \dots, p \end{array}$
- A convex optimization problem
- The optimal point x for this scalar problem is Pareto optimal for the vector optimization problem
- \blacksquare λ is called the weight vector
- By varying λ we obtain (possibly) different Pareto optimal solutions

Dual Characterization of Minimal Elements (2)

□ If *S* is convex, for any minimal element *x* there exists a nonzero $\lambda \ge_{K^*} 0$ such that *x* minimizes $\lambda^T z$ over $z \in S$.



 x_1 minimizes $\lambda^T z$ over $z \in S_1$ for $\lambda = (1,0) \ge 0$

Scalarization of Convex Vector

□ For every Pareto optimal point x^{po} , there is some nonzero $\lambda \ge_{K^*} 0$ such that x^{po} is a solution of the scalarized problem

min
$$\lambda^{T} f_{0}(x)$$

s.t. $f_{i}(x) \leq 0, \quad i = 1, ..., m$
 $h_{i}(x) = 0, \quad i = 1, ..., p$

□ It is not true that every solution of the scalarized problem, with $\lambda \ge_{K^*} 0$ and $\lambda \ne 0$, is a Pareto optimal point for the vector problem

Scalarization of Convex Vector

- **1.** Consider all $\lambda \succ_{K^*} 0$
 - $\begin{array}{ll} \min & \lambda^{\top} f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \qquad i=1,\ldots,m \\ & h_i(x)=0, \qquad i=1,\ldots,p \end{array}$

Solve the above problem

- **2.** Consider all $\lambda \geq_{K^*} 0$, $\lambda \neq 0$, $\lambda \succ_{K^*} 0$
 - Solve the above problem
 - Verify the solution

Minimal Upper Bound on a Set of Matrices

 $\begin{array}{ll} \min\left(\text{w.r.t.}\; \mathbf{S}^n_+\right) & X\\ \text{s.t.} & X \geqslant A_i, & i=1,\ldots,m \end{array}$

$$A_i \in \mathbf{S}^n, i = 1, \dots, m$$

- The constraints mean that X is an upper bound on A_1, \dots, A_m
- A Pareto optimal solution is a minimal upper bound on the matrices

Scalarization

$$\begin{array}{ll} \min & \operatorname{tr}(WX) \\ \text{s.t.} & X \geqslant A_i, \quad i = 1, \dots, m \end{array}$$

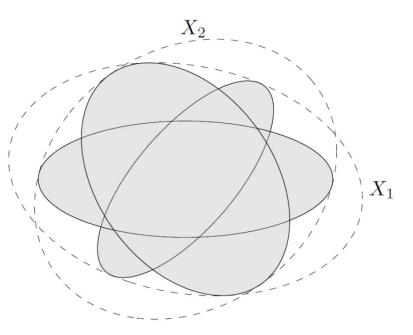
$$\blacksquare W \in \mathbf{S}_{++}^n$$

If X is Pareto optimal for the vector problem then it is optimal for the SDP, for some nonzero weight matrix $W \ge 0$

■ A Simple Geometric Interpretation ■ Define an ellipsoid centered at the origin as $\mathcal{E}_A = \{u | u^T A^{-1} u \leq 1\}$

 $\blacksquare A \preccurlyeq B \iff \mathcal{E}_A \subseteq \mathcal{E}_B$

A Pareto optimal point X for the problem corresponds to a minimal ellipsoid that contains the ellipsoids associated with A_1, \ldots, A_m .



Multicriterion Optimization

 $\square K = \mathbf{R}^q_+$

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

- f_0 consists of q different objectives F_i and we want to minimize all F_i
- It is convex if $f_1, ..., f_m$ are convex, $h_1, ..., h_p$ are affine, and $F_1, ..., F_q$ are convex
- Feasible x^* is optimal if

y is feasible $\Rightarrow f_0(x^*) \leq f_0(y)$

Feasible x^{po} is Pareto optimal if

y is feasible, $f_0(y) \leq f_0(x^{\text{po}}) \Rightarrow f_0(x^{\text{po}}) = f_0(y)$

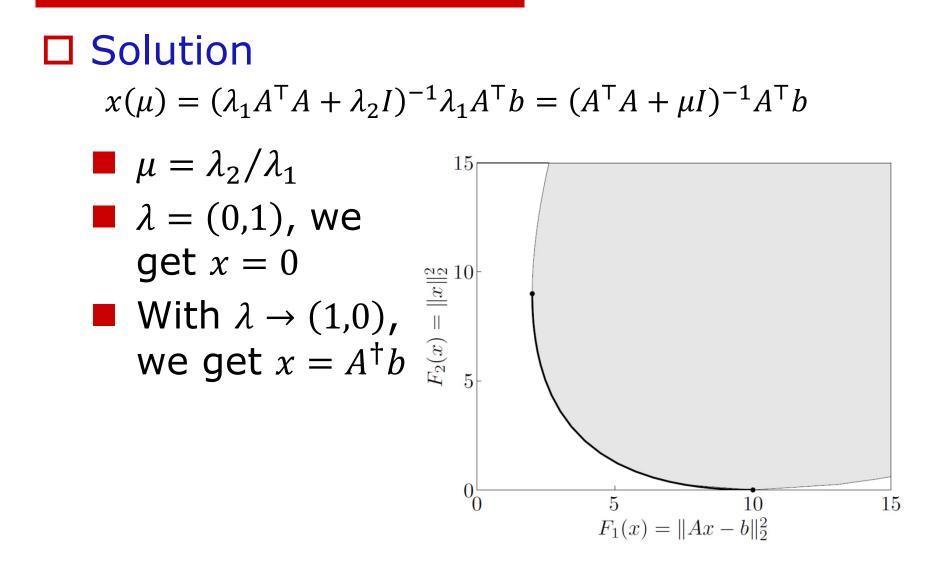
Regularized Least-Squares

min (w.r.t. \mathbf{R}^2_+) $f_0(x) = (F_1(x), F_2(x))$

- $F_1(x) = ||Ax b||_2^2$ measures the misfit
- $F_2(x) = ||x||_2^2$ measures the size
- Our goal is to find x that gives a good fit and that is not large
- Scalarization

$$\lambda^{\mathsf{T}} f_0(x) = \lambda_1 F_1(x) + \lambda_2 F_2(x)$$

= $x^{\mathsf{T}} (\lambda_1 A^{\mathsf{T}} A + \lambda_2 I) x - 2\lambda_1 b^{\mathsf{T}} A x + \lambda_1 b^{\mathsf{T}} b$



- Linear Optimization Problems
- Quadratic Optimization Problems
- **Geometric Programming**
- □ Generalized Inequality Constraints
- Vector Optimization