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Introduction Semi-Supervised Learning

Two Most Mature Learning Paradigms: Supervised and
Unsupervised Learning

Unsupervised learning:

Given:
X = {x1, . . . , xn} ⊂ X , a set of n examples drawn i.i.d. from some
(unknown) distribution on the input space X .

Goal:
Find interesting structure in X .

Fundamentally a density estimation problem.

Weaker forms:
e.g., quantile estimation, clustering, outlier detection, dimensionality
reduction.

No supervisory information is available for any training example.
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Introduction Semi-Supervised Learning

Two Most Mature Learning Paradigms: Supervised and
Unsupervised Learning

Supervised learning:

Given:
X = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y, a set of n i.i.d. pairs where
yi ∈ Y is the label or target of input xi .

Goal:
Predict labels or targets of unseen test examples as accurately as
possible.

Most common tasks: classification and regression.

Supervisory information is available for all training examples.
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Introduction Semi-Supervised Learning

Semi-Supervised Learning

SSL is halfway between supervised and unsupervised learning.

Supervisory information is available for some, but not all, training
examples.

SSL may be regarded as:

Supervised learning augmented with unlabeled data
e.g., semi-supervised classification, semi-supervised regression
Unsupervised learning augmented with labeled data or constraints
between data points
e.g., semi-supervised clustering

Our focus:
Semi-supervised classification – most common type of SSL problems
studied so far.
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Introduction Semi-Supervised Learning

Semi-Supervised Classification Example: Face Recognition
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Introduction Semi-Supervised Learning

Semi-Supervised Classification Example: Face Recognition

decision boundary obtained by
linear SL methods such as SVM
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Semi-Supervised Classification Example: Face Recognition
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Introduction Semi-Supervised Learning

Semi-Supervised Clustering Example: Image Segmentation
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Introduction Semi-Supervised Learning

When Can SSL Work?

SSL will yield an improvement over supervised learning if:
Knowledge on p(x) gained through unlabeled data carries information
that is useful in the inference of p(y |x).

Failure to meet this requirement may lead to degradation in
prediction accuracy by misguiding the inference.
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Introduction Semi-Supervised Learning

Smoothness Assumption

For SSL to work, certain assumptions about the data have to hold.

Semi-supervised smoothness assumption:

Assumption: If two points x1, x2 in a high-density region are close,
then so should be the corresponding outputs y1, y2.

Smoothness assumption of supervised learning (for comparison):

Assumption: If two points x1, x2 are close, then so should be the
corresponding outputs y1, y2.
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Introduction Semi-Supervised Learning

Cluster Assumption

Cluster assumption:

Assumption: If points are in the same cluster, they are likely to be of
the same class.

Equivalent formulation of cluster assumption:
Low-density separation:

Assumption: The decision boundary should lie in a low-density region.

The cluster assumption can be seen as a special case of the
semi-supervised smoothness assumption.
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Introduction Semi-Supervised Learning

Manifold Assumption

Manifold assumption:

Assumption: The high-dimensional data lie roughly on a
low-dimensional manifold.

If the data lie on a low-dimensional manifold, then the learning
algorithm can essentially operate in a space of corresponding
dimensionality, thus avoiding the curse of dimensionality.
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Introduction Semi-Supervised Learning

Major SSL Models

Generative models:

Mixture models with missing data.

Unlabeled data may be used to define data-dependent priors (e.g.,
over functions).

Low-density separation models:

E.g., transductive SVM (TSVM) [Joachims, 1999] (with loss function
modified to incorporate unlabeled data)
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Introduction Semi-Supervised Learning

Major SSL Models

Graph-based models:

Most actively studied SSL models.

Data (both labeled and unlabeled) are represented by nodes of a
graph, with edges labeled with pairwise distances between incident
nodes.

Approximate geodesic distance between two points is computed w.r.t.
manifold of data points.

Based on manifold assumption.

Most existing methods are transductive, with very few exceptions,
e.g., Laplacian SVM (LapSVM) [Belkin et al., 2005].
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Laplacian SVM
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Introduction Laplacian SVM

LapSVM

LapSVM integrates three concepts in machine learning:

Spectral graph theory
Manifold learning
Regularization in reproducing kernel Hilbert spaces (RKHS)

Prior belief about the appropriate choice of classification functions
can be influenced by the presence of unlabeled data:
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Introduction Laplacian SVM

Geometric Assumption

Labeled examples:
(x , y) ∈ X × R drawn according to some distribution P.

Unlabeled examples:
x ∈ X drawn according to the marginal distribution PX of P.

Assumption: If two points x1, x2 ∈ X are close in the intrinsic
geometry of PX , then the conditional distributions
P(y |x1) and P(y |x2) are similar.

In other words, the conditional distribution P(y |x) varies smoothly
along the geodesics in the intrinsic geometry of PX .

Dit-Yan Yeung (CSE, HKUST) SSDA MLA’08 18 / 65



Introduction Laplacian SVM

Standard Regularization Framework

Let k : X × X → R be a Mercer kernel and Hk be the associated
RKHS of functions X → R with norm ‖·‖k .

Given a set of labeled examples {(xi , yi )}ni=1 and a loss function V .

Regularization framework for finding an optimal f ∗:

f ∗ = arg min
f ∈Hk

{
1

l

l∑
i=1

V (xi , yi , f ) + γ‖f ‖2
k

}
.

Representer Theorem:
The optimal solution exists in Hk and can be expressed as

f ∗(x) =
l∑

i=1

αik(xi , x),

for some real coefficients αi . Implication: optimization can be
performed over a finite-dimensional space of coefficients.
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Introduction Laplacian SVM

Extending the Standard Regularization Framework

The manifold regularization approach extends the standard
regularization framework by incorporating additional information
about the geometric structure of the marginal distribution PX into
the regularized functional.

The goal is to ensure that the solution is smooth w.r.t. both the
ambient space and the marginal distribution PX .

Since the additional regularizer depends on data, it can be called a
data-dependent regularizer.
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Introduction Laplacian SVM

Extended Regularized Functional

Extended regularized functional:

f ∗ = arg min
f ∈Hk

{
1

l

l∑
i=1

V (xi , yi , f ) + γA‖f ‖2
k + γI‖f ‖2

I

}
,

where γA controls the complexity of the function in the ambient space
and γI controls the complexity of the function in the intrinsic
geometry of PX .

The additional regularizer should represent some penalty term that
reflects the intrinsic structure of PX .
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Introduction Laplacian SVM

Graph Laplacian

The manifold regularization term can be approximated using the
graph Laplacian associated with the data.

We construct an undirected, symmetric adjacency graph with
n = l + m nodes corresponding to the l labeled and m unlabeled
examples, with W = (Wij) being the edge weights.

Let f = (f (x1), . . . , f (xn))T , D = (Dij)n×n where

Dij =

{ ∑n
j=1 Wij i = j

0 i 6= j
,

and
L = D−W

is called the graph Laplacian.
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Introduction Laplacian SVM

Graph Laplacian

Consider this penalty measure:

1

2

n∑
i,j=1

(f (xi )− f (xj))2Wij

=
1

2

n∑
i,j=1

f (xi )
2Wij +

1

2

n∑
i,j=1

f (xj)
2Wij −

n∑
i,j=1

f (xi )f (xj)Wij

=
n∑

i=1

f (xi )
2Dii −

n∑
i,j=1

f (xi )f (xj)Wij

=
n∑

i,j=1

f (xi )f (xj)Dij −
n∑

i,j=1

f (xi )f (xj)Wij

=
n∑

i,j=1

f (xi )f (xj)(Dij −Wij) = fT (D−W)f = fTLf.

We use this measure to approximate ‖f ‖2
I .
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Introduction Laplacian SVM

Empirical Estimation of New Regularization Term

By incorporating the graph Laplacian, the optimization problem can
be expressed as:

f ∗ = arg min
f ∈Hk

{
1

l

l∑
i=1

V (xi , yi , f ) + γA‖f ‖2
k +

γI

(l + m)2
fTLf

}
.
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Introduction Laplacian SVM

Representer Theorem for Optimization Problem based on
Graph Laplacian

Representer Theorem for optimization functional approximated using
graph Laplacian:
The minimizer of the optimization problem above admits an
expansion of the following form:

f ∗(x) =
l+m∑
i=1

αik(xi , x)

in terms of both the labeled and unlabeled examples.
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Introduction Laplacian SVM

SVM

Optimization problem with hinge loss function:

min
f ∈Hk

{
1

l

l∑
i=1

(1− yi f (xi ))+ + γ‖f ‖2
k

}
,

where (1− yf (x))+ = max(0, 1− yf (x)) and yi ∈ {−1,+1}.

Optimal solution (from classical Representer Theorem):

f ∗(x) =
l∑

i=1

α∗i k(x , xi ).

An unregularized bias terms b is often added to this form.
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Introduction Laplacian SVM

LapSVM

Optimization problem:

min
f ∈Hk

{
1

l

l∑
i=1

(1− yi f (xi ))+ + γA‖f ‖2
k +

γI

(l + m)2
fTLf

}
.

Optimal solution (from new Representer Theorem):

f ∗(x) =
l+m∑
i=1

α∗i k(x , xi ).

An unregularized bias terms b is often added to this form.
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Introduction Laplacian SVM

LapSVM

Advantage:

LapSVM is among the very few graph-based SSL methods that can
support inductive learning or out-of-sample extension (as opposed to
transductive learning) in a principled way.

Disadvantage:

Like SVM, extension of LapSVM from two-class to multi-class
classification is not straightforward.
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Introduction Discriminant Analysis

Discriminant Analysis

Supervised dimensionality reduction:
Using label information to obtain a low-dimensional representation of
the data to facilitate the subsequent classification task (possibly using
a very simple classifier such as nearest neighbor (1-NN) classifier).

Linear methods:
Linear discriminant analysis (LDA) and variants

Nonlinear methods:
Quadratic discriminant analysis (QDA), kernel discriminant analysis
(KDA), etc.
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Introduction Discriminant Analysis

LDA/KDA versus SVM

LDA and KDA (kernel extension of LDA) have demonstrated
successes in many classification applications, with performance (esp.
for KDA) often comparable with that of SVM.

LDA/KDA works for multi-class classification in the same way as for
two-class classification.

Optimization problem of LDA/KDA is more straightforward than that
of SVM.

Small sample size (SSS) problem for LDA/KDA:
Within-class scatter matrix becomes singular when sample size is
smaller than feature dimensionality, e.g., face recognition, text
classification, microarray gene expression classification.
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Linear Discriminant Analysis
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Introduction Linear Discriminant Analysis

LDA Basics

Training set D = {x1, . . . , xn}, with xi ∈ RN .

D partitioned into C ≥ 2 disjoint classes Πi , with ni examples in Πi .

Between-class and within-class scatter matrices:

Sb =
C∑

k=1

nk(m̄k − m̄)(m̄k − m̄)T

Sw =
C∑

k=1

∑
xi∈Πk

(xi − m̄k)(xi − m̄k)T .

LDA finds optimal projection matrix W ∗:

W ∗ = arg max
W

trace((W TSwW )−1W TSbW ),

which can be computed from the eigenvectors of S−1
w Sb.
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Introduction Linear Discriminant Analysis

Optimal Solution for LDA

We use this alternative optimality criterion to find the (equivalent)
optimal solution:

W ∗ = arg max
W

trace((W TStW )−1W TSbW ),

where St = Sb + Sw is the total scatter matrix.

A relevant theorem [Fukunaga, 1991]:

Theorem

For W ∈ RN×(C−1),

max
W

trace((W TStW )−1W TSbW ) = trace(S−1
t Sb).
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Introduction Motivations for Our Work

Motivations

Our work may be seen as killing two birds with one stone.

Semi-supervised discriminant analysis (SSDA):
We alleviate the SSS problem of LDA by exploiting unlabeled data,
hence providing it with a semi-supervised extension.
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Previous Work

Previous Work on Semi-Supervised Discriminant Analysis

Like LDA, formulated as a generalized eigenvalue problem.

Using unlabeled data to define an additional regularizer.

SDA [Cai et al., ICCV 2007],
SSLDA [Song et al., PR 2008],
Semi-supervised LFDA [Sugiyama et al., PAKDD 2008],
SSDA [Zhang and Yeung, CVPR 2008]
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Semi-Supervised Discriminant Analysis via CCCP

Joint work with PhD student Yu Zhang
ECML PKDD 2008
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Semi-Supervised Discriminant Analysis via CCCP

Notations for SSL Problem

l labeled data points x1, . . . , xl ∈ RN from C classes.

m unlabeled data points xl+1, . . . , xl+m ∈ RN with unknown class
labels (usually l � m).

Training set has n = l + m examples in total.
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SSDACCCP
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Semi-Supervised Discriminant Analysis via CCCP SSDACCCP

Optimality Criterion for SSDACCCP

Inspired by TSVM [Joachims, 1999], we use unlabeled data to
maximize the optimality criterion of LDA.

From the theorem, the optimal criterion value of LDA is
trace(S−1

t Sb).

So we utilize unlabeled data to maximize trace(S−1
t Sb) via estimating

the class labels of the unlabeled data points.
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Semi-Supervised Discriminant Analysis via CCCP SSDACCCP

Optimality Criterion for SSDACCCP

Class indicator matrix A ∈ Rn×C with elements:

Aij =

{
1 if xi ∈ Πj

0 otherwise

Calculation of trace(S−1
t Sb) from A:

trace(S−1
t Sb) =

C∑
k=1

1

nk

(
AT

k −
nk

n
1T
n

)
S
(
Ak −

nk

n
1n

)
,

where Ak is kth column of A, S = DTS−1
t D, and D is data matrix.

Since the entries in A for the unlabeled data points are unknown, we
maximize trace(S−1

t Sb) w.r.t. A.
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Semi-Supervised Discriminant Analysis via CCCP SSDACCCP

Constrained Optimization Problem

max
A,Bk ,tk

C∑
k=1

BT
k SBk

tk

s.t. tk = AT
k 1n, k = 1, . . . ,C

Bk = Ak −
tk
n

1n, k = 1, . . . ,C

Aij =

{
1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ∈ {0, 1}, i = l+1, . . . , n, j = 1, . . . ,C

C∑
j=1

Aij = 1, i = l+1, . . . , n.

Dit-Yan Yeung (CSE, HKUST) SSDA MLA’08 44 / 65



Semi-Supervised Discriminant Analysis via CCCP SSDACCCP

Constrained Optimization Problem

max
A,Bk ,tk

C∑
k=1

BT
k SBk

tk

s.t. tk = AT
k 1n, k = 1, . . . ,C

Bk = Ak −
tk
n

1n, k = 1, . . . ,C

Aij =

{
1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ∈ {0, 1}, i = l+1, . . . , n, j = 1, . . . ,C

C∑
j=1

Aij = 1, i = l+1, . . . , n.

Dit-Yan Yeung (CSE, HKUST) SSDA MLA’08 44 / 65



Semi-Supervised Discriminant Analysis via CCCP SSDACCCP

Constrained Optimization Problem

max
A,Bk ,tk

C∑
k=1

BT
k SBk

tk

s.t. tk = AT
k 1n, k = 1, . . . ,C

Bk = Ak −
tk
n

1n, k = 1, . . . ,C

Aij =

{
1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ∈ {0, 1}, i = l+1, . . . , n, j = 1, . . . ,C

C∑
j=1

Aij = 1, i = l+1, . . . , n.

Dit-Yan Yeung (CSE, HKUST) SSDA MLA’08 44 / 65



Semi-Supervised Discriminant Analysis via CCCP SSDACCCP

Constrained Optimization Problem

max
A,Bk ,tk

C∑
k=1

BT
k SBk

tk

s.t. tk = AT
k 1n, k = 1, . . . ,C

Bk = Ak −
tk
n

1n, k = 1, . . . ,C

Aij =

{
1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ∈ {0, 1}, i = l+1, . . . , n, j = 1, . . . ,C

C∑
j=1

Aij = 1, i = l+1, . . . , n.

Dit-Yan Yeung (CSE, HKUST) SSDA MLA’08 44 / 65



Semi-Supervised Discriminant Analysis via CCCP SSDACCCP

Constrained Optimization Problem

max
A,Bk ,tk
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Bk = Ak −
tk
n

1n, k = 1, . . . ,C

Aij =

{
1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . ,C

C∑
j=1

Aij = 1, i = l+1, . . . , n.

Dit-Yan Yeung (CSE, HKUST) SSDA MLA’08 44 / 65



Semi-Supervised Discriminant Analysis via CCCP SSDACCCP

Constrained Concave-Convex Procedure (CCCP)

CCCP, closely related to difference of convex (DC) methods in
optimization, is used to solve this non-convex optimization problem.

Cost function J(θ) expressed as sum of convex and concave parts:

J(θ) = Jvex(θ) + Jcav(θ)

Each iteration of CCCP approximates Jcav(θ) by its tangent and
minimizes the resulting convex function.

Algorithm:

Initialize θ(0) with a best guess.
repeat

θ(p) = arg minθ
(
Jvex(θ) + J ′cav(θ(p−1)) · θ

)
until convergence of θ(p).
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Semi-Supervised Discriminant Analysis via CCCP SSDACCCP

Constrained Concave-Convex Procedure (CCCP)

From
θ(p) = arg min

θ

(
Jvex(θ) + J ′cav(θ(p−1)) · θ

)
we get

Jvex(θ(p))+J ′cav(θ(p−1))·θ(p) ≤ Jvex(θ(p−1))+J ′cav(θ(p−1))·θ(p−1). (1)

From the concavity of Jcav(θ) we get

Jcav(θ(p)) ≤ Jcav(θ(p−1)) + J ′cav(θ(p−1)) · (θ(p) − θ(p−1)). (2)

Summing (1) and (2), we can show that J(θ(p)) decreases
monotonically after each iteration:

J(θ(p)) ≤ J(θ(p−1)).

Still valid when θ is subject to constraints.
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Semi-Supervised Discriminant Analysis via CCCP SSDACCCP

Constrained Concave-Convex Procedure (CCCP)

Optimization problem in the (p+1)th iteration:

max
A,Bk ,tk

C∑
k=1

(
2(B

(p)
k )TS

t
(p)
k

Bk −
(B

(p)
k )TSB

(p)
k

(t
(p)
k )2

tk

)
s.t. tk = AT

k 1n, k = 1, . . . ,C

Bk = Ak −
tk
n

1n, k = 1, . . . ,C

Aij =

{
1 if xi ∈ Πj

0 otherwise i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . ,C

C∑
j=1

Aij = 1, i = l+1, . . . , n,

where B
(p)
k , t

(p)
k were obtained in the pth iteration.
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M-SSDACCCP
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Semi-Supervised Discriminant Analysis via CCCP M-SSDACCCP

Manifold Assumption for M-SSDACCCP

Manifold assumption:

i 
j 

⇒ A(i) ≈ A(j)

Given D = {x1, . . . , xn}, we construct a K -nearest neighbor graph
G = (V ,E ).

Each edge is assigned a weight wij :

wij =

{
exp

(
−‖xi−xj‖2

σiσj

)
if xi ∈ NK (xj) or xj ∈ NK (xi )

0 otherwise
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Semi-Supervised Discriminant Analysis via CCCP M-SSDACCCP

Optimization Problem for M-SSDACCCP

Optimization problem for M-SSDACCCP :

max
A,Bk ,tk

C∑
k=1

BT
k SBk

tk
− λ

∑n
i=1

∑n
j=i+1 wij‖A(i)− A(j)‖1

s.t. tk = AT
k 1n, k = 1, . . . ,C

Bk = Ak −
tk
n

1n, k = 1, . . . ,C

Aij =

{
1 if xi ∈ Πj

0 otherwise i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . ,C

C∑
j=1

Aij = 1, i = l+1, . . . , n,

This optimization problem can also be solved by CCCP.
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Augmenting Labeled Data Set with Unlabeled Data
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Semi-Supervised Discriminant Analysis via CCCP Augmenting Labeled Data Set with Unlabeled Data

Augmenting Labeled Data Set with Unlabeled Data

While solving the optimization problem, estimation of class labels for
the unlabeled data is simultaneously performed.

Not all the class labels can be estimated accurately.

We propose a selection scheme for selecting unlabeled data points
with reliably estimated class labels.
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Computational Considerations

Computation cost of SSDACCCP and M-SSDACCCP includes:

Performing LDA twice – O(N3) complexity
Solving the optimization problem using CCCP

The linear programming (LP) problem inside each iteration of CCCP
can be solved efficiently.

In our experiments, CCCP converges very fast in less than 10
iterations.
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Semi-Supervised Discriminant Analysis via CCCP Algorithm

Algorithm

Input: labeled data xi (i = 1, . . . , l), unlabeled data xi (i = l+1, . . . , n), K , θ, ε

Initialize A(0);

Initialize B
(0)
k and t

(0)
k based on A(0) for k = 1, . . . ,C ;

Construct the K -nearest neighbor graph;
p = 0;
Repeat

p = p + 1;
Solve the optimization problem of SSDACCCP or M-SSDACCCP ;

Update A(p), B
(p)
k and t

(p)
k using the result of the optimization problem;

Until ‖A(p) − A(p−1)‖F ≤ ε
Select the unlabeled data points with high confidence based on the threshold θ;
Augment the labeled data set and perform LDA to get W .
Output: transformation W
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Experiments

Experimental Setup

11 benchmark data sets:

8 UCI data sets
A brain-computer interface dataset (BCI)
Two image data sets (COIL and PIE)

For each data set, we randomly select q data points from each class
as labeled data and r points from each class as unlabeled data. The
remaining data form the test set.

For each partitioning, we perform 20 random splits and report the
mean and standard derivation over the 20 trials.
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Experiments

Comparison with Other Dimensionality Reduction Methods

Dimensionality reduction methods compared: PCA, PCA+LDA, SDA.

Overall performance:

{ SSDACCCP , M-SSDACCCP } ≥ { PCA, PCA+LDA, SDA }

Improvement is significant for diabetes, heart-statlog,
pendigits, vehicle and PIE.
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Experiments

SSDACCCP or M-SSDACCCP?

Data 
set 

Has 
manifold 
structure

? 

SSDACCCP 

M‐SSDACCCP 

yes 

no 
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Experiments

Effectiveness of Selection Method

Mean accuracy of label estimation for unlabeled data over 20 trials
before and after applying the selection method:

SSDACCCP (%) M-SSDACCCP (%)
Data set Before After Before After

diabetes 64.03 66.67 54.10 51.20
heart-statlog 72.27 72.62 55.25 66.70
ionosphere 69.05 87.51 74.10 82.07
hayes-roth 46.75 52.73 42.00 42.64
iris 75.42 93.39 91.42 95.06
mfeat-pixel 32.49 100.0 94.21 98.91
pendigits 75.31 86.08 88.92 94.02
vehicle 56.30 69.88 44.80 52.26
BCI 50.75 65.42 49.00 49.15
COIL 33.57 96.07 42.64 60.03
PIE 30.48 85.00 52.64 70.41
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Experiments

Comparison with Graph-Based SSL Methods

Graph-based SSL methods compared: LapSVM, LapRLS.

Same experimental settings as before.

Overall performance:

{ SSDACCCP , M-SSDACCCP } ≥ { LapSVM, LapRLS }

One advantage of SSDACCCP and M-SSDACCCP :
Same formulation and optimization procedure for two-class and
multi-class problems.
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Conclusion

Conclusion

In this work, we have proposed a semi-supervised extension to LDA,
which also allows it to alleviate the small sample size problem.

Possible future work:

Kernel extensions to deal with nonlinearity
Semi-supervised extensions of other dimensionality reduction methods.
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