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Statistical Machine Learning

» There Is a lot of learning algorithms, each method has
Its own situations for which it works best

» One of the main tasks is to understand the mechanism
of each algorithm in a statistical framework.
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Contents

» Considering the contrast between the optimal Bayes
classifier and classifiers using a classification algorithm

» The closeness is characterized by the convex upper
bounds of classification error function

» This is a key step to statistically analyze the learning

algorithms.
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The Outline

» Some comments on margin-based generalization bound

» The convex upper bounds of classification loss function

> The statistical behavior of different loss functions

» Application in cost-sensitive classification problems
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VC Theory and PAC Bounds

» Landmark paper by Blumer, 1989;

— Greatly influence the field of machine learning

— VC theory and PAC bounds have been used to
analyze the performance of learning systems as
diverse as decision trees, neural networks, and

others.
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PAC Bound: margin

» The first paper about margin results: J.Shawe-Taylor
and P. L. Bartlett, 1998.

2
eer(h)Sg(I,F,é,y)Slz(EMR | g8e;;/ |0g32|_|_|og;j

2

- | >2/¢
Y

» Data dependent and dimension free.
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Margin-based Bound

» During 1992-2004, the most influential explanation is
the so-called “margin” analysis. This concept has been
used to explain both SVM and boosting.
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Three Periods of Inference Science

» 1970 — 1990 Development of Basics of Statistical Learning
Theory (the VC theory)

» 1992 — 2004 Development of Large Margin Technology
(SVMs)

» 2005 — ....Development of Non-Inductive Methods of
Inferences.
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Comment

» J. H. Friedman, T. Hastie and R. Tibshirani. Additive
Logistic Regression: a Statistical View of Boosting. The
Annals of Statistics. 2000, 28(2): 337-407.

» The bounds and the theory associated with the
AdaBoost algorithms are interesting, but tend to be too
loose to be of practical importance.
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Comment

> |. Steinwart. 2002

» Although the existing bounds are usually too large for
real-word sample sizes, it is claimed that at least for
large sample sizes these bounds can justify SVM
approach. In the presence of noise, many of the
known bounds can not predict well neither for small nor
for large sample sizes.
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Comment

» T. Zhang 2004

» In statistical estimation procedure, one typically encounter
two types of errors: approximation error and variance
estimation error. The margin idea mixes this two aspects
together. It is not clear that which aspect is the main
contribution to the success of maximum margin methods.
Moreover, the impact of different loss functions can not be

characterized.
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Comment

» Trevor Hastie and Ji Zhu 2006

» What is special with the SVM is not the regularization
term, but is rather the loss function, that is, the hinge
loss.

» The hinge loss and other loss functions of many
statistical tools are all Bayes consistent. This fact
justifies that margin maximization is not the key to the
success of the SVM.
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Definition of Classification

» Assumption: (X;» y;) lLd.

» Hypothesis space: H

> Loss function: C(y,f(x))={(1) :I ;E;(;;z
» Objective function: R(f)zjc(y, f ()P(x, y)dx



Bayesian Classifier
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> H: all measurable functions

» The optimal classifier is

f*(X):<
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Classification in Machine Learning

» Only finite samples are available

» Obviously, minimizing expected risk analytically is
Impossible

» Instead, we can minimize the empirical risk.
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Direct Optimization

» The empirical risk
1
- f(x
mlnr]iZ:1:c:(yI (%))

» In fact, Ben-David et al. [2003] show that even
approximately minimizing the empirical risk is NP-hard,
not only for linear function classes but also for spheres
and other simple geometrical objects.
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Intuitive Convex Upper Bound

> ¢:R—[0,0) is aconvex function

» There exists a y >0, such that
yo(yf (x))=c(y, f(x)) forall xeR

» They have the same optimal classification solutions.
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Computational Heuristics

» Many of the most prominent methods studied in
machine learning make significant use of convexity

» Generally, the margin-based surrogate function is to be
minimized to obtain a classifier
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Margin-based Loss functions

>Margin: v = yf (x)
»Modified Least Squares: #(v) = max{l-v,0f
>SVM: #(v) = max{1-v,0}

> Exponential: p(v) = exp(-v)

> Logistic Regression: (V) = In(1+exp(-v))
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Empirical Consistency

» Although SVM and AdaBoost don't directly optimize the
classification error, great empirical success has been

achieved.

» S0, such surrogate loss functions must be “reasonably
related” to the original loss function since otherwise
this approach cannot work well.



Machine Learning and Data Mining 2007

lllustration

» The convex upper bounds of classification error

function or “surrogate” functions.

— 0-1
------ exponential
-- hinge
logistic
------ truncated quadratic
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Conditions on the Surrogate

» Conditions such as convexity, continuity, and differentiability
of ¢ are easy to verify and have natural relationships to
optimization procedures, it is not immediately obvious how to
relate such conditions to their statistical consistency between
the 0-1 loss and its surrogate loss .

» Thus, what condition on @& should be further considered?
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Understanding the Convex Upper Bounds

» It is very important that we should understand these
strategies not only from a computational point of view
but also in terms of their statistical properties.
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Questions

»What are their Bayesian solutions ?

»Under what conditions, does the convergence of
convex bound risk imply the convergence of original risk?
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Some Notations

> @-risk in binary classification
R,(f)=EQ(x), f(x))  Qly, f)=ng(f)+L-n(-f)
> Optimal ¢@-classifier
f, (7)=argmin{ng(f )+ @-n)s(- f )}
H () =inf {ng(£)+ @-n)p(- )} = QM. 1, ()
» Excess ¢-risk
AQ(n, £)=Q(n, f)-H ()
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Minimizing the Risk

» The minimal ¢ -risk can be achieved by pointwisely
minimizing

5 Q. f)=ne(f)+@1-n)s(- )

TR ADTEEE
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Partial Answer

> Modified Least Squares: f,(7)=27-1 H (17)=4n(1-7)

> SVM: f(n)=sign(2p-1)  H)=1-[2y-1
X 1, n
> Exponential: fy (U):E'”E H ()= 2yn(n-1)
- . (N T
> Logistic Regression: f, (ﬂ)—lnﬂ H(7)=-nInp—(1-7)In(l-7)

» Bayes consistent or Fisher consistent for classification
problems
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Fisher Consistency

» In the traditional parameter estimation situation, Fisher
consistency means that the estimation procedure in the
population space will produce the target of the estimation.

» The Fisher consistency of the margin-based loss functions
IS closely related to the consistency and rate of
convergence (to the Bayes optimal risk) results of the
corresponding classifiers (Y. Lin 2004).
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Classification-calibrated

» A loss function is classification-calibrated If,

H(7)>H(y) for any 77;&%

H(7)=_inf n¢(v)+(@-7n)p(-v)

v(27-1)<0

» This is a minimal condition that can be viewed as a
pointwise form of Fisher consistency for classification
(Bartlett, et al 2006).
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Partial Answer

The following two conditions are equivalent (Bartlett, et
al 2006):

» The convergence of g—excess risk implies the
convergence of original excess risk

» The surrogate function ¢ Is classification-calibrated.
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Importance

> Transfer assessments of statistical error in terms of
“excess ¢-risk” R (f)-R, into assessments of error

in terms of “excess risk” R(f)-R’

» Under the condition of classification-calibrated, the
surrogate loss functions are “reasonably related” to the
original loss function.
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Example: classification-calibrated

» Hinge loss function is classification-calibrated.
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Convexity

> Let the loss function ¢ be convex. Then

It Is classification-calibrated if and only if it is
differentiable at 0 and ¢'(0)<0

» Exponential and logistic loss are classification-calibrated.
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Upper Bound

>

If ¢:R—|[0,x) is classification-calibrated,
then there exists a y >0 , such that

vV

7$(v)> 1(v<0) for all veR
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Quantitative Relationship

» Bartlett et al. simplify and extend Zhang’s results,
developing a general methodology for finding quantitative

relationships
w(R(f)-R")<R,(f)-R,

» where  Isthe Fenchel-Legendre biconjugate of

SR
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Classifiers and Density Function

* |
f,(7)=2n-1 f(7)==In—"—

» The density function can be obtained. This means
solving classification is equivalent to estimating density.



Machine Learning and Data Mining 2007

Bregman Divergence

» For a convex function, the Bregman divergence is defined

as

d¢(X1’ Xz) = ¢(X2)_ ¢(X1)_ ¢’(X1)(X2 - Xl)

> If ¢ and f, is differentiable, then H(7) is also
differentiable

> If ¢ is convex, then H (77) Is concave and the Bregman
divergence can be uniquely defined.
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Classification and Density Estimation

> Assume that p = f¢(77) , then
AQ(7, p)=dy (i7.,77)

> EXxcess ¢ -risk
E,AQ(7(x). £ (x)) = Ed, (£, (f (X)) (x))

» Intuitively, by minimizing the excess-risk, we are
effectively minimizing the expected Bregman
divergence.
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Bregman Divergence

» In mathematics, Bregman divergence is similar to a metric,
but does not satisfy the triangle inequality nor symmetry

» Bregman divergence is named after L. M. Bregman, who
iIntroduced the concept in 1967. More recently researchers
In geometric algorithms have shown that many important
algorithms can be generalized from Euclidean metrics to

distances defined by Bregman divergence



Machine Learning and Data Mining 2007

Example: Bregman divergence

» Squared Euclidean distance is a Bregman divergence

Dy (®,y)=1|lz—y|*
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Example: Bregman divergence

» Relative Entropy (also called KL-divergence) is a
Bregman divergence

wlz)=zlog =
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Statistical Analysis

> |f R¢(f )— R¢* is small, what kind of statistical behavior
It implies?

» Mainly by considering
AQ(17, p)=n¢(p)+1-n)p(- p)-H ()
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Exponential Loss

0)= 1
1-7 1+e 2P

> AQ(n7, p)= 77—77(6“"—1)—2 -1

AQ(7, p) < | —71e™ + 2|y - 7]

» 14720 Isregard as an approximation to the true
density function n(x)
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Disadvantage

» Using the exponential loss, we compute a predictor such
that |f(x)is large when 5(x)=01 and |f(x) is small else
where.

f(x] has to achieve +o if7(x)=01

» In the limit of zero error,

» Such a predictor is clearly not well-behaved.
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Logistic Loss

> £ ()= In—— 7 =1,"(p)

3 1
1+e7P

1-7

AQ(17,p)=2(n-77 )

AQ(n, p)< 2An -7 In(1+ el )+ 2\/k‘77 -7

1
» 14 f(x) Isregard as an approximation to the true

density function 7(x)
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Disadvantage

» In the limit of zero error, there exists the same
problem as that in exponential loss function if

n(x)=01
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Exponential and Logistic Loss

» The two loss functions share the same probability
model (up to a scaling factor)

» However, logistic regression changes the exponential
sensitivity e to Ina+e‘p\

» The logistic regression loss behave better than the
exponential loss.
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Analysis of Hinge Loss

> f,(n)=sign(27-1)

r(p—l)(l 77) (1 sign 277 ){277 ﬂ p>1
AQ(7,p)=1  (p—sign(27-1))2 -1 pe[-11]
k (p+1)7 +(@+sign(27 -1)}2n -1 p<-1
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Hinge Loss: interpretation

> If n(x) is close to 0.5:  f(x)—Truncation(f(x)) is small

» Otherwise:
if [f(x]<1  |f(x)-sign(2p-1) is small

otherwise: ‘f(X)—Sign(Zn(X)—l)HZU(X)—l—Sign(f(X))( is

small
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Maximum Margin

> Roughly speaking, if r(x) is not close to 0.5, we
e f(x) = sign(2s(x)-1)

> But allow f(X)>1 when n(x)zl
f(x)<-1  when 7(x)=0
» This corresponds to the margin argument which

motivated SVM and has been used to explain the
effectiveness of boosting.
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Comments on Margin Analysis

» Tong Zhang, 2004

» The margin idea is mostly useful in nearly separable
cases ( n(x) is close to 0 or 1)

> Itis not very useful if 7(x)1-7(x)) is not small.
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Disadvantage

» The predictor computed by SVM does not carry any reliable
probability information.

» By looking at the output of a SVM classifier at any given
point, it is difficult to tell how confident the prediction is.
Generally, such confidence information is often extremely
valuable in practical applications.
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Another Viewpoint

» The knowledge of density functions would allow us to solve
whatever problems that can be solved on the basis of available
data;

» Vapnik's principle: never to solve a problem that is more general
than you actually need to solve.

» One should try to avoid estimating any density when solving a
particular learning problem.
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The Outline

» Some comments on margin-based generalization bound

» The convex upper bounds of classification loss function

> The statistical behavior of different loss functions

» Application in cost-sensitive classification problems
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Cost-sensitive Problems

» Cost

-sensitive classification considers different costs of

each misclassified example.

» An cost-sensitive classification technique takes the

cost

of samples into consideration during model

building and generates a model that has the lowest

Cost.
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Recent Development: ICML

» H. Masnadi-Shirazi and N. Vasconcelos. Asymmetric
boosting. ICML. 2007. They obtain a natural cost-
sensitive AdaBoost, which is based on the statistical
Interpretation, I.e., minimizing the cost-sensitive loss by
gradient descent in function space.

» They use loss function E{ Zec(x’”yf(x)]

y=1,-1
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Recent Development: PR

» Y. Sun et al. Cost-sensitive boosting for classification of
Imbalanced data. Pattern Recognition 2007.

» Loss functions: Y e ) S g(x, yle ) S g(x, y et ()

y=1-1 y=1,-1 y=1,-1

> The AdaBoost which optimizes 2.c¢(x.¥)e™"™ has

y=1,-1

furnished better results in most experiments.
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Our Analysis

» A general AdaBoost framework for binary cost-sensitive
classification is intuitively established.

> Theoretical analysis indicates that the Y. c(x,y)e”"®

y=1,-1

based AdaBoost has better performance.

» Further, the modified LogitBoost has better performance.
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Summary

» Many of the classification algorithms developed in the
machine learning literature, including SVM and boosting,
can be viewed as optimization methods that minimize a
convex surrogate of the 0-1 loss function.

» The convexity makes these algorithms computationally
efficient. However, the use of a surrogate function has
many significant statistical consequences.
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Other Significant Issues

» Consistency of a Function Class

» Convergence rate
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» Thanks
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