Machine Learning in Mobile and Sensor Networks

Qiang Yang, 杨强

http://www.cs.ust.hk/~qyang

Hong Kong University of Science and Technology

Joint Work with Dr. Rong Pan and students: Jie Yin, Xiaoyong Chai, Jeff Pan and Dou Shen Kangheng Wu

Context-Aware Computing: A Solution

- A central theme in contextaware computing is to build predictive models of human behavior
 - Where is the user? (location estimation)

 What is her ultimate goal? (activity recognition)

Problem Domain: Wireless Enviornment

 A user with a mobile device walks in an indoor wireless environment (802.11b WLAN)

What are the learning problems?

- Learning to classify low level sequences
 - Location, actions and goals
 - Semi-supervised Learning
- Learning to segment sequences into discrete activities
- New Machine Learning Problem: Data Migration
- Semi-supervised Learning:
 - To reduce calibration efforts
- Training data migration problem
- Distributed Learning problem

Machine Learning in Pervasive Computing: A Video Demonstration

http://www.cs.ust.hk/~qyang/sensor2.wmv

ML Problem: Bayesian Learning on Location

- Two phases: offline Training and online Localization
- Offline phase collect samples to build a mapping function l=f(s)
 - from signal space S to location space \downarrow where $s \in S$ and $I \in L$

Loc.	Time	(AP1,AP2,AP3)	
(1,0)	1s	(-60,-50,-40) dB	Training
(2,0)	2s	(-62,-48,-35) dB	l=f(s) where
		(, ,)dB	$r \in S \in S$ and $l \in L$
(9,5)	9s	(-50,-35,-42) dB	

 Online phase – given a new signal s, estimate the most likely location | from l=f(s)

 $rac{s^* = (-60, -49, -36)}{dB}$, compute f(s)=I as estimated location

Related Work in Building the Sensor Model

- Microsoft Research's RADAR [Bahl and Padmanabhn, 2000]
 - K-Nearest-Neighbor Method
 - Offline for each location, compute the mean signal
 - Online estimate location with KNN and triangulation
- Maryland's Horus [Moustafa Youssef et al. ,2003], Rice U. Robotics-based System [Ladd et al., 2002, 2004]
 - Maximum Likelihood Estimation
 - Offline for each location, train the Radio Map of each AP at each location
 - Online apply Bayes' rule and (user dynamics) for estimation

Major issues

- Radio map changes with time
 - How to adapt for other times?
 - Yin et al. [IEEE Percom 2005]
- Reduce human calibration by user unlabelled traces
 - Semi-supervised Learning
 - Chai et al. [IEEE Percom 2005]

ML Problem: Data and Model Migration

 Key idea: collect radio map once, and then adapt the radio map using reference points and a regression analysis

- During initial time period *t0*:
 - At each location *i*, we learn a predictive function *f_{ij}* for the *jth* AP, based on the reference points

$$S_{est}(i, j, t_0) = f_{ij}(r(t_0))$$

During the online phase (time period *t*):

$$\begin{split} S_{est}(i, j, t) &= f_{ij}(\overrightarrow{r(t)}) \\ D_i(t) &= \sqrt{\sum_{j=1}^p (s_j(t) - ss_j(t))^2} \end{split}$$

Critical Issue: learn predictive function fij

- -- mapping between the signal-strength values received by the mobile client and the reference points.
- Two algorithms via regression analysis
 - A multiple-regression based algorithm (Linear Model LM)

$$s = a_0 + a_1 * r_1 + a_2 * r_2 + \dots \mathcal{E}$$

 A model-tree based algorithm (see result at 1.5m)

ML Problem: Semi-Supervised Learning

Total amount of calibration effort: $N_s \times N_l$

Semi-supervised Learning Framework: Using Unlabeled Traces to Improve the Radio Map

- What is a user trace
 - A sequence of signal strength measurements recorded when a user holding a wireless device navigates in the environment

Trace	Observation Sequences					
#	t_1	t_2		t_k		
	$(AP_1:-57)$	$(AP_1:-56)$	$(AP_1:-55)$	$(AP_1:-52)$		
1	$(AP_2:-33)$	$(AP_2:-30)$	$(AP_2:-36)$	$(AP_2:-62)$		
	$(AP_3:-51)$	$(AP_3:-62)$	$(AP_3:-56)$	$(AP_3:-47)$		
	$(AP_1:-62)$	$(AP_1:-39)$	$(AP_1:-46)$	$(AP_1:-41)$		
2	$(AP_2:-57)$	$(AP_2:-41)$	$(AP_2:-45)$	$(AP_2:-43)$		
	$(AP_3:-55)$	$(AP_3:-32)$	$(AP_3:-43)$	$(AP_3:-27)$		

Modeling User Traces Using Hidden Markov Model (HMM)

- An HMM is a quintuple <L,
 O, λ, A, π>
 - L: location-state space $\{I_1, I_2, \dots, I_n\}$
 - O: observation space $\{o_1, o_2, \dots, o_m\}$
 - $\square \quad \lambda: radio map \{ Pr(o_j | I_j) \}$
 - A: location-state transition { Pr(I_j | I_i) }
 - π : initial state distribution { Pr(I_i) }
- HMM model parameter θ = (λ, Α, π)

Experimental Setting

- The environment is modeled a space of 99 locations, each representing a 1.5-meter grid cell.
- Sensor readings contain sign strength measurements from base stations.
- Sensor model construction: 100 signal samples at each location.

Reducing the calibration effort: result

Fig. 17. Effect of using a varying number of traces to reduce the sampling time

IEEE PERCOM 2005 Article, Chai et al.

In: Proceedings of the AAAI '2004, '2005

How to recognize a user's goals?

- Problem: how to ensure that goal recognition framework is robust?
- Previous Work:
 - HMM and DBN based: restricted to high-level inferences [Albrecht et al. 98] [Han & Veloso 00]
 - Sensor-based DBN: monolithic architecture but inflexible
 [Nguyen et al.03] [Bui 03] [Liao et al.04]

Our Method:

 A two-level recognition architecture

$$G^* = \arg \max P(G|A_1, A_2, \dots, A_t)$$

=
$$\arg \max P(G|A_{1:t}).$$

$$\begin{array}{lll} G^{*} & = & \arg\max\frac{P(A_{1:t}|G)P(G)}{P(A_{1:t})} \\ & = & \arg\max P(A_{1:t}|G)P(G) \end{array}$$

G1: Go-to-Print-in-Room1 G2: Go-to-Seminar-in-Room2

G1: Go-to-Print-in-Room1 G2: Go-to-Seminar-in-Room2

G1: Go-to-Print-in-Room1 G2: Go-to-Seminar-in-Room2

Environment and Data Set

- 99 locations (a 1.5-meter grid cell)
- 8 out of 25 base stations
- Data for sensor model:
 - 100 samples were collected at each location
- Evaluation Data: about 600 traces(19 goals)
 - 3-fold cross-validation

Evaluation Criteria

Efficiency

 The average processing time for each observation in the on-line recognition.

Accuracy

 The number of correct recognition divided by the total number of recognition.

Convergence rate

The average number of observations, after which the recognition converges to the correct answer, over the average number of observations for those traces which converge.

Sampling Interval	1s	1.5s	2s	2.5 s	3s
Whole DBN	89.5	87.1	84.	75.	71.
	%	%	2%	4%	9%
DBN + Bigram	90.5	83.2	82.	74.	72.
	%	%	1%	7%	6%

Sensor-Based Multiple-Goal Recognition==Timeseries Classification

Recognition based on sensory readings

Trace	Observation Sequences				
#	t_1	t_2		t_k	
	$(AP_1:-57)$	$(AP_1:-56)$	$(AP_1:-55)$	$(AP_1:-52)$	
1	$(AP_2:-33)$	$(AP_2:-30)$	$(AP_2:-36)$	$(AP_2:-62)$	G_1
	$(AP_3:-51)$	$(AP_3:-62)$	$(AP_3:-56)$	$(AP_3:-47)$	
	$(AP_1:-62)$	$(AP_1:-39)$	$(AP_1:-46)$	$(AP_1:-41)$	G_2
2	$(AP_2:-57)$	$(AP_2:-41)$	$(AP_2:-45)$	$(AP_2:-43)$	G_3
	$(AP_3:-55)$	$(AP_3:-32)$	$(AP_3:-43)$	$(AP_3:-27)$	

Multiple-goal in a single action sequence

Plan Recognition and Activity Recognition

- Two categories of approaches:
 - Consistency approaches
 - Formal theory of plan recognition [Kau87]
 - Scalable and adaptive goal recognition [Les98]
 - Probabilistic approaches
 - Hidden Markov models
 - Bayesian Net and dynamic BN
- Limitations
 - Logic-based assume actions are given, and cannot deal with uncertain signals
 - Bayesian approaches must have a winning goal; but there may be several concurrent goals

End

Get Gun

Hunt

Woods

Rob

Bank

Go

Hiking

Framework of Sensor-Based Multiple-Goal Recognition

Two-level multiple-goal recognition framework

Model Instantiation and evolution

- A default-goal model M₀ is instantiated when a goal model is created at time t
 - \square *M*₀ is added into the model set **M**

$$\square L_t(M_0) = \pi_0 Q_0(A_t)$$

- A goal model M_k is instantiated
 - whenever $\pi_k Q_k(A_t) \ge \pi_0 Q_0(A_t)$
 - $Acc(M_k) = A_t$ and M_k is added into **M**

$$\Box \ L_t(M_k) = \pi_k Q_k(A_t)$$

Experimental Setting

Actions and goals:

AID	Name	AID	Name
A_1	Walk-in-HW1	A_2	Walk-in-HW2
A_3	Walk- in - $HW3$	A_4	$Walk-in-HW_4$
A_5	Walk- in - $HW5$	A_6	Walk-in-HW6
A_7	Walk-in-HW7	A_8	$Print_R1$
A_9	Seminar_R1	A_{10}	$Print_R2$
A_{11}	$Seminar_R2$		

GID	Name	GID	Name
G_1	"Print-in-Room2"	G_2	"Seminar-in-Room2"
G_3	"Print-in-Room1"	G_4	"Seminar-in-Room1"
G_5	"Go-to-Office"	G_6	"Exit-through-Entrance3"
G_7	"Exit-through-Entrance1"	G_8	"Exit-through-Entrance2"

- *eight* goals, 850 single-goal traces
- Multiple-goal traces are synthesized:
 - Segments of single-goal traces are pieced together to generate connective traces containing multiple goals.

Comparison Targets & Evaluation Criteria

- Three algorithms:
 - MG-Recognizer [Cha05]
 - □ SG-Recognizer [Yin04]
 - BHMM-Recognizer [Han99]
- Three criteria:
 - Recognition accuracy
 - Inference efficiency
 - Measured in terms of the number of models instantiated
 - Scalability
 - *w.r.t.* the number of goals modeled
 - *w.r.t.* the number of goals contained in a single trace

Two goals are achieved in a single trace:

 $G_1 =$ "*Print-in-Room2*" and $G_2 =$ "*Exit-through-Entrance2*"

Recognition Accuracy

SG-Recognizer

Accuracy and Efficiency

Recognition accuracy:

Recognizer	SG-Recognizer	BHMM-Recognizer	MG-Recognizer
Single-Goal	97.8%	95.5%	94.6%
Multiple-Goal	24.5%	79.1%	91.4%

Inference Efficiency:

Recognizer	SG-Recognizer	BHMM-Recognizer	MG-Recognizer
Single-Goal	9	20.7	6.5 + 3.7
Multiple-Goal	9	28.7	6.6 + 4.8

ML Prob: Segmentation and Feature Selection in Multi-dimensional Time-series

- Learning a Probabilistic Segmentation Model [AAAI 2005]
- We partition an observation sequence Y into Ns segments

□ Segment labels $S = \{s_1, s_2, ..., s_{N_s}\}$ and segmentation points

$$H = \{h_1, h_2, \dots, h_{N_s}\}$$

ML Prob: Statistical Relational Learning: Action Model Learning

- Input: observed plans
 - init₁, a₁₁, a₁₂, a₁₃, ..., a_{1n}, goal₁
 - init₂, a₂₁, a₂₂, a₂₃, ..., a_{2m}, goal₂

•.

- Output: action models; e.g. are a load (x hoist y crate z truck p place)
 - pre: (at x p), (at z p), (lifting x y)
 - del: (lifting x y)
 - add: (at y p), (in y z),
 - (available x), (clear y)

Main Issue:

 Automatically guess an initial action model Then allow humans to edit these models Key contribution:

 can learn action models even when no intermediate state observations are available

Distributed Learning In Sensor Networks

- Distributed Regression:an Efficient Framework for Modeling Sensor Network Data, Carlos Guestrin et al, IPSN 2004
- Key Insight:
 - Robustness of learned model is key in sensor networks
 - Nodes may be added to the network or fail
 - Communication is unreliable, and link qualities change over time
 - Distributed machine learning:
 - Pieces of models are learned at different sites
 - A central model is integrated together.

Conclusions and Future Work

- Sensor and Wireless Networks provides grounds for new Machine Learning Research
 - Semi-supervised Classification on time series
 - Data and Model Migration
 - Multi-dimensional Segmentation
 - Distributed Learning of robust models

Our Other Work in 2005 (HKUST)

See <u>http://www.cs.ust.hk/~qyang</u>

Research in ubiquitous computing

- IJCAI05p] J.F. Pan, J.T. Kwok, Q. Yang and Y.Q. Chen. "Accurate and Low-cost Location Estimation Using Kernels" IJCAI 2005, Edinburgh, UK, Aug 2005
- [AAAI05y] J. Yin, D. Shen, Q. Yang and Z.N. Li "Activity Recognition through Goal-Based Segmentation". AAAI 2005, Pittsburg, PA USA, July 2005
- [AAAI05c] X.Y. Chai and Q. Yang, "Multiple-Goal Recognition From Low-level Signals" AAAI 2005, Pittsburg, PA USA, July 2005

Research in Web mining

KDD-CUP 2005: Champion on all three awards (see

http://webproject1.cs.ust.hk/q2c/)

- J.T Sun, D. Shen, H.J. Zeng, Q. Yang, Y.C Lu and Z. Chen "Web Page Summarization Using Clickthrough Data". ACM SIGIR 2005. Brazil. August 2005.
- Z. Chen, G.R. Xue, Y. Yu, Q. Yang, "Exploiting the Hierarchical Structure for Web Link Analysis" ACM SIGIR 2005. Brazil. August 2005.
- W.S. Xi, Z. Chen, G.R. Xue, Y. Yu, H.J. Zeng, Q. Yang, and C.X. Lin "Scalable Collaborative Filtering Using Cluster-based Smoothing" ACM SIGIR 2005. Brazil. August 2005.

Research in case-based reasoning & Machine Learning

[AAAI05p] R. Pan, Q. Yang, J.F. Pan and L. Li. Competence Driven Case-Base Mining. Proceedings of the AAAI 2005, Pittsburg, PA USA, July 2005

Accurate and Low-cost Indoor Location Estimation Using Kernels

J.F. Pan, J.T. Kwok, Q. Yang and Y.Q. Chen, IJCAI 2005

Problem A user with a mobile device walks in an **indoor** wireless environment (Covered by WiFi signal)

Motivation

Similar signals may not necessarily be nearby locations, or vice versa
Maximize correlation between signal and location under feature transformation

Activity Recognition through Goal-Based Segmentation

Jie Yin, Dou Shen, Qiang Yang and Ze-Nian Li, AAAI 2005

> Application Domain: Wireless Environment

Trace Database on Signal-Strength Readings

Trace	Signal-strength Sequences				
ID	t_1	t_2		t_n	ID
	(AP1:-80)	(AP1:-81)	(AP1:-64)	(AP1:-68)	
1	(AP2:-78)	(AP2:-77)	(AP2:-69)	(AP2:-84)	G_1
	(AP3:-62)	(AP3:-64)	(AP3:-71)	(AP3:-81)	
	(AP1:-66)	(AP1:-63)	(AP1:-69)	(AP1:-78)	
2	(AP2:-85)	(AP2:-81)	(AP2:-64)	(AP2:-78)	G_2
	(AP3:-84)	(AP3:-78)	(AP3:-59)	(AP3:-61)	

- Goal-Based Segmentation algorithm
 - High-level goals can be recognized from low-level signal segments
 - Each segment define a motion pattern

Sequence Segmentation Model Activity Recognition Model

Probabilistic Segmentation Model

Illustration on Sensory data

Reduce human effort in calibration for activity recognition!

Competence Driven Case-Base Mining

R. Pan, Q. Yang, J.F. Pan, L. Li, AAAI 2005 Case-Based Reasoning: Using previous cases to solve a current problem

Step 1: learn the distribution of the original sample – using KFDA
Step 2: Mining cases by considering the distribution and diversity Problem: How to automatically obtain a quality case base from the raw data?

	What is the quality metric.							
			Customer Database					
		Income	Married	Cars	Approved?			
	Sammy	50K	n	1	?			
ts	Beatrice	50K	у	1	Yes			
can	Dylan	80K	n	2	Yes			
plic	Mathew	30K	n	1	No			
Ap	Larry	40K	n	0	No			
	Basil	80K	n	1	Yes			

ARMS: Learning Action Models ICAPS 2005

ACM KDD-CUP 2005 -- Winner

Statistical Classifier

Synonym

based classifier

Synonym

based

classifier

Synonym

based classifier

HKUST Team: D. Shen, R. Pan, J.T. Sun, J.F. Pan, K.H. Wu, J. Yin and Professor Q. Yang

(KddCate_i, Rank)

(KddCate i, Rank)

(KddCate i, Rank)

(KddCate i, Rank)

Phase II

Task

 Categorize 800,000 queries into 67 predefined categories;

Limitation

 "There is no restriction on what data you can/can't use to build your models." *From* <u>http://kdd05.lac.uic.edu/kddcup.</u> <u>html</u>

(Page i,SCate i)

(Page i,SCate i)

(Page i,SCate i)

Phase I

Google

Lemur +

ODP

Looksmart

Query

• Key Characteristics:

Wı

KddCate i

Component

Classifier Integration

 W_4

Ensemble

W₂

W₂

- No training data
- Meaning of Queries: ambiguous
 - A query usually contains too few words;
 - Queries often have more than one meaning.

Semantics of Categories: uncertain

Only the names of Categories, no more specification;

HKUST won *all three awards* for KDDCup 2005:

- Query Categorization Precision Award,
- Query Categorization Performance Award
- Query Categorization Creativity Award

KDDCUP Winners Aug 2005

Thank You!

http://www.cs.ust.hk/~qyang