

The 4th Chinese Workshop on Machine Learning and Applications 第四届机器学习及其应用研讨会

CCA with Its Applications (Part II)

Chen Songcan(陈松灿) s.chen@nuaa.edu.cn

S.CHEII@Huaa.cuu.Ch

http://parnec.nuaa.edu.cn

Nanjing University of Aeronautics & Astronautics MLA'06, Nanjing

Given X set $\{x_1,...,x_n\} \in \mathbb{R}^p$, and Y set $\{y_1,...,y_n\} \in \mathbb{R}^q$, CCA aims to simultaneously seek $w_x \in \mathbb{R}^p$, $w_y \in \mathbb{R}^q$, to ensure [Bor99] (specially use for feature extraction)

$$\max_{\boldsymbol{w}_{x},\boldsymbol{w}_{y}} \frac{\operatorname{cov}\left(\boldsymbol{w}_{x}^{T}\boldsymbol{x}, \boldsymbol{w}_{y}^{T}\boldsymbol{y}\right)}{\sqrt{\operatorname{var}\left(\boldsymbol{w}_{x}^{T}\boldsymbol{x}\right)}\sqrt{\operatorname{var}\left(\boldsymbol{w}_{y}^{T}\boldsymbol{y}\right)}}$$
$$= \max_{\boldsymbol{w}_{x},\boldsymbol{w}_{y}} \frac{\sum_{i=1}^{n} \boldsymbol{w}_{x}^{T}\boldsymbol{x}_{i}\boldsymbol{y}_{i}^{T}\boldsymbol{w}_{y}}{\sqrt{\sum_{i=1}^{n} \boldsymbol{w}_{x}^{T}\boldsymbol{x}_{i}\boldsymbol{x}_{i}^{T}\boldsymbol{w}_{x}}\sqrt{\sum_{i=1}^{n} \boldsymbol{w}_{y}^{T}\boldsymbol{y}_{i}\boldsymbol{y}_{i}^{T}\boldsymbol{w}_{y}}}$$

$$\Rightarrow \begin{pmatrix} \boldsymbol{X}\boldsymbol{Y}^{T} \\ \boldsymbol{Y}\boldsymbol{X}^{T} \end{pmatrix} \begin{pmatrix} \boldsymbol{w}_{x} \\ \boldsymbol{w}_{y} \end{pmatrix} = \lambda \begin{pmatrix} \boldsymbol{X}\boldsymbol{X}^{T} \\ \boldsymbol{Y}\boldsymbol{Y}^{T} \end{pmatrix} \begin{pmatrix} \boldsymbol{w}_{x} \\ \boldsymbol{w}_{y} \end{pmatrix}$$

where $X = [x_1, ..., x_n], Y = [y_1, ..., y_n]$

CCA Alternative formulation

$$\min_{\boldsymbol{w}_{x},\boldsymbol{w}_{y}} \sum_{i=1}^{n} \left\| \boldsymbol{w}_{x}^{T} \left(\boldsymbol{x}_{i} - \overline{\boldsymbol{x}} \right) - \boldsymbol{w}_{y}^{T} \left(\boldsymbol{y}_{i} - \overline{\boldsymbol{y}} \right) \right\|^{2}$$
s.t.
$$\sum_{i=1}^{n} \left\| \boldsymbol{w}_{x}^{T} \left(\boldsymbol{x}_{i} - \overline{\boldsymbol{x}} \right) \right\|^{2} = 1, \quad \sum_{i=1}^{n} \left\| \boldsymbol{w}_{y}^{T} \left(\boldsymbol{y}_{i} - \overline{\boldsymbol{y}} \right) \right\|^{2} = 1$$

$$\max \quad \boldsymbol{w}_{x}^{T} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\boldsymbol{x}_{i} - \boldsymbol{x}_{j} \right) \left(\boldsymbol{y}_{i} - \boldsymbol{y}_{j} \right)^{T} \cdot \boldsymbol{w}_{y}$$
s.t.
$$\boldsymbol{w}_{x}^{T} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\boldsymbol{x}_{i} - \boldsymbol{x}_{j} \right) \left(\boldsymbol{x}_{i} - \boldsymbol{x}_{j} \right)^{T} \cdot \boldsymbol{w}_{x} = 1$$

$$\boldsymbol{w}_{y}^{T} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} (\boldsymbol{y}_{i} - \boldsymbol{y}_{j}) (\boldsymbol{y}_{i} - \boldsymbol{y}_{j})^{T} \cdot \boldsymbol{w}_{y} = 1$$

- image retrieval [HSS04], image segmentation [LGD05], image de-noising [He04], image analysis [Nie02], feature detection of image [And00]
- * text categorization, text mining, text retrieval, image-text retrieval, machine translation [For04]
- computer vision [KSE05]
- * pattern recognition [SZL05]
- * biometrics [YVN03]
- signal processing [SS06]
- Iocation estimation in wireless sensor networks [PKY06]
- facial expression recognition [ZZZ06]
- Multi-view SVM design [FHM05]

Iocation estimation in wireless sensor networks

[PKY06] J.J. Pan, J.T. Kwok, Q. Yang, Y. Chen, Multidimensional Vector Regression for Accurate and Low-Cost Location Estimation in Pervasive Computing, *IEEE Transaction on Knowledge and Data Engineering*, 18(2006):1181-1193.

facial expression recognition (1:happiness, sadness, surprise, angry, disgust, 6:fear)

(JAFFE database)

[ZZZ06] W. Zheng, X. Zhou, C. Zou, L. Zhao, Facial Expression Recognition Using Kernel Canonical Correlation Analysis (KCCA), *IEEE Transaction on Neural Networks*, 17(2006), 233-238.

min
$$L$$

such that

$$L = \frac{1}{2} \|\mathbf{w}_A\|^2 + \frac{1}{2} \|\mathbf{w}_B\|^2 + C^A \sum_{i=1}^{\ell} \xi_i^A + C^B \sum_{i=1}^{\ell} \xi_i^B + D \sum_{i=1}^{\ell} \eta_i$$

at $|\langle \mathbf{w}_A, \phi_A(\mathbf{x}_i) \rangle + b_A - \langle \mathbf{w}_B, \phi_B(\mathbf{x}_i) \rangle - b_B| \le \eta_i + \epsilon$
 $y_i (\langle \mathbf{w}_A, \phi_A(\mathbf{x}_i) \rangle + b_A) \ge 1 - \xi_i^A$
 $y_i (\langle \mathbf{w}_B, \phi_B(\mathbf{x}_i) \rangle + b_B) \ge 1 - \xi_i^B$
 $\xi_i^A \ge 0, \quad \xi_i^B \ge 0, \quad \eta_i \ge 0$ all for $1 \le i \le \ell$.
CCA alternative formulation

ParN_pC

	Motorbike	Bicycle	People	Car	1030 - 1 A
SVM 1	94.05	91.58	91.58	87.95	
SVM 2	91.15	91.15	90.57	86.21	
KCCA + SVM	94.19	90.28	90.57	88.68	
SVM 2K	94.34	93.47	92.74	90.13	The second second

[FHM05] J. D.R. Farquhar, D. R. Hardoon, H. Meng, J. Shawe-Taylor, S. Szedmak, Two view learning: SVM-2K, Theory and Practice, *NIPS* 2005.

- Locality preserving CCA (LPCCA)
- * Kernelized LPCCA
- Their applications in pose estimation and data visualization

- * Motive: CCA is linear, and is insufficient to reveal the nonlinear correlation between two sets X and Y of realworld variables $\max w^T \cdot \sum_{n=1}^{n} \sum_{n=1}^{$
- *** Objective:**

$$\max_{\boldsymbol{w}_{x},\boldsymbol{w}_{y}} \boldsymbol{w}_{x}^{T} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} S_{ij}^{x} (\boldsymbol{x}_{i} - \boldsymbol{x}_{j}) S_{ij}^{y} (\boldsymbol{y}_{i} - \boldsymbol{y}_{j})^{T} \cdot \boldsymbol{w}_{y}$$
s.t. $\boldsymbol{w}_{x}^{T} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} S_{ij}^{x2} (\boldsymbol{x}_{i} - \boldsymbol{x}_{j}) (\boldsymbol{x}_{i} - \boldsymbol{x}_{j})^{T} \cdot \boldsymbol{w}_{x} = 1$

$$\boldsymbol{w}_{y}^{T} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} S_{ij}^{y2} (\boldsymbol{y}_{i} - \boldsymbol{y}_{j}) (\boldsymbol{y}_{i} - \boldsymbol{y}_{j})^{T} \cdot \boldsymbol{w}_{y} = 1$$

$$\Rightarrow \begin{pmatrix} \boldsymbol{XS}_{xy} \boldsymbol{Y}^{T} \\ \boldsymbol{YS}_{yx} \boldsymbol{X}^{T} \end{pmatrix} \begin{pmatrix} \boldsymbol{w}_{x} \\ \boldsymbol{w}_{y} \end{pmatrix} = \lambda_{LP} \begin{pmatrix} \boldsymbol{XS}_{xx} \boldsymbol{X}^{T} \\ \boldsymbol{YS}_{yy} \boldsymbol{Y}^{T} \end{pmatrix} \begin{pmatrix} \boldsymbol{w}_{x} \\ \boldsymbol{w}_{y} \end{pmatrix}$$

ParN_pC

[SC06] Tingkai Sun, Songcan Chen, Locality preserving CCA with applications to data visualization and pose estimation, Image and Vision Computing, in press, 2006

KLPCCA, TNN in revision

Error distribution histograms

ParN_pC

- *** CIPCA--Class-information-incorporated PCA**
- *** DCCA-- Discriminant CCA**
- *** DCCAM– DCCA with missing samples**
- Multi-Kernel learning
- Beyond KCCA

Motive

utilize the class information for feature extraction CIPCA and CCA can be unified into a framework

[CS05] Songcan Chen, Tingkai Sun, Class-information-incorporated principal component analysis, Neurocomputing, 69 (2005) 216–223

*** Results**

Dataset	PCA	S 1	S2	S 3	S4	LDA
Image	95.89	96.02	77.34	92.51	89.62	77.91
Splice	71.38	70.38	83.37	70.94	73.64	79.08
Banana	86.36	86.36	54.64	71.83	71.83	61.66
BCancer	67.04	67.13	54.84	60.71	60.43	64.95
Diabetis	69.45	69.87	75.57	72.32	73.93	68.70
FSolar	60.91	60.94	62.75	62.81	62.81	61.10
German	70.07	70.03	75.64	70.75	73.60	67.77
Heart	77.02	76.76	82.59	77.20	79.83	76.88
Ringnorm	65.63	65.02	74.78	65.74	68.69	68.22
Thyroid	95.68	95.67	85.76	94.13	92.44	82.55
Titanic	67.00	67.00	67.69	73.66	73.66	67.04
Twonorm	93.45	93.11	97.32	93.30	94.64	96.47
Waveform	84.43	84.25	80.34	84.48	85.24	81.43

- * CIPCA
- *** DCCA**
- DCCAM
- Multi-Kernel learning
- Beyond KCCA

DCCA- modified feature extractor

*** Motive**

1) for feature fusion and multimodal recognition

Multiple Biometrics [JRS04]

Applications

- Solution * Motive
 - 2) in CCA, the correlation between (x_i, y_i) is insufficient to discriminate between classes
 - 3) in DCCA, we take correlation as similarity metric, aims to maximize the within-class correlation, minimize the between-class correlation
- Consider the correlation between classes

maximize the within-class correlation minimize the between-class correlation Objective function

$$\max_{\boldsymbol{w}_x, \boldsymbol{w}_y} \frac{\boldsymbol{w}_x^T (\boldsymbol{C}_w - \eta \boldsymbol{C}_b) \boldsymbol{w}_y}{(\boldsymbol{w}_x^T \boldsymbol{C}_{xx} \boldsymbol{w}_x \cdot \boldsymbol{w}_y^T \boldsymbol{C}_{yy} \boldsymbol{w}_y)^{1/2}}$$

where η is a tunable parameter.

$$C_{w} = \sum_{i=1}^{c} \sum_{k=1}^{n_{i}} \sum_{l=1}^{n_{i}} x_{k}^{(i)} y_{l}^{(i)T} = XAY^{T}$$

between-class correlation

is a block, diagonal matrix of size *n*-by-*n*.

Objective function

$$\max_{w_{x},w_{y}} \frac{(1+\eta) \cdot w_{x}^{T} C_{w} w_{y}}{(w_{x}^{T} C_{xx} w_{x} \cdot w_{y}^{T} C_{yy} w_{y})^{1/2}}$$

$$= \max_{w_{x},w_{y}} \frac{w_{x}^{T} C_{w} w_{y}}{(w_{x}^{T} C_{xx} w_{x} \cdot w_{y}^{T} C_{yy} w_{y})^{1/2}}$$

$$\Rightarrow \begin{pmatrix} XAY^{T} \\ YAX^{T} \end{pmatrix} \begin{pmatrix} w_{x} \\ w_{y} \end{pmatrix} = \lambda \begin{pmatrix} XX^{T} \\ YY^{T} \end{pmatrix} \begin{pmatrix} w_{x} \\ w_{y} \end{pmatrix}$$

DCCA Results on toy problem

$$\boldsymbol{y}_{i} = \boldsymbol{W}^{T} \boldsymbol{x}_{i} + \boldsymbol{b} + \boldsymbol{\varepsilon}_{i}$$
$$\boldsymbol{W} = \begin{bmatrix} 0.6 & -\sqrt{2}/2 \\ 0.8 & \sqrt{2}/2 \end{bmatrix} \qquad \boldsymbol{b} = \begin{bmatrix} 1,1 \end{bmatrix}^{T} \qquad \boldsymbol{\varepsilon}_{i} \text{ the imposed Gaussian noise}$$

Hypertext categorization

(WebKB dataset)

Unimodal Recognition			Multimodal Recognition			
Method —	Recognitio	n Accuracy	Method	Recognition Accuracy		
	fulltext	inlinks		PR1	PR2	
Naïve Bayes	0.9083	0.8753	DCCA	0.9522	0.9574	
k-NN	0.9448	0.9467	CCA	0.9235	0.9213	
CMV	0.9098	0.8881	PLS	0.9215	0.9203	

Note: PR1 and PR2 correspond to features in parallel and in serial, respectively.

DCCA Results

Handwritten numeral recognition (Multiple Feature database)

			Recognition accuracy using different methods						
#	X	Y	DCCA		CCA		PLS		
		-	PR1	PR2	PR1	PR2	PR1	PR2	
1	mfeat_fac	mfeat_fou	0.9560	0.9813	0.8673	0.8785	0.9394	0.9394	
2	mfeat_fac	mfeat_kar	0.9752	0.9789	0.9603	0.9598	0.9410	0.9397	
3	mfeat_fac	mfeat_mor	0.9077	0.9302	0.7596	0.7656	0.8716	0.8789	
4	mfeat_fac	mfeat_pix	0.9718	0.9752	0.9472	0.9476	0.9433	0.9396	
5	mfeat_fac	mfeat_zer	0.9589	0.9772	0.8542	0.8623	0.9521	0.9570	
б	mfeat_fou	mfeat_kar	0.9393	0.9687	0.8969	0.9195	0.9714	0.9698	
7	mfeat_fou	mfeat_mor	0.8089	0.8278	0.7567	0.7633	0.4398	0.4389	
8	mfeat_fou	mfeat_pix	0.9373	0.9662	0.8270	0.8431	0.9761	0.9756	
9	mfeat_fou	mfeat_zer	0.8367	0.8543	0.8239	0.8351	0.8110	0.8119	
10	mfeat_kar	mfeat_mor	0.8928	0.9253	0.7857	0.8158	0.6314	0.6234	
11	mfeat_kar	mfeat_pix	0.9493	0.9497	0.9643	0.9641	0.9751	0.9753	
12	mfeat_kar	mfeat_zer	0.9383	0.9638	0.9081	0.9211	0.8245	0.8289	
13	mfeat_mor	mfeat_pix	0.8799	0.9100	0.7263	0.7602	0.7071	0.7078	
14	mfeat_mor	mfeat_zer	0.7943	0.8097	0.7258	0.7452	0.6983	0.7154	
15	mfeat_pix	mfeat_zer	0.9310	0.9544	0.8232	0.8398	0.8375	0.8401	

Note: PR1 and PR2 correspond to features in parallel and in serial, respectively.

http://www.ics.uci.edu/~mlearn/MLSummary.html

The works about DCCA have been submitted.

ParN_pC

- * CIPCA
- *** DCCA**
- DCCAM
- Multi-Kernel learning
- Beyond KCCA

- Motive
 - 1) deal with missing samples due to sensor failure, high cost, etc.
 - 2) "missing samples" means "not pairwise" for X and Y
 - 3) differ from "missing data" (or "incomplete data")

- Usual strategies for missing data
 - 1) expectation maximization [DHS00]
 - 2) substitution of class mean for missing data
 - 3) iterative estimation of the missing data [WM01]
 - 4) local least squares imputation (估算) [KGP05]
- Our solution

directly deal with the training set with missing samples

DCCAM Results on Toy problem

(a) Data(b) CCA(c) PLS(d) DCCAM

Circled samples are missing ones. For (b) CCA and (c) PLS, the un-pairwise samples are deleted.

Multiple Feature Database (handwritten numerals), 10 classes, 100 pairs per class. For each class, we

- 1) delete 10 samples from X, and delete 10 samples from Y.
- 2) delete 20 samples from X, and delete 20 samples from Y.
- 3) delete 30 samples from X, and delete 30 samples from Y.
- 4) delete 40 samples from X, and delete 40 samples from Y.
- 5) delete 50 samples from X, and delete 50 samples from Y.
- 6) delete 60 samples from X, and delete 60 samples from Y.

Note: the deleted samples are NOT pairwise.

- Adjustment of the comparative algorithms
 For CCA and PLS, the following algorithm is adjusted to match the case of "missing samples"
 - 1) delete the rest un-pairwise samples (named as CCA-I, PLS-I) and DCCA-I.
 - 2) substitution of class mean vector for missing samples (named as CCA-II, PLS-II) and DCCA-II.
 - 3) iterative estimation of the missing samples (named as CCA-III, PLS-III).

Note that DCCA-I and –II are just for comparison, and no DCCA-III is introduced.

X-axis:

the # of missing samples per class. i.e., 10, 20,...50, 60.

Y-axis:

the recognition accuracy.

The works about DCCAM have been submitted.

- Supervised learning method due to the incorporation of the class information
- ***** Tolerance to the missing of samples
- Superior performance to some multimodal recognition algorithms
- Direct processing ability of missing samples and without resorting to artificially compensate the missing samples
- ***** Relative insensitiveness to the number of missing samples
- Only involvement of one tunable parameter, d, the final dimensionality of the extracted features. This makes it easy to be manipulated in real applications.

- * CIPCA
- *** DCCA**
- DCCAM
- Multi-Kernel learning
- Beyond KCCA

- ***** Motive:
 - 1) approximate heterogeneous (异质) data sources;
 - 2) avoid model or kernel parameter selection to some extent;

ParN_BC

The related work [BLJ04, SRS05]
 The conic combinations of multiple kernels

$$K = \sum_{i} \alpha_i K_i$$

F. Bach, G.R.G. Lanckriet, and M.I. Jordan. Multiple kernel learning, conic duality, and the smo algorithm. In Proceedings of the 21st International Conference on Machine Learning, 2004.

S. Sonnenburg, G. Ratsch, and C. Schafer. A general and efficient multiple kernel learning algorithm. In Neural Information Processing Systems, 2005.

Our Method

borrow multiple CCA (mCCA) to fuse multiple kernels

ParN_oC

Essence: Single dataset → Multi-Kernel mapping + Multi-CCA (NmCCA)→ MKL Multi-Kernel Learning (MKL)

 $\min_{W^{(1)},\dots,W^{(m)}} \qquad J = \sum_{k,l=1;k\neq l}^{\dots} \|S^{(k)}W^{(k)} - S^{(l)}W^{(l)}\|_F$ mCCA $W^{(k)T}C_{kk}W^{(k)} = I;$ s.t. $w_i^{(k)T}C_{kl}w_i^{(l)} = 0;$ $k, l = 1, ..., m, l \neq k; i, j = 1, ..., q, j \neq i;$ **NmCCA** $L = \sum_{l=1}^{\infty} ((Y_l \omega_l - I_{N \times 1} - b_l)^T (Y_l \omega_l - I_{N \times 1} - b_l) + c_l \tilde{\omega}_l^T \tilde{\omega}_l)$ min $\omega_l \in \mathbb{R}^{n_l+1}, b_l > 0;$ l=1,...,m $+c_{m+1}\sum_{l=1}^{m}(Y_{l}\omega_{l}-\frac{1}{m}\sum_{j=1}^{m}Y_{j}\omega_{j})^{T}(Y_{l}\omega_{l}-\frac{1}{m}\sum_{j=1}^{m}Y_{j}\omega_{j}),$ Least **Squares** New Multi-CCA (NmCCA) Criterion

Classification performance comparison

Datasets	MultiK-MHKS	CCA+MHKS1	CCA+MHKS2	MHKS(best)	MHKS(worst)	MKL[21]
Soybean-small	99.57	90.00	88.26	96.52	94.35	97.83
Balance	93.94	87.88	87.88	90.16	90.10	90.19
Water	96.21	57.27	63.79	94.85	<u>94.70</u>	93.03
Sonar	80.65	72.78	72.78	75.83	75.74	75.28
Wdbc	63.89	63.48	62.96	62.48	59.04	50.81
Pima-diabetes	71.40	70.83	70.20	69.54	62.91	71.43
Iris	97.33	92.67	90.53	97.33	97.07	97.33
Wine	96.89	89.81	<u>93.02</u>	95.19	88.96	79.15

t-test comparison on MultiK-MHKS with the following algorithms

Datasets	CCA+MHKS1	CCA+MHKS2	MHKS(best)	MHKS(worst)	MKL[21]
Soybean-small	5.3906	4.5810	2.2778	3.4330	2.0580
Balance	10.6106	10.6106	6.8245	6.2137	6.5939
Water	19.2638	24.3671	1.4443*	1.4128*	2.6877
Sonar	6.8811	6.8811	4.4371	3.2984	2.3520
Wdbc	1.0855*	2.5204	2.7287	4.1504	9.8425
Pima-diabetes	3.0534	2.9210	2.5185	27.5278	1.0000^{*}
Iris	6.2163	8.9938	0*	0.3612*	0*
Wine	4.8455	3.8432	2.6056	8.9000	3.8048

'*' Denotes that the difference between the two corresponding algorithms is not significant at 5% significance level, i.e. *t*-value < 1.7341.

The works about MKL have been submitted.

- * CIPCA
- *** DCCA**
- DCCAM
- Multi-Kernel learning
- Beyond KCCA

*** Proof of "KCCA = 2-KPCA + CCA"**

Insight from "KCCA = 2-KPCA + CCA"

- * Reveal the essence of KCCA
- What is important ...

1) the original kernel mappings can be generalized to empirical kernel mappings, i.e.,

> $\phi : x \mapsto \phi(x) \text{ and } \psi : y \mapsto \psi(y)$ $\Rightarrow x \mapsto K_X(X, x) \text{ and } y \mapsto K_Y(Y, y)$

2) More generally

$$x \mapsto F_X(X, x)$$
 and $y \mapsto F_Y(Y, y)$

where both F_x and F_y are non-negative real functions.

Advantages

Any types of kernel can be employed,

e.g., graph-kernel, string- kernel, tree-kernel, and etc.,

even non-kernel functions

The works about Beyond KCCA have been submitted.

- [And00] S. Ando. Image field categorization and edge/corner detection from gradient covariance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(2):179-190.
- [Bor99] Canonical correlation: a tutorial, at http://people.imt.liu.se/~magnus/cca/tutorial/, 1999
- [DHS00] R.O. Duda, P.E. Hart, D.G. Stock, Pattern Classification, 2nd edition, John Wiley & Sons, New York, 2000.
- [WM01] Walczak, B. and D.L. Massart, Dealing with missing data Part I. Chemometrics & Intelligent Laboratory Systems, vol.58, no.1, pp.15-27. 2001
- [For04] B. Fortuna. Kernel canonical correlation analysis with applications. In: SIKDD 2004 at Multiconference, Ljubljana, Slovenia. 2004.
- [He04] Y. Hel-Or, The canonical correlations of color images and their use for demosaicing, HP Labs Technical Report, HPL-2003-164(R.1), February 2004.

- [HSS04] D.R. Hardoon, S. Szedmak, J. Shawe-Taylor. Canonical correlation analysis: an overview with application to learning methods. Neural Computation 2004, 16: 2639-2664.
- [JRS04] Anil K. Jain, Arun Ross and Salil Prabhakar, An Introduction to Biometric Recognition, IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on Image- and Video-Based Biometrics, Vol. 14, No. 1, January 2004.
- [KGP05] H. Kim, G.H. Golub and H. Park, Missing value estimation for DNA microarray gene expression data: local least squares imputation, Bioinformatics, vol.21, 187-198, 2005
- [KSE05] E. Kidron, Y.Y. Schechner, M. Elad. Pixels that sound, IEEE Proc. of Computer Vision and Pattern Recognition, 2005: 1, 88-95.
- [LGD05] M. Loog, B. Ginneken, R.P.W. Duin. Dimensionality reduction of image features using the canonical contextual correlation projection. Pattern Recognition, 2005,38(12): 2409-2418

- [Nie02] A. Nielsen. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Transactions on Image Processing, 2002,11: 293-305.
- [SS06] P. Schreier, L. Scharf, Canonical coordinates for transform coding of noisy sources, IEEE Transactions on signal processing, 2006, 54(1):235-243.
- [SZL05] Q. Sun, S. Zeng, Y. Liu, P-A. Heng, D-S. Xia. A new method of feature fusion and its application in image recognition. Pattern Recognition, 2005, 38(12): 2437-2448.
- [YVN03] Y. Yamanishi, J.-P. Vert, A. Nakaya1, et al. Extraction of correlated gene clusters from multiple genomic data by generalized kernel canonical correlation analysis. Bioinformatics, 2003, 19(1), pp. i323–i330.

Thanks!

