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Latent Tree Models (LTM)

e Bayesian networks with
= Rooted tree structure
m Discrete random variables
m Leaves observed (manifest variables)

= Internal nodes latent (latent variables)

e Also known as hierarchical latent class
(HLC) models, HLC models
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Example

e Manifest variables

m Math Grade, Science Grade, Literature Grade, History Grade
e Latent variables

= Analytic Skill, Literal Skill, Intelligence




Learning Latent Tree Models

Y1 Y2 Y6 Y7
1 0 1 1
1 1 0 0
0 1 0 1

Determine

Number of latent variables
Cardinality of each latent variable
Model Structure

Conditional probability distributions
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Outline

Problem Statement
Why Interesting?

Technical issues
= Properties of Latent Tree Models
= Model Selection

= Model Optimization

Conclusions
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Why Latent Tree Models Interesting?

Probabilistic modeling

Latent structure discovery
Cluster Analysis

Traditional Chinese Medicine
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LTM and Probabilistic Modeling

e Pearl 1988: LTMs

m Are computationally very simple to work with.

m Can represent complex relationships among manifest variables.
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LTM and Probabilistic Modeling

e New approximate inference algorithm for BN
m Dense BN with variables Y1, Y2, ..., Yn
m Sample from the BN a data seton Y1, Y2, ..., Yn

m Learn an LTM with manifest variables Y1, Y2, ..., Yn and some
latent variables

m Use the LTM to make inference among Y1, Y2, ..., Yn

m Empirical comparison with Loopy Propagation
» More accurate

» Much lower online complexity
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LTM and Probabilistic Modeling

e New approach for density estimation

Bayes rule: P(C'|A1.As,... A,) x P(C)P(A1,As, ..., A, |C)

Density estimation: P(Aq,A4s,....4,,|C)

A new method: Learn an LTM for P(A1, Aa...., An|C)

Intuition: attributes influenced by latent factors besides C.
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Latent Structure Discovery

e Learning LTM is to discover latent structures

Y1 Y2 Y6 Y7
1 0 1 1
1 1 0 0
0 1 0 1

e Can interesting latent structures be discovered?
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e Results on the CoiL Challenge 2000 data set

e Customer records of a Holland Insurance Company

e 42 manifest variables, 5822 records
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Latent Structure Discovery

e Hong Kong ICAC survey data

e 31 manifest variables, 12000 records
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Latent Structure Discovery

Danish Beer data

/83 samples

States of Manifest variables

1. Never heard of; 2. heard but not tasted;

3. tasted but don’t drink regularly; 4. drink regularly
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Cluster Analysis

e Latent class model (LCM) for
cluster analysis:

m Each state of X represents a cluster

e LTM generalizes LCM

m Relaxes strong constraint of LCM

m Multidimensional clustering




Traditional Chinese Medicine (TCM)

TCM statement:

m  Yang deficiency (PHEE): intolerance to cold (£%), cold limbs (f%/%), cold
lumbus and back (&%), and so on ....

m Regarded by many as not scientific, even groundless.

Two aspects to the meaning

1. Claim: There exists a class of patients, who characteristically have the cold
symptoms . The cold symptoms co-occur in a group of people,

2. Explanation offered: Due to deficiency of Yang. It fails to warm the body

What to do?

m Previous work focused on 2.

= New idea: Do data analysis for 1
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Objectivity of the Claimed Pattern

e TCM Claim: there exits a class of patients, in whom symptoms such

as ‘Intolerance to cold’, ‘cold limbs’, ‘cold lumbus and back’, and so on
co-occur at the same time

e How to prove or disapprove that such claimed TCM classes exist in the
world?

m Systematically collect data about symptoms of patients.
m Perform cluster analysis, obtain of patients

m If corresponds to the TCM classes, then YES.
1. Existence of TCM classes validated

2. Descriptions of TCM classes refined and systematically expanded
3. Establish a statistical foundation for TCM
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Why Latent Tree Models?

TCM uses multiple interrelated latent concepts to explain co-occurrence
of symptoms

m Yang deficiency (‘BFHEE) , Yin deficiency (BBREE): , Essence insufficiency (&
BTRE), ...

Need latent structure models

m With multiple interrelated latent variables..

Latent Tree Models are the simplest such models

Page 17



Empirical Results

e Can we find the claimed TCM classes using latent tree models?

m We collected a data set about kidney deficiency (& &)

m 35 symptom variables, 2600 records
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|_atent Clusters

e XI1:
m b5 states: s0O, s1, s2, s3, s4

m Samples grouped into 5 clusters

e Cluster X1=s4
{sample | P(X1=s4|sample) > 0.95} =>
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= By Math vs by words
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Other TCM Data Sets

e From Beijing U of TCM, 973 project
m Depression
m Hepatitis B
m Chronic Renal Failure

e China Academy of TCM
m Subhealth
m Type 2 Diabetes

e In all cases, distribution patterns implicitly claimed in TCM theory
m Validated
m Quantified and refined
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Outline

Problem Statement
Why interesting
Technical issues

m Properties of Latent Tree Models

m Model Selection
m Model Optimization

Conclusions
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Root Walking and Model Equivalence

e M1: root walks to X2; M2: root walks to X3

e Root walking leads to equivalent models

e Implications:
m Cannot determine edge orientation from data

m Can only learn unrooted models




Regularity

e Regular latent tree models: For any latent node Z with neighbors
X1, X2, ..., Xk

e Can focus on regular models only
= lrregular models can be made regular
m Regularized models better than irregular models

e The set of all such models is finite.
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Model Selection

Bayesian score: posterior probability P(m|D)

m P(m|D) =P(m) il P(Dlm, 6)d 6/P(D)
BIC Score: large sample approximation
BIC(m|D) = log P(D|m, 9 *) —d logN/2

BICe Score:
BICe(m|D) = log P(D|m, 6 *) —d, logN/2

effective dimension de.

m Effective dimensions are difficult to compute

m BICe not realistic
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Model Selection

e Other Choices
m Cheeseman-Stutz (CS): impact of approximation error in BIC reduced
m AIC
m Holdout likelihood

m (Cross validation: too expensive)

e Simulation studies indicate that
m BIC and CS result in good models
m AIC and holdout likelihood do not

e Therefore, we chose work with BIC.
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Model Optimization

e Search-based algorithm
m Start with an initial model
m At each step:

» Construct all possible candidate models
» Evaluate them one by one
» Pick the best one

e Difficult

= Too many candidate models
m Too expensive to run EM on all of them
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Model Optimization

Double hill climbing (DHC), 2002
m 7 manifest variables.

Single hill climbing (SHC), 2004
m 12 manifest variables

Heuristic SHC (HSHC), 2004
m 50 manifest variables

EAST, 2007
m As efficient as HSHC, and more principled
m 100+ manifest variables

Heuristic Method (for approximate inference)
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The EAST Algorithm

e Search-based algorithm.
e EAST: Expansion, Adjustment, Simplification until Termination
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5 Search Operators

e EXxpansion operators:
m  Node introduction (NI): M1 => M2; |X1]| = |X]
» Constraint: To mediate a latent node and only two of its neighbors

m State introduction (Sl): adds a new state to a latent variable
e Adjustment operator: node relocation (NR), M2 => M3

e Simplification operators: node deletion (ND), state deletion (SD)
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Naive Search

e Start with an initial model

e At each step:
m  Construct all possible candidate models
m Evaluate them one by one
m Pick the best one

e Inefficient
m Too many candidate models
m Too expensive to run EM on all of them
» Structural EM assumes fixed set of variables.
» Does not work here
Latent variables in models by NI, SlI, SD differ from those in current model
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Reducing Number of Candidate Models

e Not to use ALL the operators at once.
e How?
m BIC: BIC(m|D) = log P(D|m, 6 *)—d logN/2

m Improve the two terms alternately

m SD and ND reduce the penalty term.
= Which operators to improve the likelihood term?

Page 32



Improve Likelihood Term

e Let be m’ obtained from m using NI or S|
log P(D|m’, 9 *) >=log P(D|m, 0 ¥)

NI and SI improves the likelihood term

® Follow each NI operation with NR operations.

» QOvercome constraint by NI and allow transition from M1 to M3
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Choosing between Models by SI and NI

e Operation Granularity
m p=100
m Sl: 101 additional parameters
m NI: 2 additional parameters
m Compare shovels with bulldozer

m Sl always preferred initially

e Cost-effectiveness principle
m Select candidate model with highest improvement ratio

B _.!Ti'_'-'[: ' |F' ) — H.ﬂri'_'-'[: e, |

| I [
T ) — alir)
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The EAST Algorithm

1. Start with a simple initial model
2. Repeat until model score ceases to improve
. Search with NI, SI
. Follow each NI operation with NR operations.
: Search with ND, SD

EAST: Expansion, Adjustment, Simplification until Termination
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Parameter Sharing

e Internal representation of unrooted model: rooted model

e m: current model;

e m’: candidate model generated by applying a search operator on m.

e The two models share many parameters

mm: (01 02); m:(01 A2); Page 36



Avoliding EM

e Run EM to estimate parameters for current model m
B m:( 9*1, 6%*2);

e Estimate parameters for candidate model m’ as follows
mm:( 0%, A*2);
m where A *2 Is the local MLE

A *2=arg max ) »log P(D|m’, 6 *1, X 2)

e Local MLE can be computed efficiently using local EIM.
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Conclusions

e Latent tree models, and latent structure models in general, offer
framework for

m Probabilistic modeling
» Approximate reasoning, latent variable in classification

m Latent structure discovery
Multidimensional clustering.

Can be useful in many other areas
» such as marketing, survey studies, ....

e We have only scratched the surface. A lot of interesting research work
yet to be done.
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