

Transfer Learning for Link Prediction

Qiang Yang, 楊強, 香港科大 Hong Kong University of Science and Technology Hong Kong, China

http://www.cse.ust.hk/~qyang

We often find it easier...

Transfer Learning? 迁移学习...

- People often transfer knowledge to novel situations
 - Chess → Checkers
 - C++ → Java
 - Physics → Computer Science

Transfer Learning:

The ability of a system to recognize and apply knowledge and skills learned in previous tasks to novel tasks (or new domains)

But, direct application will not work

Machine Learning:

- Training and future (test) data
 - follow the same distribution, and
 - are in same feature space

When distributions are different

- Classification Accuracy (+, -)
- Training: 90%
- Testing: 60%

Feature-based Transfer Learning (Dai, Yang et al. ACM KDD 2007)

- Source:
 - Many labeled instances
- Target:
 - All unlabeled instances
- Distributions
 - Feature spaces can be different, but have overlap
 - Same classes
 - P(X,Y): different!

CoCC Algorithm (Co-clustering based)

Co-Clustering based Classification (on 20 News Group dataset)

In test error rate

Using Transfer Learning

					V
Data Set	NBC	SVM	TSVM	SGT	CoCC
real vs simulated	0.259	0.266	0.130	0.130	0.120
auto vs aviation	0.150	0.228	0.102	0.087	0.068
rec vs talk	0.235	0.233	0.040	0.091	0.035
m rec vs sci	0.165	0.212	0.062	0.062	0.055
$\operatorname{comp} vs talk$	0.024	0.103	0.097	0.028	0.020
$\operatorname{comp} vs sci$	0.207	0.317	0.183	0.279	0.130
comp vs rec	0.072	0.165	0.098	0.047	0.042
sci vs talk	0.226	0.226	0.108	0.083	0.054
orgs vs places	0.377	0.454	0.436	0.385	0.320
people vs places	0.216	0.266	0.231	0.192	0.174
orgs vs people	0.289	0.297	0.297	0.306	0.236

Talk Outline

- Transfer Learning: A quick introduction
- Link prediction and collaborative filtering problems
- Transfer Learning for Sparsity Problem
 - Codebook Method
 - CST Method
 - Collective Link Prediction Method
- Conclusions and Future Works

A Real World Study [Leskovec-Horvitz WWW '08]

- Who talks to whom on MSN messenger
 - Network: 240M nodes, 1.3 billion edges
- Conclusions:
 - Average path length is 6.6
 - 90% of nodes is reachable <8 steps</p>

Local Network Structures

Link Prediction

- A form of Statistical Relational Learning (Taskar and Getoor)
- Object classification: predict category of an object based on its attributes and links
 - Is this person a student?
- Link classification: predict type of a link
 - Are they co-authors?
- Link existence: predict whether a link exists or not

(credit: Jure Leskovec, ICML '09)

Link Prediction

- Task: predict missing links in a network
- Main challenge: Network Data Sparsity

Long Tail in Era of Recommendation

Help users discover novel/rare items

■ The long-tail → recommendation systems

Essentials of Collaborative Filtering

- Discover latent user/item groups by (co)-clustering
- Share ratings within clusters to fill in missing values

Matrix Factorization model for Link Prediction

We are seeking a low rank approximation for our target matrix

Such that the unknown value can be predicted by $\hat{X} = UV^T$

Examples: Collaborative Filtering

Data Sparsity in Collaborative Filtering

Codebook Transfer

- Bin Li, Qiang Yang, Xiangyang Xue.
- Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for Sparsity Reduction.
- In Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI '09), Pasadena, CA, USA, July 11-17, 2009.

Codebook Construction

Definition 2.1 (Codebook). A k × l matrix which compresses the cluster-level rating patterns of k user clusters and l item clusters.

- Codebook: User prototypes rate on item prototypes
- Encoding: Find prototypes for users and items and get indices
- Decoding: Recover rating matrix based on codebook and indices

Knowledge Sharing via Cluster-Level Rating Matrix

- Source (Dense): Encode cluster-level rating patterns
- Target (Sparse): Map users/items to the encoded prototypes

Step 1: Codebook Construction

- Co-cluster rows (users) and columns (items) in X_{aux}
- Get user/item cluster indicators $\mathbf{U}_{aux} \in \{0, 1\}^{n \times k}$, $\mathbf{V}_{aux} \in \{0, 1\}^{m \times l}$

$$\mathbf{B} = [\mathbf{U}_{aux}^{\top} \mathbf{X}_{aux} \mathbf{V}_{aux}] \oslash [\mathbf{U}_{aux}^{\top} \mathbf{1} \mathbf{1}^{\top} \mathbf{V}_{aux}]$$

Step 2: Codebook Transfer

Objective

Expand target matrix, while minimizing the difference between \mathbf{X}_{tgt} and the reconstructed one

$$\min_{\substack{\mathbf{U}_{tgt} \in \{0,1\}^{p \times k} \\ \mathbf{V}_{tgt} \in \{0,1\}^{q \times l}}} \left\| \begin{bmatrix} \mathbf{X}_{tgt} - \mathbf{U}_{tgt} \mathbf{B} \mathbf{V}_{tgt}^{\top} \end{bmatrix} \circ \mathbf{W} \right\|_{F}^{2}$$
s.t. $\mathbf{U}_{tgt} \mathbf{1} = \mathbf{1}, \mathbf{V}_{tgt} \mathbf{1} = \mathbf{1}$

- User/item cluster indicators \mathbf{U}_{tgt} and \mathbf{V}_{tgt} for \mathbf{X}_{tgt}
- Binary weighting matrix W for observed ratings in X_{tgt}
- Alternate greedy searches for \mathbf{U}_{tgt} and \mathbf{V}_{tgt} to a local minimum

Codebook Transfer

- Each user/item in X_{tgt} matches to a prototype in B
- Duplicate certain rows & columns in **B** to reconstruct \mathbf{X}_{tgt}
- Codebook is indeed a two-sided data representation

Experimental Setup

- Data Sets
 - EachMovie (Auxiliary): 500 users × 500 movies
 - MovieLens (Target): 500 users × 1000 movies
 - Book-Crossing (Target): 500 users × 1000 books
- Compared Methods
 - Pearson Correlation Coefficients (PCC)
 - Scalable Cluster-based Smoothing (CBS)
 - Weighted Low-rank Approximation (WLR)
 - Codebook Transfer (CBT)
- Evaluation Protocol
 - First 100/200/300 users for training; last 200 users for testing
 - Given 5/10/15 observable ratings for each test user

Experimental Results (1): Books → Movies

- MAE Comparison on MovieLens
 - average over 10 sampled test sets
 - Lower is better

Training Set	Method	Given5	Given10	Given15
ML100	PCC	0.930	0.883	0.873
	CBS	0.874	0.845	0.839
	WLR	0.915	0.875	0.890
	СВТ	0.840	0.802	0.786
ML200	PCC	0.905	0.878	0.878
	CBS	0.871	0.833	0.828
	WLR	0.941	0.903	0.883
	СВТ	0.839	0.800	0.784
ML300	PCC	0.897	0.882	0.885
	CBS	0.870	0.834	0.819
	WLR	1.018	0.962	0.938
	СВТ	0.840	0.801	0.785

Limitations of Codebook Transfer

- Same rating range
 - Source and target data must have the same range of ratings [1, 5]
- Homogenous dimensions
 - User and item dimensions must be similar
- In reality
 - Range of ratings can be 0/1 or [1,5]
 - User and item dimensions may be very different

Coordinate System Transfer

- Weike Pan, Evan Xiang, Nathan Liu and Qiang Yang.
- Transfer Learning in Collaborative Filtering for Sparsity Reduction.
- In Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI-10). Atlanta, Georgia, USA. July 11-15, 2010.

Our Solution: Coordinate System Transfer

- Step 1: Coordinate System Construction ($\mathbf{U}_0, \mathbf{V}_0$)
- Step 2: Coordinate System Adaptation

Coordinate System Transfer

Step 1: Coordinate System Adaptation

 Adapt the discovered coordinate systems from the auxiliary domain to the target domain,

$$\min_{\mathbf{U},\mathbf{V},\mathbf{B}} ||\mathbf{Y} \odot (\mathbf{R} - \mathbf{U}\mathbf{B}\mathbf{V}^{T})||$$

$$+ \frac{\rho_{u}}{2} ||\mathbf{U} - \mathbf{U}_{0}||_{F}^{2} + \frac{\rho_{v}}{2} ||\mathbf{V} - \mathbf{V}_{0}||_{F}^{2}$$
s.t. $\mathbf{U}^{T}\mathbf{U} = \mathbf{I}, \mathbf{V}^{T}\mathbf{V} = \mathbf{I}$

- The effect from the auxiliary domain
 - Initialization: take U_0, V_0 as seed model in target domain,
 - Regularization: $||\mathbf{U} \mathbf{U}_0||_F^2$, $||\mathbf{V} \mathbf{V}_0||_F^2$

Coordinate System Transfer Algorithm

Algorithm 1 CST: Coordinate System Transfer.

Input: The target data **R**, the auxiliary data $\mathbf{R}^{(1)}$, $\mathbf{R}^{(2)}$

Output: U, V, B.

Step 1. Apply sparse SVD on auxiliary data $\mathbf{R}^{(1)}, \mathbf{R}^{(2)}$, and obtain two principle coordinate systems $\mathbf{U}_0 = \mathbf{U}^{(1)}, \mathbf{V}_0 = \mathbf{V}^{(2)}$. Initialize the target coordinate systems with $\mathbf{U} = \mathbf{U}_0, \mathbf{V} = \mathbf{V}_0$.

repeat

Step 2.1. Fix **U**, **V**, and estimate **B** from $||\mathbf{Y} \odot (\mathbf{R} - \mathbf{U}\mathbf{B}\mathbf{V}^T)|| = 0$. Step 2.2. Fix **B**, and update **U**, **V** via alternative gradient descent method on Grassmann manifold.

until Convergence

Experimental Results

Data Sets and Evaluation Metrics

Data sets (extracted from MovieLens and Netflix)

	Data set	Form	Sparsity
<pre>target (training)</pre>		1-5 (explicit feedback)	<1.0%
N ·	target (test)	1-5 (explicit feedback)	11.3%
R ⁽¹⁾	auxiliary (user side)	0/1 (implicit feedback)	10.0%
R ⁽²⁾	auxiliary (item side)	0/1 (implicit feedback)	9.5%

 Mean Absolute Error (MAE) and Root Mean Square Error (RMSE),

$$MAE = \sum_{(u,i,r_{ui})\in T_E} |r_{ui} - \hat{r}_{ui}|/|T_E|$$
$$RMSE = \sqrt{\sum_{(u,i,r_{ui})\in T_E} (r_{ui} - \hat{r}_{ui})^2/|T_E|}$$

Where \hat{r}_{ui} and r_{ui} are the true and predicted ratings, respectively, and $|T_E|$ is the number of test ratings.

Experimental Results

Baselines and Parameter Settings

Baselines

- Average Filling
- Latent Matrix Factorization (Bell and Koren, ICDM07)
- Collective Matrix Factorization (Singh and Gordon, KDD08)
- OptSpace (Keshavan, Montanari and Oh, NIPS10)

Average results over 10 random trials are reported

Results(1/2)

	Observed	Wit	hout Transfer	With Transfer	
	(sparsity)	AF	LFM	CMF	CST
	10 (0.2%)	0.7764 ± 0.0008	0.8934 ± 0.0005	0.7642 ± 0.0024	$\textbf{0.7481} \pm 0.0014$
	20 (0.4%)	0.7430 ± 0.0006	0.8243 ± 0.0019	0.7238 ± 0.0012	$\textbf{0.7056} \pm 0.0008$
MAE	30 (0.6%)	0.7311 ± 0.0005	0.7626 ± 0.0008	0.7064 ± 0.0008	0.6907 ± 0.0006
	40 (0.8%)	0.7248 ± 0.0004	0.7359 ± 0.0008	0.6972 ± 0.0007	$\textbf{0.6835} \pm 0.0008$
	10 (0.2%)	0.9853 ± 0.0011	1.0830 ± 0.0000	0.9749 ± 0.0033	$\textbf{0.9649} \pm 0.0019$
	20 (0.4%)	0.9430 ± 0.0006	1.0554 ± 0.0016	0.9261 ± 0.0014	0.9059 ± 0.0013
RMSE	30 (0.6%)	0.9280 ± 0.0005	0.9748 ± 0.0012	0.9058 ± 0.0009	0.8855 ± 0.0010
	40 (0.8%)	0.9202 ± 0.0003	0.9381 ± 0.0010	0.8955 ± 0.0007	0.8757 ± 0.0011
Time Complexity		O(p)	$O(kpd^2 + k \max(n, m)d^3)$	same as LFM	$O(kpd^3 + kd^6)$

• Observations:

- CST performs significantly better (t-test) than all baselines at all sparsity levels,
- Transfer learning methods (CST, CMF) beat two non-transfer learning methods (AF, LFM).

Limitation of CST and CBT

- Different source domains are related to the target domain differently
 - Book to Movies
 - Food to Movies
- Rating bias
 - Users tend to rate items that they like
 - Thus there are more rating = 5 than rating = 2

Our Solution: Collective Link Prediction (CLP)

Jointly learn multiple domains together

- Learning the similarity of different domains
- consistency between domains indicates similarity.
- Introduce a link function to correct the bias

- Bin Cao, Nathan Liu and Qiang Yang.
- Transfer Learning for Collective Link Prediction in Multiple Heterogeneous Domains.
- In Proceedings of 27th International Conference on Machine Learning (ICML 2010), Haifa, Israel. June 2010.

Inter-task Similarity

- Based on Gaussian process models
- Key part is the kernel modeling user relation as well as task relation

Making Prediction

Similar to memory-based approach

Similarity between tasks

Experimental Results

	Action	Comedy	Drama	Romance	Thriller
Action	1	0.8479	0.8814	0.8953	0.9253
Comedy	0.8479	1	0.8750	0.8936	0.8422
Drama	0.8814	0.8814	1	0.9392	0.8911
Romance	0.8953	0.8936	0.9392	1	0.8862
Thriller	0.9253	0.8422	0.8911	0.8862	1

Table 2. The similarity matrix cross five link prediction tasks on MovieLens.

Conclusions and Future Work

- Transfer Learning (舉一反三)
- Link prediction is an important task in graph/network data mining
- Key Challenge: sparsity
- Transfer learning from other domains helps improve the performance

Acknowledgement

HKUST:

- Sinno J. Pan, Huayan Wang, Bin Cao, Evan Wei Xiang, Derek Hao Hu, Nathan Nan Liu, Vincent Wenchen Zheng
- Shanghai Jiaotong University:
 - Wenyuan Dai, Guirong Xue, Yuqiang Chen, Prof. Yong Yu, Xiao Ling, Ou Jin.
- Visiting Students
 - Bin Li (Fudan U.), Xiaoxiao Shi (Zhong Shan U.),