

Learning to Rank on Large-scale Graphs with Rich Metadata

Tie-Yan Liu

Microsoft Research Asia

Outline

- Graph Ranking
- PageRank: graph structure
- BrowseRank: + rich metadata
- Semi-supervised PageRank: + supervision
- Summary

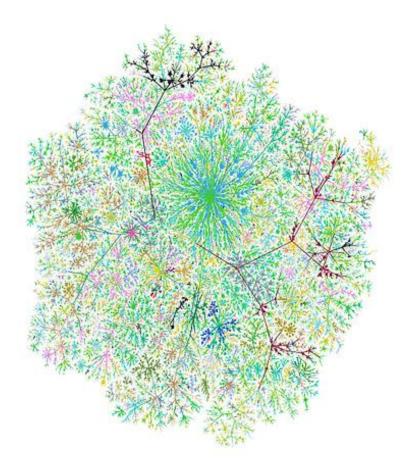
Graph Ranking

Graph Ranking

- Problem Definition
 - Given a graph G = {V, E}, where $v_i \in V(i = 1, ..., N)$ represents the i-th node and $e_{i,j} \in E$ (i, j = 1, ..., N)represents the edge between the i-th and the j-th node,
 - Rank the nodes according to a certain criterion, such as popularity and important.
- Wide Applications
 - Web page ranking, entity ranking in social network, expert finding, ...

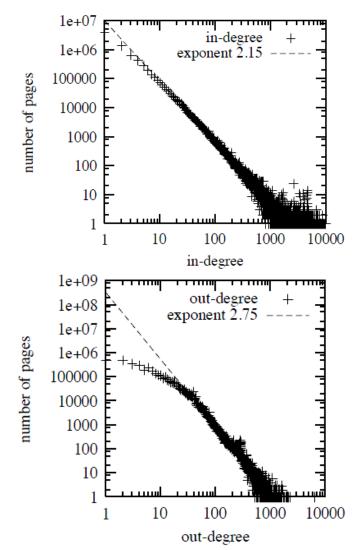
Example: Ranking on Web Graph

- Web Graph
 - Web pages all over the world are connected with each other through hyperlinks.
 - The innovation of hypertext changes the world!

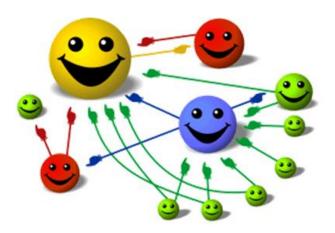


Example: Ranking on Web Graph

- A scale-free network
 - Preferential attachment
 - Pages tend to link to important pages
 - Links usually mean recommendation or endorsement



PageRank



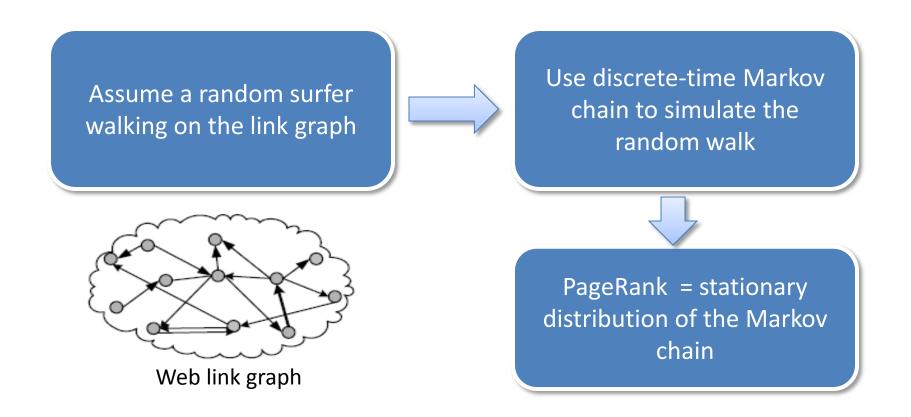
The PageRank Algorithm

 PageRank of a web page is proportional to the PageRank of its parents, but inversely proportional to their out-degrees.

•
$$R(u) = d + (1-d) \sum_{v \in B_u} \frac{R(v)}{N_v}$$

• Well motivated by *preferential attachment*.

A Markov Chain Interpretation



Impact of PageRank

- A key technology of Google.
- Although simple, it brings revolution to Web search!

Beyond PageRank

- Beyond graph structure, we usually have other useful information in the graph
 - Metadata on the nodes and edges
 - Supervision on part of the nodes
- Can we leverage such information and improve the accuracy of graph ranking?

Beyond PageRank

BrowseRank

Consider node and edge metadata

• Semi-supervised PageRank

- Further consider the supervision

网站排名投票 VOTE! Browse Rank live.com 正正正 pace. Com 正正正下下 iontabe . com IF IF Browse Rank TETET 点击量 Co-work with Yuting Liu, Bin Gao, Shuyuan 留时间 公认好站 **Staying Time** He, Zhiming Ma, and Hang Li. **Green Traffic**

Web Users 网络用户

Motivation: Problems with PageRank

- Voted by Web content creators but not Web users
- Inappropriate assumptions on Web surfer behavior

Random Surfer Behavior

Choosing next page from outlinks in a uniformly random manner.

Randomly resetting to any page on the Web with a uniform probability.

Staying at each page for a unit period of time.

Motivation: Problems with PageRank

- Voted by Web content creators but not Web users
- Inappropriate assumptions on Web surfer behavior

Random Surfer Behavior	Real User Behavior
Choosing next page from outlinks in a uniformly random manner.	Some hyperlinks are popular, and some are never visited.
Randomly resetting to any page on the Web with a uniform probability.	Search engine pages, bookmarks, and famous pages have higher reset probabilities
Staying at each page for a unit period of time.	Spending different periods of time on different pages.

Leveraging User Behavior Data

Not simply a search shortcutRecord users' behavior in IE

Search engine toolbar

<User Hash, URL, Time Stamp, Type, ... > Natural session segmentation

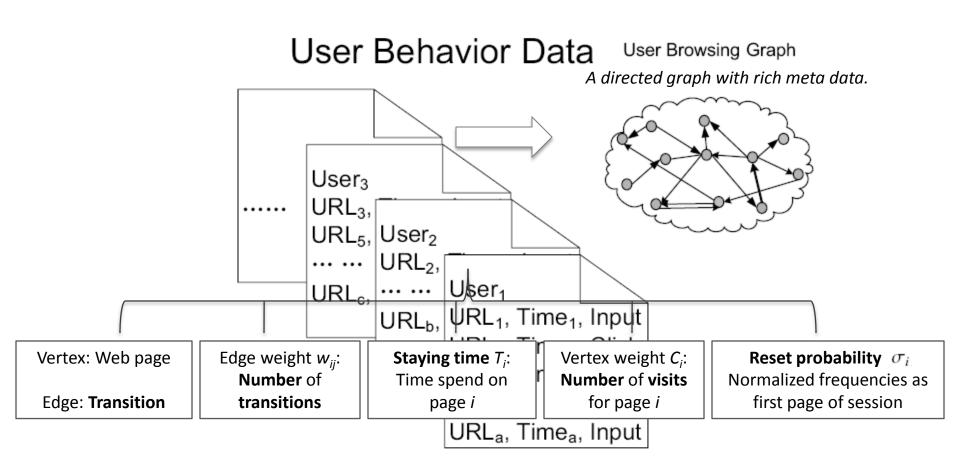
Type = 1: user inputs a URL directly, start of a session

Type = 0: user clicks on an existing hyperlink to get to this URL.

🔗 新闻中心首页_新浪网 - Windows Internet Ex	plorer					
🕒 🕞 🔹 🙋 http://www.sina.com.cn/						√ 4
ile Edit View Favorites Tools Help						
Search web			₽ • • 🖾	💌 📀 💌 🔆 Favori	tes 🔻 🃢 🔻 🛃 Ma	aps 🔻 😱 🔞 👻
😭 🍫 🙋 新闻中心首页_新浪网						
	通行证 登录名	密码	免费邮箱 ▼ 🗿	绿 忘记密码 免费邮箱	i企业邮箱 爱问新闻搜	室 请输关键词 援
	sina.com.cn <u>400位热门明星積彩視頻</u> 上网新起点新哀点点通	1000000000000000000000000000000000000	财经 娱乐 宽频 科技 音乐 T V 手机 乐库 理财 数码 读书 家电	女性 房产 旅游 育儿 家居 法治 饮食 汽车 高考 健康 F1 商城	游戏 军事 论 坛 星座 上海 圏 子 教育 广东 高尔夫 VC 搜索 iGane	企业 短信 交友 城市 彩谷 图铃 黄页 彩信 音悦() 分类 聊天 电台
	<u> 润积水尚 新品问世</u> 世	醫源暨 水景联排	回在CBD 我住别墅	維多莉亚現房发售	歌华大厦现房租售	<u>独栋总部升级了!</u> 宣武新盘 茗筑登场

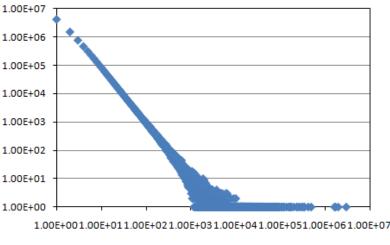
Toolbar Data

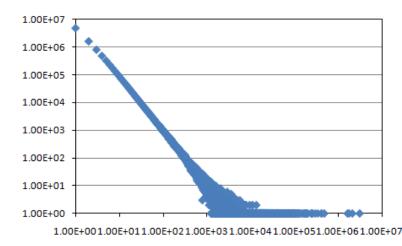
User Browsing Graph



User Browsing Graph

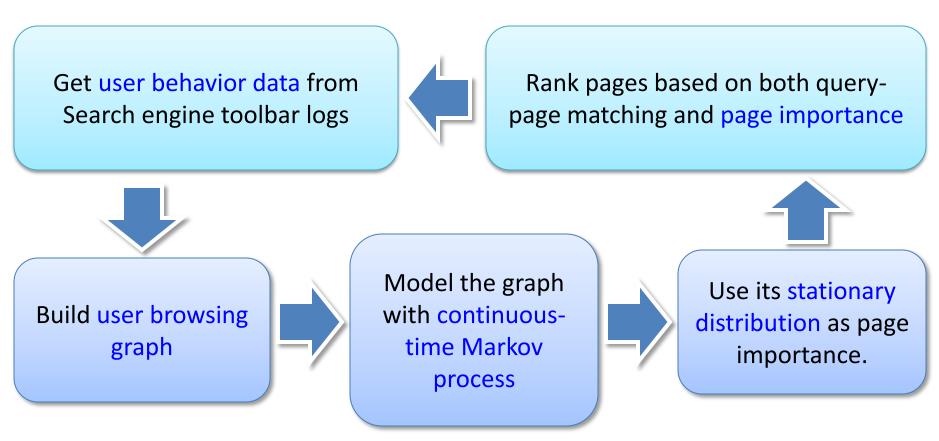
- Another scale-free network
 - Real users tend to visit important pages frequently
 - Web masters and web users perform differently, but generate similar complex networks.





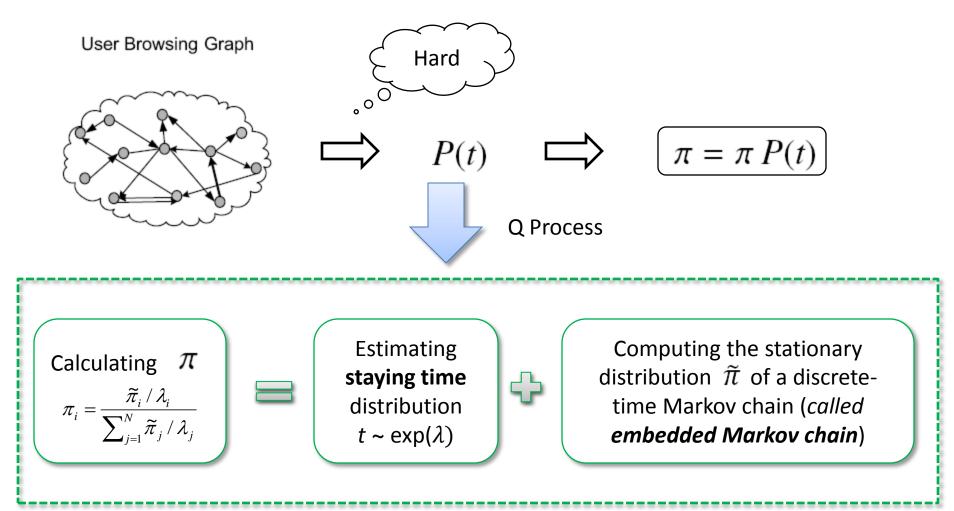
Tie-Yan Liu @ MLA 2010, Nanjing.

BrowseRank

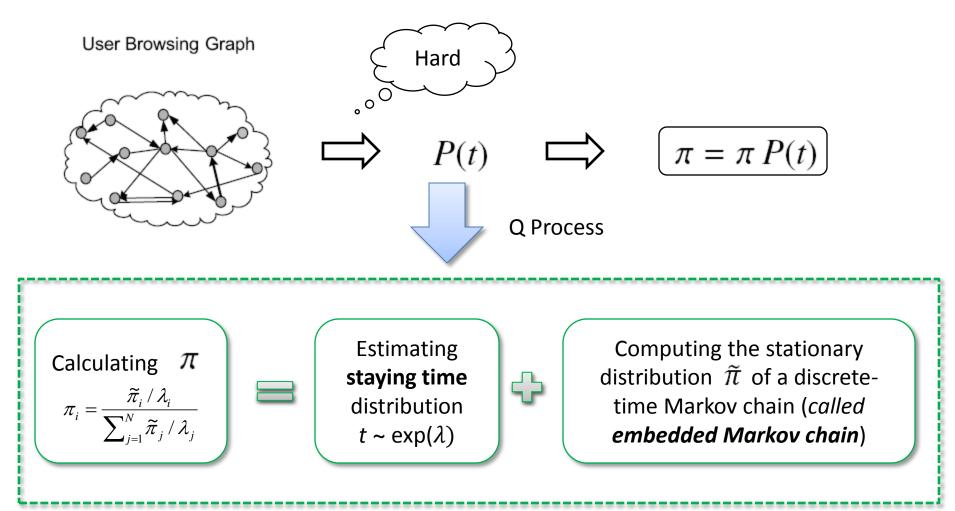


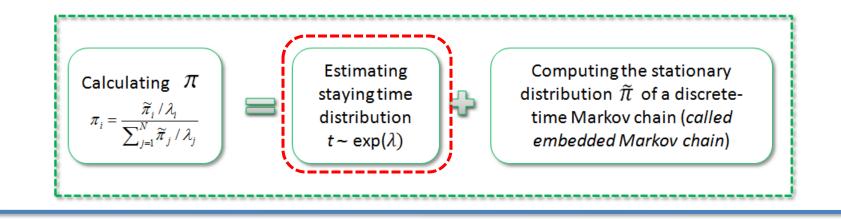
Conventional random walk model cannot be used when there is staying time information

Continuous-time Markov Model

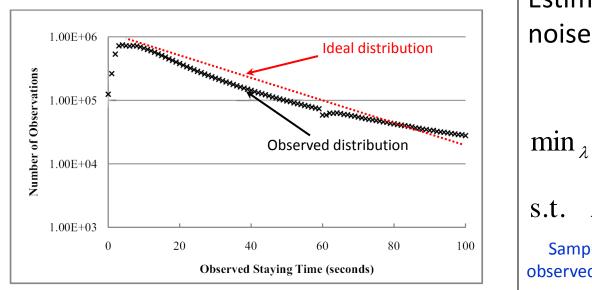


Continuous-time Markov Model

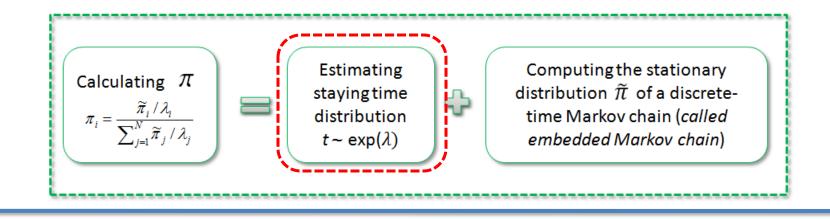




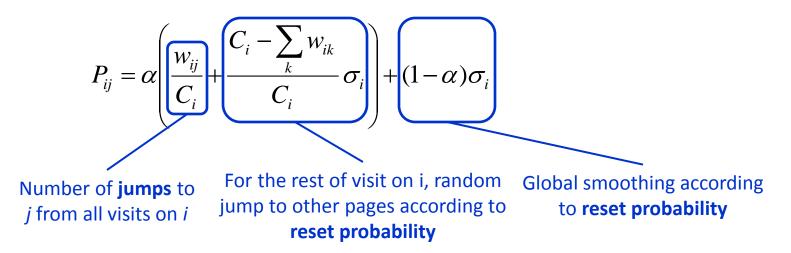
In theory, staying time is governed by an exponential distribution — In practice, it is NOT!



Estimation with an additive noise model: $Z = t + u \quad (u \sim \chi^2)$ $\min_{\lambda} \left((\overline{Z} - \frac{1}{\lambda}) - \frac{1}{2} (S^2 - \frac{1}{\lambda^2}) \right)^2$ s.t. $\lambda > 0$. Sample mean of observed staying time Sample variance of observed staying time



• Estimate transition probability matrix P of EMC.



• Compute its stationary distribution: $\tilde{\pi} = \tilde{\pi} P$.

Results: Top-Ranked Sites

No.	PageRank	BrowseRank	
1	adobe.com	myspace.com	
2	passport.com	msn.com	
3	msn.com	yahoo.com	
4	microsoft.com	youtube.com	
5	yahoo.com	live.com	
6	google.com	facebook.com	Web 2.0 websites
7	mapquest.com	google.com	
8	miibeian.gov.cn	ebay.com	
9	w3.org	hi5.com	
10	godaddy.com	bebo.com	

Web 2.0 sites are ranked high:

Websites are viewed as important if users pay a lot of visits to, spend much time on, and create rich content for them.

	18	paypal.com	wikipedia.org	
	19	aol.com	pogo.com	53 million sessions
11/6/2010	20	blogger.com @ M	photobucket.com	24

Results: Anti-Spam

_	BrowseRank	PageRank	Number of Websites	Bucket No.
	0	0	15	1
	> 1	2	148	2
	4	9	720	3
Number o	18	22	2231	4
spam web	39	30	5610	5
in each bu	88	58	12600	6
	87	90	25620	7

Existing spam techniques can hardly spam BrowseRank, and intuitively, BrowseRank is also robust to new spam technologies:

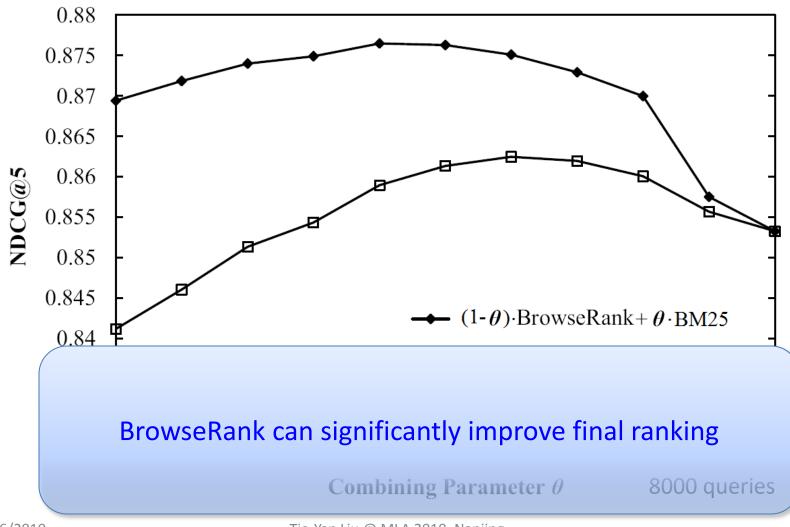
It is more difficult (and costly) to cheat real Web users

than to cheat search engines. 463

53 million sessions

15

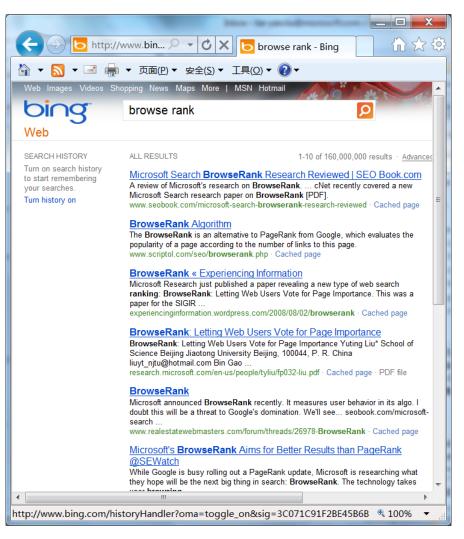
Results: Final Relevance Ranking



Tie-Yan Liu @ MLA 2010, Nanjing.

Impact of BrowseRank

- Regarded as a breakthrough in Web search after PageRank by much of the Internet media.
- Awarded the SIGIR
 2008 Best Student
 Paper.



Generalizing Staying Time

- Staying time \rightarrow Node utility
- Node utility: average value that the node gives to the surfer in a single visit
 - In this way, the model can incorporate more information.
 - The node utility may depend on previous visits, and thus needs more advanced stochastic models (e.g., Markov skeleton process @ CIKM'09).

Semi-Supervised PageRank

Co-work with Bin Gao, Wei Wei, Taifeng Wang, and Hang Li.

Supervision

- In addition to the metadata on nodes and edges, sometimes we can also obtain supervision
 - User click-through and page views
 - Known high-quality websites
 - Known spam websites
 - Human editorial information on website rating

Challenges

- Can we
 - Make good use of both web graph structure and rich metadata?
 - Effectively incorporate supervision?
 - Avoid over-fitting on small training set?
 - Handle very large scale graphs during the learning process?

Existing Work

- LiftHITS
 - Learning to Create Customized Authority Lists (Huan, David, Andrew, ICML'00)
- Adaptive PageRank
 - Adaptive ranking of Web pages (Tsoi, Morini, Scarselli, Hagenbuchner, and Maggini, WWW'03)
- NetRank
 - Do not use node features or edge features .
 - Cannot scale-up due to complex computation like matrix inversion, pseudo matrix inversion, and successive matrix multiplications.

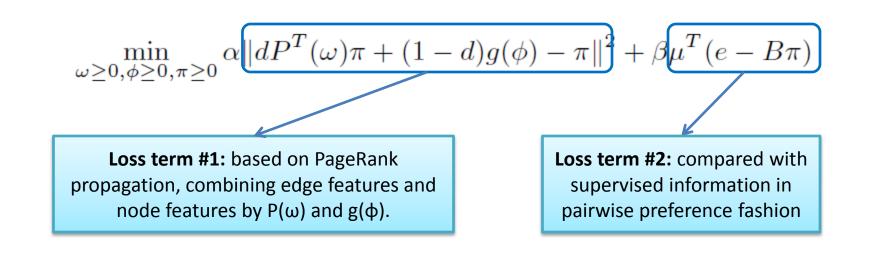
Our Proposal

- Define the loss function
 - According to the Markov random walk on the graph
 - Incorporate edge features into the transition probability of the Markov process, and incorporate node features to its reset probability
 - According to the difference between the ranking results given by the Markov model and the supervision

Notations

Edge features: $X = \{x_{ij}\}$	$x_{ij} = (x_{ij1}, x_{ij2}, \cdots, x_{ijl})^T$
Node features: $Y = \{y_i\}$	$y_i = (y_{i1}, y_{i2}, \cdots, y_{ih})^T$
Edge parameter vector:	ω
Node parameter vector:	ϕ
Page importance score:	π
Link graph:	${\cal G}$
Supervision matrix:	B
Weight vector for supervision	ns: μ

Optimization Problem



$$p_{ij}(\omega) = \begin{cases} \frac{\sum_k \omega_k x_{ijk}}{\sum_j \sum_k \omega_k x_{ijk}}, & \text{if there is an edge from } i \text{ to } j \\ 0, & \text{otherwise.} \end{cases}$$

$$g_i(\phi) = \phi^T y_i$$

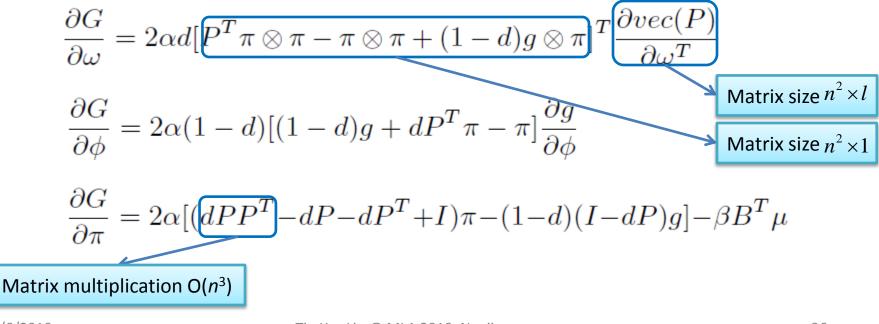
Tie-Yan Liu @ MLA 2010, Nanjing.

First-Order Optimization

Denote

$$G(\omega, \phi, \pi) = \alpha \| dP^{T}(\omega)\pi + (1 - d)g(\phi) - \pi \|^{2} + \beta \mu^{T}(e - B\pi)$$

Derivatives



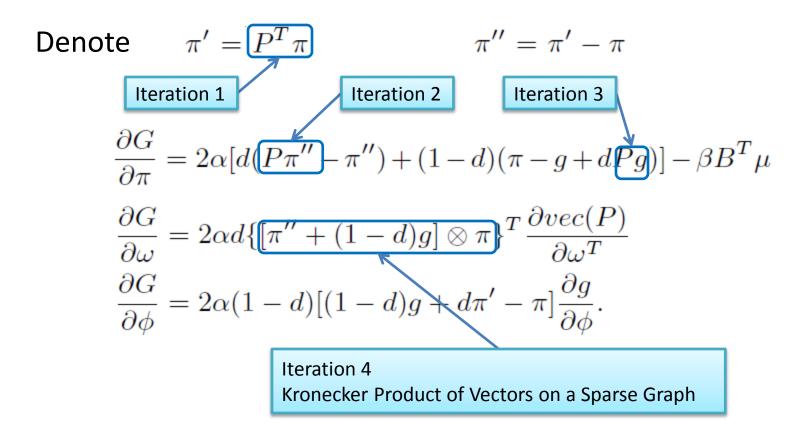
Tie-Yan Liu @ MLA 2010, Nanjing.

First-Order Optimization: Details



$O(n^3+n^2l)$ seems very difficult to scale up to web scale!

Solve the Problem in Linear Time



Solved with only four iterations of propagation by O(ml+n)

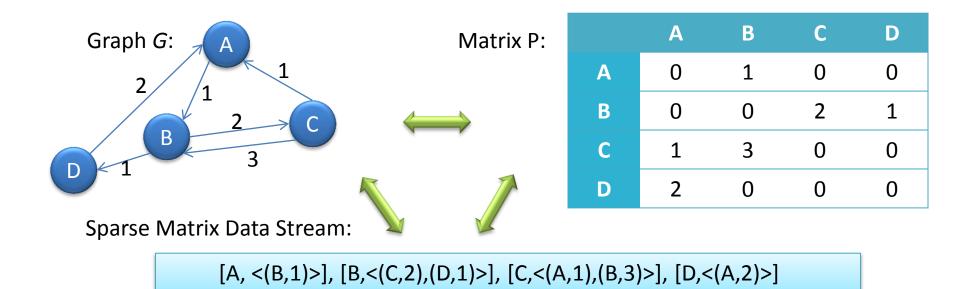
Map-Reduce Logics

Matrix-Vector Multiplication

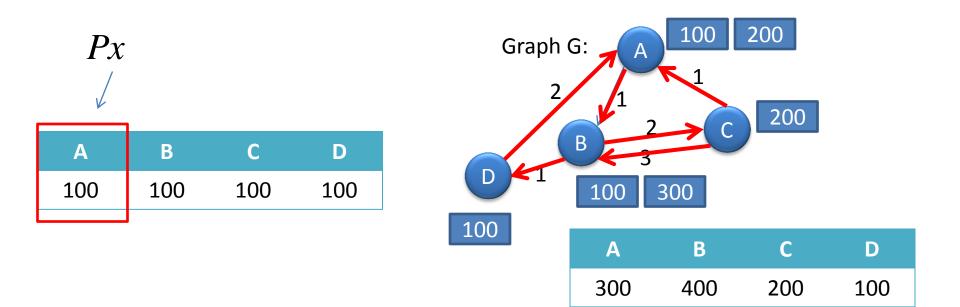
 $\pi' = P^T \pi \quad \longleftarrow \quad \pi'_i = \sum_j p_{ji} \pi_j$

- Map: map < i, j, p_{ji} > on i such that tuples with the same i are shuffled to the same machine in the form of < i, (j, p_{ji}) >.
- Reduce: take $\langle i, (j, p_{ji}) \rangle$ and calculate $\langle i, \sum_j p_{ji} \pi_j \rangle$ and then emit $\pi'_i, \pi'_i = \sum_j p_{ji} \pi_j$.
- Kronecker Product of Vectors on a Sparse Graph $z = x \otimes y$
 - Map: map $\langle i, x_i \rangle$ on *i* such that tuples with the same *i* are shuffled to the same machine.
 - Reduce: take $\langle i, x_i \rangle$ and calculate $\langle i, x_i y_j \rangle$ only if there is an edge from page *i* to page *j*, and then emit $z_{(i-1)n+j} = x_i y_j$; otherwise, $z_{(i-1)n+j} = 0$.

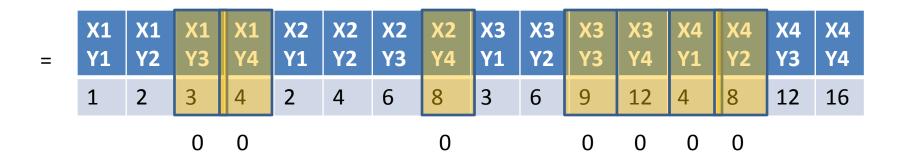
Details: Sparse Graph Index



Details: Matrix-Vector Multiplication

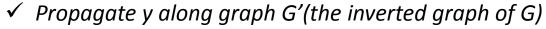


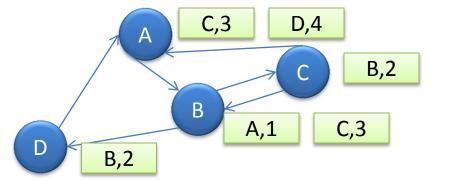
Details: Kronecker Product

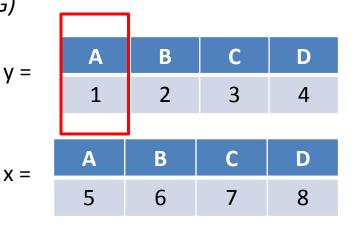


11/6/2010

Details: Kronecker Product







✓ Multiple x with the received y values

Output of the Learning Process

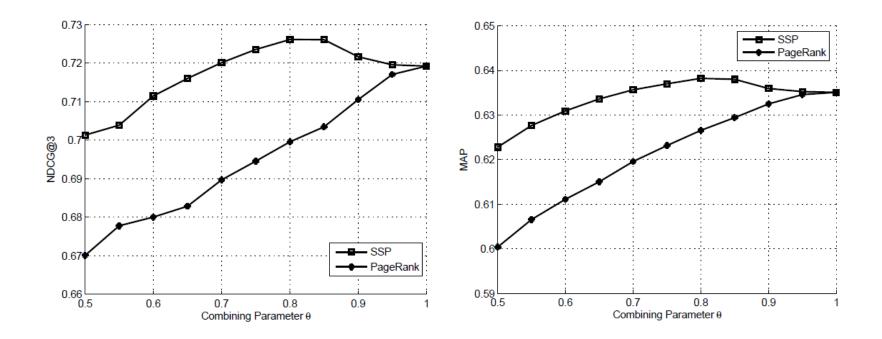
- π: can be used to direct rank nodes in the given graph.
- φ and ω can be used to rank nodes in new graphs with similar generating mechanisms to the given graph (advantages of the parametric formulation).

Results: Anti-Spam

Table 3: Number of spam websites over buckets.

No.	# of Websites	PageRank	AP	RankNet	SSP
1	150	2	0	0	0
2	537	2	0	1	0
3	1257	1	1	1	0
4	2660	2	8	4	6
5	4788	4	7	4	6
6	8344	12	7	5	7
7	13708	7	16	23	12
8	20846	13	33	18	33
9	29008	19	25	34	27
10	33231	60	25	32	31

Results: Relevance Ranking



SSP consistently outperforms the other algorithms, with all θ values, and in terms of all evaluation measures.

Summary

Summary

- Graph ranking is important.
- It is challenging yet important task to leverage rich metadata and supervision to enhance graph ranking.
- Advanced stochastic models, first-order optimization, and large-scale distributed computation can help us define effective and efficient algorithms to perform the task.

Future Work

- Semi-supervised BrowseRank
- Advanced optimization
 - Incremental learning
 - High-order optimization

Thanks!

tyliu@microsoft.com

http://research.microsoft.com/people/tyliu/