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Popularity of Kernel Methods

Supervised learning

Classification: Support vector machines (SVM)

Regression: Support vector regression

Unsupervised learning

Novelty detection: One-class SVM / Support vector domain
description

Clustering: Kernel clustering

Principal component analysis: Kernel PCA

Other learning scenarios

Semi-supervised learning, transductive learning, etc.

Applications

Text classification, speaker adaptation, image fusion, texture
classification ...

James Kwok Kernel Methods in Machine Learning
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Basic Idea in Kernel Methods

Map the data from input space to feature space F using ϕ Apply a
linear procedure in F

hyperplane classifier, linear regression, PCA, etc.

Only inner products in F are needed

Kernel trick: ϕ(x)′ϕ(y) = k(x, y)

James Kwok Kernel Methods in Machine Learning
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Support Vector Machines

Classification problem: {(xi , yi )}Ni=1, xi ∈ Rm, yi ∈ {±1}

min 1
2‖w‖

2 (primal)

s.t. yi (w
′ϕ(xi ) + b) ≥ 1

max
N∑

i=1

αi −
1

2

N∑
i ,j=1

αiαjyiyjϕ(xi )
′ϕ(xj)

s.t.
N∑

i=1

αiyi = 0, αi ≥ 0 (dual)

Quadratic programming (QP) problem
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Scale-up Problem
Minimum Enclosing Ball (MEB)
Transforming Kernel Methods as MEB Problems
Extension: Generalized CVM

Scale-up Problem

Problem 1

Need O(m2) memory just to write down K (m training examples)

If m = 20, 000 and it takes 4 bytes to represent a kernel entry,
we would need 1.6Gbytes to store the kernel matrix

Problem 2

Involves inverting the kernel matrix Km×m = [k(xi , xj)]
m
i ,j=1

Requires O(m3) time

Existing methods

sampling, low-rank approximations, decomposition methods

in practice, time complexities O(m)− O(m2.3)

empirical observations and not theoretical guarantees

James Kwok Kernel Methods in Machine Learning
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Observation

SVM implementations only approximate the optimal solution by an
iterative strategy

1 Pick a subset of Lagrange multipliers

2 Optimize the reduced optimization problem

3 Repeat until all the Lagrange multipliers are “accurate
enough” (loose KKT condition)

These near-optimal solutions are often good enough in practical
applications

James Kwok Kernel Methods in Machine Learning
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Approximation Algorithm

Approximation algorithms have been extensively used theoretical
computer science

E.g., for NP-complete problems such as vertex-cover problem,
traveling-salesman problem, set-covering problem, ...

Denote

C ∗: cost of the optimal solution
C : cost of the solution returned by approximation algorithm

Performance guarantee: Approximation ratio ρ(n) for input size n

max
(

C
C∗ ,

C∗

C

)
≤ ρ(n)

large ρ(n): solution is much worse than the optimal solution
small ρ(n): solution is more or less optimal

If the ratio does not depend on n, we may just write ρ and call the
algorithm an ρ-approximation algorithm

James Kwok Kernel Methods in Machine Learning
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The Minimum Enclosing Ball Problem

Problem in Computational Geometry
Given: S = {x1, . . . , xm}, where each xi ∈ Rd

Minimum enclosing ball of S (MEB(S)): the smallest ball that
contains all the points in S

Finding exact MEBs is inefficient for large d
James Kwok Kernel Methods in Machine Learning
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(1 + ε)-Approximation

Given an ε > 0, a ball B(c, (1 + ε)R) is an (1 + ε)-approximation
of MEB(S) if R ≤ rMEB(S) and S ⊂ B(c, (1 + ε)R)

James Kwok Kernel Methods in Machine Learning
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Approximate MEB Algorithm

Proposed by Bădoiu and Clarkson (2002)
A simple iterative scheme:

At the tth iteration, the current estimate B(ct , rt) is
expanded incrementally by including the furthest point outside
the (1 + ε)-ball B(ct , (1 + ε)rt)

Repeat until all the points in S are covered by B(ct , (1 + ε)rt)

Surprising property

Number of iterations (and hence the size of the final core-set)
depends only on ε but not on d or m

James Kwok Kernel Methods in Machine Learning
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MEB Problems and Kernel Methods

What is obvious

MEB is equivalent to the hard-margin support vector data
description (SVDD)

The MEB problem can also be used to find the radius
component of the radius-margin bound
⇒ SVM parameter tuning

What is not so obvious

Other kernel-related problems can also be viewed as MEB
problems

soft-margin one-class SVM, multi-class SVM, ranking SVM,
SVR, Laplacian SVM, etc.

James Kwok Kernel Methods in Machine Learning
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Hard-Margin SVDD

Denote:

Kernel k; feature map ϕ

MEB in the feature space:
B(c,R)

(primal) : min
R,c

R2 : ‖c− ϕ(xi )‖2 ≤ R2, i = 1, . . . ,m

(dual) max
α

α′diag(K)−α′Kα : α ≥ 0, α′1 = 1

α = [αi , . . . , αm]′: Lagrange multipliers

Km×m = [k(xi , xj)]: kernel matrix

0 = [0, . . . , 0]′, 1 = [1, . . . , 1]′

James Kwok Kernel Methods in Machine Learning
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Kernel Methods as MEB Problems

Assume k(x, x) = κ, a constant (1)

Holds for
1 isotropic kernel k(x, y) = K (‖x− y‖) (e.g., Gaussian)
2 dot product kernel k(x, y) = K (x′y) (e.g., polynomial) with

normalized inputs
3 any normalized kernel k(x, y) = K(x,y)√

K(x,x)
√

K(y,y)

Combine with α′1 = 1, we have α′diag(K) = κ

max
α
−α′Kα : α ≥ 0, α′1 = 1 (2)

Conversely, whenever the kernel k satisfies (1),

Any QP of the form in (2) ↔ a MEB problem

James Kwok Kernel Methods in Machine Learning
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Two-Class SVM

{zi = (xi , yi )}mi=1 with yi ∈ {−1, 1}

(primal) min
w,b,ρ,ξi

‖w‖2+b2−2ρ+C
m∑

i=1

ξi
2 : yi (w

′ϕ(xi )+b) ≥ ρ−ξi

(dual) max
α

−α′
(

K� yy′ + yy′ +
1

C
I

)
α : α ≥ 0, α′1 = 1

K̃ =

[
yiyjk(xi , xj) + yiyj +

δij
C

]
, with k̃(z, z) = κ+1+

1

C
(constant)

James Kwok Kernel Methods in Machine Learning
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Core Vector Machine (CVM)

At the tth iteration, denote

St : core-set; ct : ball’s center; Rt : ball’s radius

Given an ε > 0

1 Initialize S0, c0 and R0

2 Terminate if there is no training point z such that ϕ̃(z) falls
outside the (1 + ε)-ball B(ct , (1 + ε)Rt)

3 Find (core vector) z such that ϕ̃(z) is furthest away from ct .
Set St+1 = St ∪ {z}

4 Find the new MEB(St+1) and set ct+1 = cMEB(St+1) and
Rt+1 = rMEB(St+1)

5 Increment t by 1 and go back to Step 2

James Kwok Kernel Methods in Machine Learning
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Convergence to (Approximate) Optimality

When ε = 0

CVM outputs the exact solution of the kernel problem

When ε > 0

CVM is an (1 + ε)2-approximation algorithm

James Kwok Kernel Methods in Machine Learning
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Time Complexity

CVM converges in at most 2/ε iterations [Bădoiu and Clarkson,
2002]
No probabilistic speedup:

Overall time for τ = O(1/ε) iterations: O
(

m
ε2 + 1

ε4

)
linear in m for a fixed ε

With probabilistic speedup:

Overall time: O
(

1
ε4

)
independent of m for a fixed ε

James Kwok Kernel Methods in Machine Learning



Kernel Methods: An Introduction
When Kernels Meet Balls: Core Vector Machines (CVM)

When Kernels Meet Bags
Conclusion

Scale-up Problem
Minimum Enclosing Ball (MEB)
Transforming Kernel Methods as MEB Problems
Extension: Generalized CVM

Space Complexity

Space complexity for the for the whole procedure: O(1/ε2)

independent of m for a fixed ε

James Kwok Kernel Methods in Machine Learning
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Forest Cover Type Data (522,911 patterns)
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Extended MIT Face Data

training set # faces # nonfaces total
original 2,429 4,548 6,977
set A 2,429 481,914 484,343
set B 19,432 (blur+flip) 481,914 501,346
set C 408,072 (rotate) 481,914 889,986
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KDDCUP-99 Intrusion Detection (4,898,431 patterns)

Used in KDD-99’s Knowledge Discovery and Data Mining Tools
Competition: Separate normal connections from attacks

method # train patns # test SVM training other proc
input to SVM errors time (in sec) time (in sec)

0.001% 47 25,713 0.000991 500.02
random 0.01% 515 25,030 0.120689 502.59
sampling 0.1% 4,917 25,531 6.944 504.54

1% 49,204 25,700 604.54 509.19
5% 245,364 25,587 15827.3 524.31

active learning 747 21,634 94192.213

CB-SVM (KDD’03) 4,090 20,938 7.639 4745.483

CVM 4,898,431 19,513 1.4

AUC `bal # core vectors # support vectors

0.977 0.042 55 20

James Kwok Kernel Methods in Machine Learning
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Limitations

1 k(x, x) = constant for any pattern x
2 The QP problem is of the form

max−α′Kα s.t. α′1 = 1, α ≥ 0

Condition 1 holds for kernels, including

Isotropic kernel (e.g., Gaussian kernel)

Dot product kernel (e.g., polynomial kernel) with normalized
input

Any normalized kernel

Condition 2 holds for kernel methods including the one-class and
two-class SVMs

there are still some popular kernel methods that violate these
conditions and so cannot be used

James Kwok Kernel Methods in Machine Learning
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Motivating Example

Example (L2-support vector regression (SVR))

Training set: {zi = (xi , yi )}mi=1 with xi ∈ Rd and yi ∈ R
Find f (x) = w′ϕ(x) + b in F that minimizes ε̄-insensitive loss
Primal

min ‖w‖2 + b2 +
C

µm

m∑
i=1

(ξ2i + ξ∗2i ) + 2C ε̄

s.t. yi − (w′ϕ(xi ) + b) ≤ ε̄+ ξi , (w′ϕ(xi ) + b)− yi ≤ ε̄+ ξ∗i

Dual

max [λ′ λ∗′]

[
2
C y
− 2

C y

]
− [λ′ λ∗′]K̃

[
λ
λ∗

]
s.t. [λ′ λ∗′]1 = 1, λ,λ∗ ≥ 0

K̃ = [k̃(zi , zj)] =

[
K + 11′ + µm

C I −(K + 11′)
−(K + 11′) K + 11′ + µm

C I

]
James Kwok Kernel Methods in Machine Learning
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Center-Constrained MEB Problem

Modifications to the original MEB problem:

1 Augment an extra ∆i ∈ R to each ϕ(xi ) →
[
ϕ(xi )
∆i

]
2 Constrain the last coordinate of the ball’s center to zero

[
c
0

]
Finding the center-constrained MEB
Primal:

min R2 s.t.

∥∥∥∥[
c
0

]
−

[
ϕ(xi )
∆i

]∥∥∥∥2

≤ R2

where ∆ = [∆2
1, . . . ,∆

2
m]′ ≥ 0

Dual:

max α′(diag(K)+∆)−α′Kα s.t. α′1 = 1, α ≥ 0

Goal: Transform the dual of SVR to this form
James Kwok Kernel Methods in Machine Learning
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SVR as a Center-Constrained MEB Problem

SVR’s dual:

max

α̃′︷ ︸︸ ︷
[λ′ λ∗′]

[
2
C y
− 2

C y

]
− [λ′ λ∗′]K̃

[
λ
λ∗

]
s.t. [λ′ λ∗′]1 = 1, λ,λ∗ ≥ 0

Define ∆ = −diag(K̃) + η1 + 2
C

[
y
−y

]
for η large enough such

that ∆ ≥ 0

max α̃′(diag(K̃) + ∆− η1)− α̃′K̃α̃ : α̃’1=1 , α̃ ≥ 0

Using the constraint α′1 = 1

max α̃′(diag(K̃) + ∆)− α̃′K̃α̃ : α̃′1 = 1, α̃ ≥ 0

which is thus of the required form!
James Kwok Kernel Methods in Machine Learning
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Advantages

1 Allows a more general QP formulation
2 Can be used with any linear/nonlinear kernels

no longer require “k(x, x) = constant” on the kernel

James Kwok Kernel Methods in Machine Learning
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Friedman (200,000 Patterns)

0 0.5 1 1.5 2
x 10

5

10
2

10
3

10
4

10
5

10
6

size of training set

C
P

U
 ti

m
e 

(in
 s

ec
on

ds
)

L2−SVR (CVR)
L1−SVR (LIBSVM)
L1−SVR (SVM−Light)

0 0.5 1 1.5 2
x 10

5

0

2

4

6

8

10

12

14x 10
4

size of training set

nu
m

be
r 

of
 S

V
’s

L2−SVR (CVR)
L1−SVR (LIBSVM)
L1−SVR (SVM−Light)

0 0.5 1 1.5 2
x 10

5

0.031

0.032

0.033

0.034

0.035

0.036

0.037

size of training set

R
M

S
E

L2−SVR (CVR)
L1−SVR (LIBSVM)
L1−SVR (SVM−Light)

0 0.5 1 1.5 2
x 10

5

0.066

0.068

0.07

0.072

0.074

0.076

0.078

size of training set

M
R

E

L2−SVR (CVR)
L1−SVR (LIBSVM)
L1−SVR (SVM−Light)

James Kwok Kernel Methods in Machine Learning



Kernel Methods: An Introduction
When Kernels Meet Balls: Core Vector Machines (CVM)

When Kernels Meet Bags
Conclusion

Scale-up Problem
Minimum Enclosing Ball (MEB)
Transforming Kernel Methods as MEB Problems
Extension: Generalized CVM

Semi-Supervised Learning

Labeled patterns are rare, expensive and time consuming to collect

supervised learning can have poor performance when only very
few labeled patterns are available

Unlabeled data are abundant and readily available without any
cost

e.g., unlabeled webpages on the internet

often has a manifold structure

James Kwok Kernel Methods in Machine Learning
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Laplacian SVM

Incorporate a manifold regularizer [Belkin et al 2005]:

min
1

`

∑̀
i=1

ξi +
λ

2
‖f ‖2Hk

+
λG

2
‖∇G f ‖2

yi f (xi ) ≥ 1− ξi , ξi ≥ 0

Sparse Laplacian SVM

min ‖w‖2 + b2︸ ︷︷ ︸
margin

+
C

`µ

∑̀
i=1

ξ2i︸ ︷︷ ︸
error

+2Cε+
Cθ

uµ

∑
e∈ε

(ζ2
e + ζ∗e

2)︸ ︷︷ ︸
manifold regularizer

s.t. yi (w
′ϕ(xi ) + b) ≥ 1− ε− ξi ,

−w′ψe ≤ ε+ ζe ,w
′ψe ≤ ε+ ζ∗e , e ∈ ε.

Dual: center-constrained MEB problem
James Kwok Kernel Methods in Machine Learning
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Two Moons (` = 2; u = 1, 000, 000)
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Extended USPS: 0-vs-1 (` = 2; u = 266, 077)

James Kwok Kernel Methods in Machine Learning
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Extended MIT Face (` = 10; u = 100, 000)
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Multi-Instance Learning
Constrained Concave-Convex Procedure
Loss Function
Optimization Problem
Experiments

Multi-Instance Learning: Motivating Example

Content-based image retrieval: Classify/retrieve images based on
content

each image is a bag and each local image patch an instance
an image is labeled positive when at least one of its segments
is positive

Weak label information of the training data

only the bags (but not the individual instances) have known
labels

James Kwok Kernel Methods in Machine Learning
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Kernel-Based MI Learning Methods

Design MI kernels that operate on bags

the underlying quadratic programming (QP) problem only
involves variables corresponding to the bags, but not instances

(More direct approach) Associate the variables with instances, but
not with bags

bag label information still used implicitly

bag Bi : instances {xij}ni
j=1

f (Bi ) = maxj=1,...,ni
f (xij)

James Kwok Kernel Methods in Machine Learning
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Multi-Instance Learning
Constrained Concave-Convex Procedure
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Problems

Mixed integer problem

MI-SVM uses a simple optimization heuristic

convergence properties unclear

Only the sign is important in classification

sign(f (Bi )) = sign(maxj=1,...,ni
f (xij))

f (Bi ) = maxj=1,...,ni
f (xij) may be too restrictive

Cannot utilize both the bag and instance information
simultaneously

MI kernels: variables correspond only to the bags, but not
instances

MI-SVM: variables correspond only to the instances, but not
bags

James Kwok Kernel Methods in Machine Learning
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Proposed Approach

Introduce a loss function between f (Bi ) and the associated f (xij)’s

allows both the bags and instances to directly participate in
the optimization process

the learned function is smooth over both bags and instances

Optimization technique

MI-SVM uses an optimization heuristic

we use constrained concave-convex procedure

James Kwok Kernel Methods in Machine Learning
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Constrained Concave-Convex Procedure

An optimization tool for nonlinear optimization problems whose
objective function can be expressed as a difference of convex
functions
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Constrained Concave-Convex Procedure (CCCP)

minx f0(x)− g0(x)
s.t. fi (x)− gi (x) ≤ ci , i = 1, . . . ,m,

fi , gi (i = 0, . . . ,m) are real-valued, convex and differentiable
functions on Rn; ci ∈ R

Procedure:
1 start with an initial x(0)

2 replace gi (x) with its first-order Taylor expansion at x(t)

3 set x(t+1) to the solution of the relaxed optimization problem:

min
x

f0(x)−
[
g0(x

(t)) +∇g0(x
(t))

′
(x− x(t))

]
s.t. fi (x)−

[
gi (x

(t)) +∇gi (x
(t))

′
(x− x(t))

]
≤ ci

Converges to a local minimum solution
James Kwok Kernel Methods in Machine Learning
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Regularization Framework

A set of training bags: {(B1, y1), . . . , (Bm, ym)}
Bi = {xi1, xi2, . . . , xini

}: ith bag containing instances xij ’s

yi ∈ {±1}
Define a loss function that depends on both the training bags and
training instances:

V
(
{Bi , yi , f (Bi )}mi=1, {f (xij)}ni

j=1
m
i=1

)
Split the loss function V into two parts

1 between each bag label and its bag prediction

V
(
{Bi , yi , f (Bi )}mi=1, {f (xij)}ni

j=1
m
i=1

)
2 between the predictions of each bag and its constituent

instances

V
(
{Bi , yi , f (Bi )}mi=1, {f (xij)}ni

j=1
m
i=1

)
James Kwok Kernel Methods in Machine Learning
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Loss Function V : 1st Part

Between each bag label yi and its corresponding prediction f (Bi )

hinge loss (1− yi f (Bi ))+ where (z)+ = max(0, z)

0 1

James Kwok Kernel Methods in Machine Learning
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Loss Function V : 2nd Part

Between the predictions of each bag f (Bi ) and its constituent
instances {f (xij) | j = 1, . . . , ni}

`(f (Bi ),maxj f (xij))

`(v1, v2) =

{
0 if v1 = v2,
∞ otherwise.

L1 loss: `(v1, v2) = |v1 − v2|
L2 loss: `(v1, v2) = (v1 − v2)

2
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Combining

V = 1
m

∑m
i=1 (1− yi f (Bi ))+ + λ

m

∑m
i=1 `(f (Bi ),maxj f (xij))

λ: trades off the two components

Special cases:
1 Only the first part: 1

m

∑m
i=1 (1− yi f (Bi ))+

the same as that with the MI kernel

2 `(v1, v2) =

{
0 if v1 = v2,
∞ otherwise.

same as the MI-SVM
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Optimization Problem

Introduce

ξ = [ξ1, . . . , ξm]′: slack variables for the errors on bags
γ, λ: tradeoff parameters

min
f ∈H,ξ

1

2
‖f ‖2H +

γ

m
ξ′1 +

γλ

m

m∑
i=1

`(f (Bi ), max
j=1,...,ni

f (xij))

s.t. yi f (Bi ) ≥ 1− ξi ,

ξ ≥ 0

Representer Theorem

f (x) =
m∑

i=1

αi0k(x,Bi ) +

ni∑
j=1

αijk(x, xij)

, αi0, αij ∈ R

α: vector for all the αi0’s and αij ’s
James Kwok Kernel Methods in Machine Learning
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Using the L1 Loss for `(·, ·)

K: kernel matrix; ki : ith column of K

min
α,ξ,δ,b

1

2
α′Kα +

γ

m
ξ′1 +

γλ

m
δ′1

s.t. yi (k
′
I(Bi )

α + b) ≥ 1− ξi ,

ξ ≥ 0,

k′I(xij )
α− δi ≤ k′I(Bi )

α,

k′I(Bi )
α− max

j=1,...,ni

(k′I(xij )
α) ≤ δi

Objective: quadratic; First three constraints: linear
Last constraint: nonlinear, but is a difference of two convex
functions
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Optimization using CCCP
Iterative procedure:

1 obtain α from this QP
2 use this as α(t+1) and iterate

α(t): estimate of α at the tth iteration
β

(t)
ij : estimate of βij

min
α,ξ,δ,b

1

2
α′Kα +

γ

m
ξ′1 +

γλ

m
δ′1

s.t. yi (k
′
I(Bi )

α + b) ≥ 1− ξi ,

ξ ≥ 0,

k′I(xij )
α− δi ≤ k′I(Bi )

α,

k′I(Bi )
α−

ni∑
j=1

β
(t)
ij k′I(xij )

α ≤ δi

James Kwok Kernel Methods in Machine Learning
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Using the Loss Function in MI-SVM

With a particular choice of the subgradient

identical to the optimization heuristic in MI-SVM

MI-SVM: no convergence proof

CCCP: guaranteed convergence
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Classification: Image Categorization on Corel Images

Data set

Used in Chen and Wang (JMLR 2004)

10 classes (beach, flowers, horses, etc.), with each class
containing 100 images

Each image: bag; Image segments: instance

Procedure

Same as in (Chen and Wang)

Randomly divided into a training and test set, each containing
50 images of each category

Repeated 5 times, and report the average accuracy

Model parameters selected by a validation set
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Results

accuracy (%)

DD-SVM (Chen and Wang 2004) 81.5± 3.0

Hist-SVM (Chapelle et al. 1999) 66.7± 2.2

MI-SVM (Andrews et al. 2003) 74.7± 0.6

SVM (MI kernel) (Gärtner et al. 2002) 84.1± 0.90

Our method 84.4± 1.38

Results on DD-SVM, Hist-SVM and MI-SVM are from (Chen
and Wang 2004)

MI kernel used: normalized set kernel

κ(B1,B2) = kset(B1,B2)√
kset(B1,B1)

√
kset(B2,B2)

kset(B1,B2) =
∑

x∈B1,z∈B2
k(x, z), k: Gaussian kernel

Our method: use the L1 loss
significant at the 0.01 level of significance
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Regression: Synthetic Musk Molecules

Predict the real-valued binding energies of musk molecules
Synthetic data sets generated by Dooly et al. (JMLR 2002)

based on using an affinity model between the musk molecules
and receptors

LJ-16.30.2, LJ-80.166.1 and LJ-160.166.1

LJ-16.30.2: # relevant features: 16; total # features: 30; #
scale factors: 2

Make it more challenging

created three more data sets (LJ-16-50-2, LJ-80-206-1 and
LJ-160-566-1) by adding irrelevant features

e.g., LJ-16-50-2 is generated by adding 20 more irrelevant
features to LJ-16-30-2 while keeping its real-valued outputs
intact
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Results

data set DD citation-kNN SVM (MI kernel) our method
%err MSE %err MSE %err MSE %err MSE

LJ-16.30.2 6.7 0.0240 16.7 0.0260 10 0.0184 10 0.0185
LJ-80.166.1 (not available) 8.6 0.0109 8.7 0.0135 4.3 0.0097
LJ-160.166.1 23.9 0.0852 4.3 0.0014 0 0.0054 0 0.0053

LJ-16-50-2 - - 53.3 0.0916 40 0.0723 33.3 0.0673
LJ-80-206-1 - - 30.4 0.0463 23.9 0.0325 22.8 0.0321
LJ-160-566-1 - - 34.8 0.0566 37.0 0.0535 33.7 0.0507

Results of DD, citation-kNN on the first three data sets are
from (Dooly et al. 2002)

DD: does not perform well

Easier data sets: ours has comparable/better performance
More challenging data sets

nearest neighbor-based and DD algorithms degrade with more
irrelevant features
our SVM-based approach is consistently the best
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Conclusion

Kernel methods can now be used on massive data sets:

novelty detection (unsupervised learning)

classification/regression (supervised learning)

manifold regularization (semi-supervised learning)

maximum margin discriminant analysis (feature extraction)

Kernel methods can also be used for multi-instance learning in a
disciplined manner

allows a loss function between the outputs of a bag and its
associated instances

both bags and instances can now directly participate in the
optimization process

by using CCCP, no need to use optimization heuristics

how to design MI kernels? → marginalized kernel

James Kwok Kernel Methods in Machine Learning



Kernel Methods: An Introduction
When Kernels Meet Balls: Core Vector Machines (CVM)

When Kernels Meet Bags
Conclusion

Recent Research

NIPS 2006a

ICML 2006b
NIPS 2006b

ICML 2005
TNN 2006a

ICML 2006a
IJCAI 2007a

ICML 2003
IJCAI 2003
ICML 2004
MLJ 2006

NIPS 2003
TSAP 2005
TASLP 2006

TNN 2004TNN 2006b

Kernel 
methods

datasets
JMLR 2005

IJCAI 2007b

KDD 2006

GLOBECOM 2005
TKDE 2006
IJCAI 2005

large 

extraction
feature 

learning
machine

learning
multi−instance

learning
ensemble

kernel
learning

recognition
speech image /

vision
pervasive
computing

applications

learning
semi−supervised

James Kwok Kernel Methods in Machine Learning



Kernel Methods: An Introduction
When Kernels Meet Balls: Core Vector Machines (CVM)

When Kernels Meet Bags
Conclusion

http://www.cse.ust.hk/∼jamesk

Google: james kwok

James Kwok Kernel Methods in Machine Learning


	Outline
	Kernel Methods: An Introduction
	When Kernels Meet Balls: Core Vector Machines (CVM)
	Scale-up Problem
	Minimum Enclosing Ball (MEB)
	Transforming Kernel Methods as MEB Problems
	Extension: Generalized CVM

	When Kernels Meet Bags
	Multi-Instance Learning
	Constrained Concave-Convex Procedure
	Loss Function
	Optimization Problem
	Experiments

	Conclusion

