Active Learning: Recent Advances Charles Ling PhD (Upenn), Professor University of Western Ontario, Canada (加拿大 西安大略大学) cling@csd.uwo.ca; cling.csd.uwo.ca Joint work with Jun Du et al KDD08, ICDM09, TKDE10, ECML10, ICDM10, ????11

Outline

- Introduction
- Active Learning with Generalized Queries (AGQ)
- Experimental Comparison
- Discussions
- Recent Advances
- Conclusions and Future Works

Introduction: Why

- Traditional ML: large training set; passive
- Human learning: small training set...
 - But we learn actively, in many ways...
 - ML: active: acquire missing values, new examples, ask for labels of unlabeled examples, ...
 - Reduce # of labelled examples significantly
- Which unlabeled examples to ask??
 - Correct labels provided by users or "Oracle"
 - More powerful than semi-supervised learning

Introduction: Previous Works

- Pool-based Active Learning (Tong & Koller 2002, Roy & Mccallum 2001; Baram, El-Yaniv, & Luz 2004)
 - Choose one with most uncertain predicted label
- Direct Query Construction (Ling & Du, KDD 2008)
 - Construct one with most uncertain predicted label
- Exponential speed-up proved for threshold concept
- On real data, speed-up is often small

Introduction – Limitations

- Previous works always ask specific queries
- Example: Predicting heart disease based on a patient dataset with 30 attributes
 - Query: For name="Jane", age="35", gender="female", weight="85 kg", blood pressure="160/90", temperature="98F", chest pain="no", and
 - Answer: Yes/No (for this specific patient).

Limitations of Specific Queries

- Many of the attributes may not be relevant;
 - Example: name, temperature, ... etc. are not relevant
 - Too many attribute confuse human experts;
- Labels returned are also specific (only for the specific queries).

Outline

- Introduction
- Active Learning with Generalized Queries (AGQ)
- Experimental Comparison
- Discussions
- Recent Advances
- Conclusions and Future Works

An Extension: Generalized Queries

- Active learners can ask generalized queries.
- Example: Query: "are people over 50 with chest pain likely to have heart disease?" (only 2 relevant attributes, age and chest pain)
- Advantages
 - More natural and relevant
 - One generalized query = many specific queries
 - Answer apply to all these examples
- Need to identify irrelevant features

Can Feature Selection Do It?

Feature Selection + Pool_AL < AGQ

Suppose the target is:

All attributes are relevant, thus FS could do nothing.

Generalized query for L6: [x1=0, x3=0, x5=0] ->?, should obtain certain answer from oracle.

Difficulties of Generalized Queries

- Answer from the oracle can often be uncertain.
 - Query : "are people over 50 with chest pain likely to have heart disease?" Yes with a 90% probability
 - Query: "are people over 50 likely to have heart disease?" Yes with a 60% probability
 - More general, more powerful, but more uncertain
- Answer could be inaccurate (90% or 92%?)
- How to ask good generalized queries based on limited info (small training set)?

Our Task...

Assuming oracle can answer GQ with prob label, design a robust active learner that attempts to ask few generalized queries (large speed-up)

End results:

- AGQ (Active learning with Generalized Queries)
 - Query: over 50 with chest pain [ICDM 2009]
- AGQ+ [IEEE TKDE 2010]
 - Query: age 50-60, mild or severe chest pain
- Applications in medical domain, text mining...
- More recent advances in AL

AGQ Process

Key Steps

- 1. Finding the Most Uncertain Example;
- 2. <u>Constructing the Generalized Query;</u>
- 3. Asking Generalized Queries to Oracle;
- 4. Updating the Training Dataset;

1. Finding Most Uncertain Example

- Build model on current training examples;
- Find most uncertain example
 - From a pool of unlabeled examples (pool-based)
 - Direct query construction (KDD 2008)
- Example: [1, 0, 1, 1, 0, 1] (from the pool)
 - Prediction: 52% for class 1; 48% for class 0;
 - Most uncertain: prob closest to 50%

2. Constructing Generalized Query

- Find irrelevant attributes in the chosen example (i.e., the most uncertain example)
- Example:
 - Input: the chosen example [1, 0, 1, 1, 0, 1]
 - Output: generalize to [1, *, 1, *, 0, 1]

How to Generalize?

- Main Idea
 - For all irrelevant attributes, examples with any combination of their values have same predicted label and probability.
- Example:
 - Given: x₁=[1, 0, 1, 1, 0, 1], and P(1|x₁) = 52%
 2nd and 4th attributes (red ones) are irrelevant

• Then:
$$P(1|x_2) = 52\%$$
, $x_2 = [1, 0, 1, 0, 0, 1]$;
 $P(1|x_3) = 52\%$, $x_3 = [1, 1, 1, 0, 0, 1]$;
 $P(1|x_4) = 52\%$, $x_4 = [1, 1, 1, 1, 0, 1]$;

Greedy Hill-Climbing Search

Given a small threshold p:

- For each attribute, construct a fix number of examples with different attribute values;
- Estimate the probability of these examples by the current classifier;
- Choose the attribute with minimum probability variance v; if v <p, add it to the subset of irrelevant attributes
- Repeat, until v > p

P represents how "conservative" the generalization would be.

In AGQ, p = 0.0001

(More details: see paper)

3. Asking Generalized Queries

- Asking generalized queries to the oracle, and obtain an answer with probability.
- If generalized queries are "conservative", answers should be certain
- On UCI datasets, we first construct the "target concept" on the whole datasets to simulate the oracle
- Example:
 - Query: How to classify [1, *, 1, *, 0, 1]?
 - Answer: 90% for positive

4. Updating Training Set

- Update training set, according to the generalized queries and probability answers
- Example:
 - Given: [1, *, 1, *, 0, 1]; 90% for 1 (10% for 0)
 - Add four specific examples into training set, with probability labels (90% for 1 and 10% for 0)

[1, 0, 1, 0, 0, 1], [1, 0, 1, 1, 0, 1],

[1, 1, 1, 0, 0, 1], [1, 1, 1, 1, 0, 1].

• Limit the number of examples added

Outline

- Introduction
- Active Learning with Generalized Queries (AGQ)
- Experimental Comparison
- Discussions
- Recent Advances
- Conclusions and Future Works

Artificial Data

Target:

Comparison:

5 relevant + 5 irrelevant att.

	AGQ	Pool
Query 1	[1, 1, 1, 0, *, *, *, *, *, *, *]	[1, 1, 1, 0, 1, 1, 1, 1, 0, 0]
Classified by Leaf(ves)	L2	L2
Ideal Query	[*, 1, 1, 0, *, *, *, *, *, *, *]	[*, 1, 1, 0, *, *, *, *, *, *]
Answer	0, 100%	0
No. of Examples	10	1
Error Rate	0.18	0.27
Query 2	[0, *, 0, 1, *, *, *, *, *, *]	[1, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Classified by Leaf(ves)	L5, L6	L3
Ideal Query	-	[*, 0, 1, *, *, *, *, *, *, *]
Answer	0, 54%	0
No. of Examples	10	1
Error Rate	0.21	0.22
Query 3	[0, 1, 0, 1, 1, 0, 0, *, 1, *]	[1, 1, 1, 1, 0, 1, 1, 1, 0, 1]
Classified by Leaf(ves)	L5	L1
Ideal Query	[0, *, 0, *, 1, *, *, *, *, *]	[*, 1, 1, 1, *, *, *, *, *, *]
Answer	1, 100%	1
No. of Examples	8	1
Error Rate	0.16	0.26
Query 4	[0, 1, 0, 1, 0, 1, *, *, 0, *]	[1, 0, 1, 1, 0, 1, 0, 0, 1, 1]
Classified by Leaf(ves)	L6	L3
Ideal Query	[0, *, 0, *, 0, *, *, *, *, *]	[*, 0, 1, *, *, *, *, *, *, *]
Error Rate	0, 100%	0
No. of Examples	8	1
Error Rate	0.17	0.26
Query 5	[1, *, 0, *, 0, *, 1, *, *, *]	[1, 1, 1, 0, 0, 1, 0, 0, 1, 1]
Classified by Leaf(ves)	L4	L2
Ideal Query	[1, *, 0, *, *, *, *, *, *, *, *]	[*, 1, 1, 0 <i>, *, *, *, *, *, *,</i> *]
Answer	1, 100%	0
No. of Examples	10	1
Error Rate	0.13	0.2

UCI Data

14 UCI datasets

Comparison on 1 typical data

Dataset	# Att	# Inst	Class Dist.	Train
breast- cancer	9	277	196/81	1/5
breast-w	9	699	458/241	1/10
colic	22	368	232/136	1/5
credit-a	15	690	307/383	1/20
credit-g	20	1000	700/300	1/100
diabetes	8	768	500/268	1/10

Statistics on UCI Data

Dataset	# Don't-care Att.	#. Inst	Certainty of Oracle	Iteration of "Pool"	Iteration of AGQ	% Reduction of Iteration	AGQ (w/t/l)
breast- cancer	2.7 (30%)	14.54	95%	35	18	49%	W
breast-w	5.35 (59%)	32.31	87%	18	18	0%	Т
colic	13.15 (60%)	35.68	91%	15	8	47%	W
credit-a	6.38 (43%)	16.43	88%	12	5	58%	W
credit-g	8.54 (43%)	4.97	87%	50	12	76%	W
diabetes	3.02 (38%)	27.31	89%	50	16	68%	W
heart- statlog	5.92 (46%)	12.52	89%	50	25	50%	W
Avg.	12.53 (51.36%)	16.49	90.21%	35.14	24.21	36%	9/4/1

Outline

- Introduction
- Active Learning with Generalized Queries (AGQ)
- Experimental Comparison
- Discussions (<u>skip</u>)
- Recent Advances
- Conclusions and Future Works

Outline

- Introduction
- Active Learning with Generalized Queries (AGQ)
- Experimental Comparison
- Discussions
- Recent Advances
- Conclusions and Future Works

Recent Advances in AL (Skip)

- A New Paradigm of Active Learning
- Hierarchical Classification for Next Search Engine
- Making reasonable assumptions on oracle
 - Cost-sensitive oracle
 - Ambiguous oracle
 - Oracle with explanation

A New Paradigm of Active Learning

- Most previous works of AL (pool-based, AGQ, ...) are based on asking near-boundary examples
- In scientific discovery, scientists are active learners... They do perform near-boundary exp
- What else?
- When anomaly (surprise) is found, they "repeat" experiments to confirm or disapprove it!

The Most Famous Failed Exp

- Exp
 Newtonian physics predicted that the speed of light will change in the "aether wind"
- In 1887, Michelson–Morley experiment

For noisy, probabilistic concepts, and unexplored space in complex concepts

AL in Hierarchical Classification For the Next Search Engines

Current: Flat list, only limited

structure

Web	Images	Videos	News	Maps	More	Sympat	tico / MSN	Windows	s Live		
		5	Sec 1		1						
			brain						2	2	
	A CONTRACTOR OF	Statement of the	📀 sho	ow all 🔘	only from	Canada					
ALL F	RESULTS		ALL R	ESULTS					1-10 of 72,3	300,000 resu	lts
Image	s		Still	Waiting	for an I	MRI? - ww	w.stioseph	mri.com		SI	001
			Ottaw	a-Gatine	eau's leac	ling private	MRI clinic.	Quick appo	intments		
RELA	TED SEARC	HES									
Brain	Teasers		Brai	n - Wi	kipedia	, the free	encyclo	pedia			
Brain ⁻	Tumor		The b anima	<mark>rain</mark> is t als. Som	he center e primitiv	r of the nerv e animals s	ous system uch as jelly	n in all verte ⁄fish and sta	brate, and arfish have	most inverte a decentraliz	bra zec
Brain	Cancer		nervol	.IS			<u>ೆ 1</u>				
Brain	Games		Macroscopic structure - Microscopic structure - Development - Functions on wilkingdia pro/wilki/Brain - cached page								
Pictur	es Human E	Brain	en.wir	vipeula.u	II Y WIKILD		<u>eu paye</u>				
Huma	n Brain		Hum	an bra	l <mark>in</mark> - Wi	ikipedia, t	the free e	encyclope	edia		
Parts	of The Brair	1	The h	uman br	ain is the	e center of t	the human i	nervous sys	tem and is	a highly cor	mþ
Brain	Aneurysm		It has as	the sam	ne genera	il structure :	as the brail	ns of other i	mammals,	but is over fi	ve
			Struct	ture · So	urces of	information	- Language	- Patholog	ý		
SEAR	CH HISTOR	Y	en.wir	upeula.u	ng/wiku/11	unian_uiai	I Launeu	paye			

Google Web Images	Groups News Maps more » Search Advanced Search Preferences	1					
Search: 💿 the	web 🔘 pages from Canada						
Web Results 1 - 10 of about 64,100,000 for improve brain. (0.17 seconds)							
Topics: All	Regions: World Site	Type: All 🕨					
Arts (2.1 billion)	Results 1 - 10 of about 64,100	0,000 for improve brain. (0.17 seconds)					
Business & Finance (1b) Computers & Internet (3b)	memory : improve your memory bry with our cognitive training, cognitive test. work on your memory and memory/ brain-improve -memory.html - 13k -	Sponsored Links Brain Power Software Improve Your Mind With Your PC					
<u>Games (2b)</u> Health (1b)	Board Games (2m) ► Wii Games (1m) ► ress is an	Powerful New Software Is Guaranteed www.Subliminal-Power.com					
Home (2b)	Xbox Games (2m) ► ^{72k} -	Featured by CBS, MTV & more www.BrainQuicken.com					
Recreation (3b)	PC Games (2m) ► t	Improve your brain power New system helps you learn faster & remember more. Book/ebook					
Science/Eng. (1b) ► Shopping (3b) ►	in - Features e first is to raise your arousal levels. The	Hypnosis Downloads Download a state of the art self					
Society (2b)	e neurotransmitters nan/mg18625011.900 - 75k -	hypnosis session now. Affiliate. www.Netfreemail.com					
Sports (3b)	the Remote Arehart-Treichel	Find Out How To Keep Your Brain					
To Improve Brain Activity, Put Down th	e Remote. Joan Arehart-Treichel. Even if	Active & Improve Your Memory!					
e		internet					

.

Amazon.com: Big Brain Academy: Wii Degree: Video Games 😒 🔍

The **Wii** sequel to Big **Brain** Academy for Nintendo DS includes three multiplayer modes for up to eight players. Players also can exchange student-record books ... www.amazon.com > Video Games > Wii > Puzzle - Cached - Similar

Big Brain Academy: Wii Degree - Wikipedia, the free encyclopedia 😭 🔍

Big Brain Academy: Wii Degree includes a single player mode whereby the player uses a brain to effectively answer questions correctly. The game also ... en.wikipedia.org/wiki/Big_Brain_Academy:_Wii_Degree - Cached

Big Brain Academy: Wii Degree for Nintendo Wii | EBGames 😭 🔍 EBGames: Buy Big Brain Academy: Wii Degree, Nintendo of America, Nintendo Wii, Find release dates, customer reviews, previews and screenshots. www.ebgames.com/Catalog/ProductDetails.aspx?product_id... - Cached - Similar

Big Brain Academy: Wii Degree Video Game | Reviews, Trailers ... 🛱 Q View Big Brain Academy: Wii Degree video game trailers, exclusive features, and online reviews. View exclusive interviews, actual Big Brain Academy: Wii ... www.gametrailers.com/game/big-brain-academy-wii-degree/3424 - Cached Integrating search and browsing together

- Search alone: filters left at top level ("all pages")
- Browsing alone: search keyword left blank
- Search within browse; browse then search

Multi-label, Multi-instance Hierarchical Classification with Active Learning

Outline

- Introduction
- Active Learning with Generalized Queries (AGQ)
- Experimental Comparison
- Discussions
- Recent Advances
- Conclusions and Future Works

Conclusions

- Active Learning can be very powerful
- Many different ways to be "active"
 - Generalized queries reduces queries significantly
 - Different assumptions on oracle
 - Cost-sensitive, ambiguous, with explanation, ...
 - Anomaly-based AL (vs boundary-based AL)
 -
- Widespread applications (search engines, text, ...)

Current & Future Works

- Theoretical Guarantee
 - Some results already
- Active learning in human and machines
- Real-World Applications

Thanks for Active Listening!