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How Search Works
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Three Important Processes

• Retrieval

– Finding documents from inverted index

• Matching

– Calculating relevance score between query and 
document pair

• Ranking

– Ranking documents based on not only relevance 
scores but also importance scores, etc



Key Factor for Search: Matching between 
Query and Document
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Matching between Heterogeneous 
Data is Everywhere

• Matching between languages (translation)

• Matching between text and image (image annotation)

• Matching between people (dating)

• Matching between user and item (collaborative filtering)



IR Models



Vector Space Model
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Probabilistic Model
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Okapi or BM25
(Robertson and Walker 1994)
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Language Mode 
(Ponte and Croft 1998)
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Term Mismatch = Main Challenge in Search



Examples of Term Mismatch

• Query  document

• pool schedule  swimming pool schedule

• seattle best hotel  seattle best hotels

• natural logarithm transformation 
logarithm tranformation

• china kong china hong kong

• why are windows so expensive  why are 
macs so expensive



Different Queries Can Represent Same Intent 
“Distance between Sun and Earth”

• distance from earth to the sun
• distance from sun to earth
• distance from sun to the earth
• distance from the earth to the sun
• distance from the sun to earth
• distance from the sun to the earth
• distance of earth from sun
• distance of earth from the sun
• distance of earth to sun
• distance of earth to the sun
• distance of sun from earth
• distance of sun from the earth
• distance of sun to earth
• distance of the earth from the sun
• distance of the earth to the sun
• distance of the sun from earth
• distance of the sun from the earth
• distance of the sun to earth
• distance of the sun to the earth
• distance sun
• distance sun and earth
• distance sun earth
• distance sun from earth
• distance sun to earth
• distance to sun from earth
• distance to the sun from earth
• earth and sun distance

• "how far" earth sun

• "how far" sun

• "how far" sun earth

• average distance earth sun

• average distance from earth to sun

• average distance from the earth to the sun

• distance between earth & sun

• distance between earth and sun

• distance between earth and the sun

• distance between earth sun

• distance between sun and earth

• distance between the earth and sun

• distance between the earth and the sun

• distance between the sun and earth

• distance between the sun and the earth

• distance earth and sun

• distance earth from sun

• distance earth is from the sun

• distance earth sun

• distance earth to sun

• distance earth to the sun

• distance from earth to sun

• distance from earth to the sun

• distance from sun to earth

• distance from sun to the earth

• distance from the earth to the sun

• distance from the sun to earth

• how far away is the sun from earth
• how far away is the sun from the 

earth
• how far earth from sun
• how far earth is from the sun
• how far earth sun
• how far from earth is the sun
• how far from earth to sun
• how far from the earth to the sun
• how far from the sun is earth
• how far from the sun is the earth
• how far is earth away from the sun
• how far is earth from sun
• how far is earth from the sun
• how far is earth to the sun
• how far is it from earth to the sun
• how far is it from the earth to the sun
• how far is sun from earth
• how far is the earth away from the 

sun
• how far is the earth from sun
• how far is the earth from the sun
• how far is the earth to the sun
• how far is the sun
• how far is the sun away from earth
• how far is the sun away from the 

earth
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Different Queries Can Represent Same Intent 
“Youtube”

• yutube yuotube yuo tube
• ytube youtubr yu tube
• youtubo youtuber youtubecom
• youtube om youtube music videos youtube videos
• youtube youtube com youtube co
• youtub com              you tube music videos         yout tube
• youtub you tube com yourtube your tube
• you tube                   you tub you tube video clips
• you tube videos www you tube com wwww youtube com
• www youtube www youtube com www youtube co
• yotube www you tube www utube com
• ww youtube com     www utube www u tube
• utube videos             utube com utube
• u tube com utub u tube videos
• u tube                         my tube toutube
• outube our tube toutube



Matching between Two Worlds

IntentContent



Problems to be Addressed



Problems to be Addressed

1. Is there unified and general framework for IR 
models (matching models)?

2. How to make extensions of IR models

3. How to make the IR models robust (deal with 
mismatch) by learning?

4. Is it possible to directly learn a matching 
function given training data?



Similarity Learning for 
Information Retrieval

Joint work with Wei Wu and Jun Xu



1. Generic IR Model as 
Asymmetric Kernel



Asymmetric Kernel



Kernel vs Asymmetric Kernel
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IR Models are Asymmetric Kernels



IR Models as Asymmetric Kernels
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Open Questions on Asymmetric 
Kernels

• Sufficient and necessary condition

• Counterpart of Mercer’s theorem

• What function class should work for matching 
in search



2. Extension of IR Models as 
Asymmetric Kernels



Relevance beyond Unigram

machine learning book
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Extension of IR models



Experimental Results

Ranking accuracies on web search data Kernel model with different term dependences
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Experimental Results

Ranking accuracies on OHSUMED Ranking accuracies on AP
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3. Learning of Robust IR Models 
as Asymmetric Kernels



Matching = Subset to Subset Matching 
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Asymmetric Kernel Learning
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Asymmetric Kernel Learning Using Kernel Methods



Learning Robust BM25



Mapping to Space of Query Document Pairs
- KNN in New Space

Query space
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Experimental Results



General Principles for Constructing HAK



4. Learning of Matching Function



Learning Similarity Function between 
Objects in Two Spaces
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Keywords and Images Represented in 
Same Space



Problem Formulation



Our Solution
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Thank You!


