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We often find it easier… 
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Transfer Learning? 迁移学习… 

  People often transfer knowledge to 
novel situations 
  Chess  Checkers 
  C++  Java 
  Physics  Computer Science 
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Transfer Learning: 
The ability of a system to recognize and apply knowledge 
and skills learned in previous tasks to novel tasks (or new 
domains) 
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But, direct application will not 
work 

Machine Learning: 
  Training and future (test) data  

  follow the same distribution, and 
  are in same feature space 



When distributions are different 

Classification Accuracy (+, -) 
  Training: 90% 
  Testing: 60% 
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Transfer Learning: Source 
Domains�

Learning �Input� Output �

Source 
Domains �
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Source Domain Target Domain 

Training Data Labeled/Unlabeled Labeled/Unlabeled 

Test Data Unlabeled 



Transfer 
Learning 

Multi-task 
Learning 

Transductive 
Transfer Learning 

Unsupervised 
Transfer Learning 

Inductive Transfer 
Learning 

Domain 
Adaptation 

Sample Selection Bias /
Covariance Shift 

Self-taught 
Learning 

Labeled data are available in 
a target domain 

Labeled data are 
available only in a 

source domain 

No labeled data in 
both source and 
target domain 

No labeled data in a source domain 

Labeled data are available in a source domain 

Case 1 

Case 2 
Source and 

target tasks are 
learnt 

simultaneously 

Assumption: 
different 

domains but 
single task 

Assumption: single domain 
and single task 

目標數據  �

源數據 �
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Feature-based Transfer Learning 
(Dai, Yang et al. ACM KDD 2007) 

bridge 

CoCC Algorithm (Co-clustering based) 

  Source: 
  Many labeled 

instances 

  Target: 
  All unlabeled 

instances 

  Distributions 
  Feature spaces can 

be different, but 
have overlap 

  Same classes 
  P(X,Y): different! 
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Co-Clustering based Classification (on 
20 News Group dataset)�

Using Transfer Learning 



Talk Outline 

  Transfer Learning: A quick introduction 
  Link prediction and collaborative filtering 

problems 
  Transfer Learning for Sparsity Problem 

  Codebook Method 
  CST Method 
  Collective Link Prediction Method 

  Conclusions and Future Works 
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A Real World Study [Leskovec-Horvitz WWW 
‘08] 

  Who talks to whom on MSN messenger 
  Network: 240M nodes, 1.3 billion edges 

  Conclusions: 
  Average path length is 6.6 
  90% of nodes is reachable <8 steps 
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Local Network Structures 

  Link Prediction 
  A form of Statistical 

Relational Learning (Taskar 
and Getoor) 

  Object classification: predict 
category of an object based 
on its attributes and links 

  Is this person a student? 
  Link classification: predict 

type of a link 
  Are they co-authors? 

  Link existence: predict 
whether a link exists or not 
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(credit: Jure Leskovec, ICML ‘09)  



Link Prediction 

  Task: predict missing links in a network 
  Main challenge: Network Data Sparsity 
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Long Tail in Era of Recommendation	


  Help users discover novel/rare items 
  The long-tail  recommendation systems 
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Matrix Factorization model for Link 
Prediction 
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Low rank 
Approximation 
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  We are seeking a low rank approximation 
for our target matrix 

  Such that the unknown value can be 
predicted by 



Training Data: 

Dense Rating Matrix 

Density >=2.0%,  

CF model 

Test Data: 

Rating Matrix 

RMSE:0.8721 

Ideal 
Setting 

1 3 1 
5 3 

3 1 2 
2 3 4 
4 4 

? 
? 

? 
? 

? ? 
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Training Data: 

Sparse Rating Matrix 

Density <=0.6%,  

CF model 

Test Data: 

Rating Matrix 

RMSE:0.9748 

Realistic 
Setting 

1 
5 

3 
4 

4 

? 
? 

? 
? 

? ? 

10% 
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Codebook Transfer 

  Bin Li, Qiang Yang, Xiangyang Xue.  
  Can Movies and Books Collaborate? Cross-Domain 

Collaborative Filtering for Sparsity Reduction.  
  In Proceedings of the Twenty-First International Joint 

Conference on Artificial Intelligence (IJCAI '09), 
Pasadena, CA, USA, July 11-17, 2009.  
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Codebook Construction 

  Definition 2.1 (Codebook). A k × l matrix which 
compresses the cluster-level rating patterns of k user 
clusters and l item clusters. 

  Codebook: User prototypes rate on item prototypes 
  Encoding: Find prototypes for users and items and get indices 
  Decoding: Recover rating matrix based on codebook and indices 
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Knowledge Sharing via Cluster-Level Rating Matrix 

  Source (Dense): Encode cluster-level rating patterns 
  Target (Sparse): Map users/items to the encoded 

prototypes 
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Step 1: Codebook Construction 

  Co-cluster rows (users) and columns (items) in Xaux  
  Get user/item cluster indicators Uaux ∈ {0, 1}n×k, Vaux ∈ 

{0, 1}m×l 
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Step 2: Codebook Transfer 
  Objective 

 Expand target matrix, while minimizing the difference 
between Xtgt and the reconstructed one 

  User/item cluster indicators Utgt and Vtgt for Xtgt 

  Binary weighting matrix W for observed ratings in Xtgt 
  Alternate greedy searches for Utgt and Vtgt to a local minimum 
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Codebook Transfer 

  Each user/item in Xtgt matches to a prototype in B 
  Duplicate certain rows & columns in B to reconstruct Xtgt 
  Codebook is indeed a two-sided data representation 
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Experimental Setup 
  Data Sets 

  EachMovie (Auxiliary): 500 users × 500 movies 
  MovieLens (Target): 500 users × 1000 movies 
  Book-Crossing (Target): 500 users × 1000 books 

  Compared Methods 
  Pearson Correlation Coefficients (PCC) 
  Scalable Cluster-based Smoothing (CBS) 
  Weighted Low-rank Approximation (WLR) 
  Codebook Transfer (CBT) 

  Evaluation Protocol 
  First 100/200/300 users for training; last 200 users for testing 
  Given 5/10/15 observable ratings for each test user 
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Experimental Results (1): Books  
Movies 

  MAE Comparison on MovieLens 
  average over 10 sampled test sets 
  Lower is better 
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Limitations of Codebook 
Transfer 
  Same rating range  

  Source and target data must have the 
same range of ratings [1, 5] 

  Homogenous dimensions 
  User and item dimensions must be similar 

  In reality 
  Range of ratings can be 0/1 or [1,5] 
  User and item dimensions may be very 

different 
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Coordinate System Transfer 
  Weike Pan, Evan Xiang, Nathan Liu and Qiang Yang.  
  Transfer Learning in Collaborative Filtering for 

Sparsity Reduction.   
  In Proceedings of the 24th AAAI Conference on 

Artificial Intelligence (AAAI-10). Atlanta, Georgia, 
USA. July 11-15, 2010.  
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Our Solution: Coordinate System 
Transfer	

  Step 1: Coordinate System Construction (          ) 
  Step 2: Coordinate System Adaptation	
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Step 1: Coordinate System Adaptation	

  Adapt the discovered coordinate systems from the auxiliary 

domain to the target domain, 

  The effect from the auxiliary domain 
  Initialization: take             as seed model in target domain, 
  Regularization: 	


Coordinate System Transfer�
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Algorithm	

Coordinate System Transfer�
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Data Sets and Evaluation Metrics	


  Data sets (extracted from MovieLens and Netflix) 

  Mean Absolute Error (MAE) and Root Mean Square Error 
(RMSE), 

Where       and      are the true and predicted ratings, respectively, 
and         is the number of test ratings.	


Experimental Results	
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Baselines and Parameter Settings	


  Baselines 
  Average Filling 
  Latent Matrix Factorization (Bell and Koren, 

ICDM07) 
  Collective Matrix Factorization (Singh and Gordon, 

KDD08) 
  OptSpace (Keshavan, Montanari and Oh, NIPS10) 

  Average results over 10 random trials 
are reported	


Experimental Results�
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Results(1/2)	


  Observations: 
  CST performs significantly better (t-test) than all baselines at all sparsity levels, 
  Transfer learning methods (CST, CMF) beat two non-transfer learning methods (AF, 

LFM). 
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Limitation of CST and CBT	


  Different source domains are related to 
the target domain differently 
  Book to Movies 
  Food to Movies 

  Rating bias 
  Users tend to rate items that they like 

  Thus there are more rating = 5 than rating = 2 
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Our Solution: Collective Link 
Prediction (CLP)	


  Jointly learn multiple domains together 
  Learning the similarity of different domains 
  consistency between domains indicates 

similarity. 
  Introduce a link function to correct the bias	
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  Bin Cao, Nathan Liu and Qiang Yang. 
  Transfer Learning for Collective Link 

Prediction in Multiple Heterogeneous 
Domains.  

  In Proceedings of 27th International 
Conference on Machine Learning (ICML 
2010), Haifa, Israel. June 2010.  
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Inter-task Similarity	


  Based on Gaussian process models 
  Key part is the kernel modeling user 

relation as well as task relation 
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Making Prediction	


  Similar to memory-based approach	


Similarity	
  between	
  tasks�

Similarity	
  between	
  items�Mean	
  of	
  predic6on �
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Experimental Results	
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Conclusions and Future Work 

  Transfer Learning (舉一反三 ) 
  Link prediction is an important task in 

graph/network data mining 
  Key Challenge: sparsity 
  Transfer learning from other domains helps 

improve the performance 
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