

High-Order Heterogeneous Data Mining

Tie-Yan Liu Researcher, Microsoft Research Asia 2006-11-5

Why High-Order Heterogeneous?

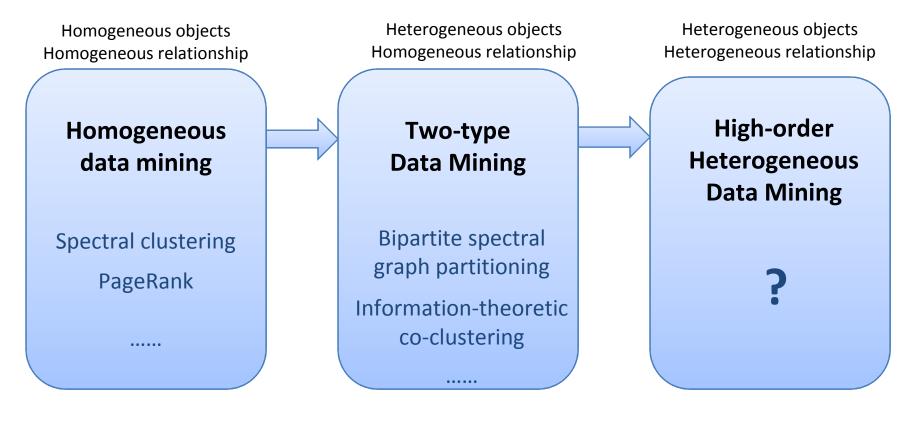
- The world is heterogeneous
 - Objects are heterogeneous:
 - (query, document...), (author, paper...)
- Many applications involve multiple types of objects
 - Web search
 - User \leftrightarrow Query \leftrightarrow Web Page
 - Academic society
 - Author \leftarrow > Paper \leftarrow > Conference \land

√ Journal

 Relationships among these objects are also heterogeneous: similarity, relevance, endorsement; directed, undirected...

However, ...

• Most traditional ML and DM methods focus on homogeneous data, or data of no more than two types.



Related Work: Spectral Clustering (PAMI 2000)

- Spectral clustering cuts relationship graph to cluster similar data.
 - Minimize graph cut

$$obj = \frac{cut(V_1, V_2)}{weight(V_1)} + \frac{cut(V_2, V_1)}{weight(V_2)}$$

$$cut(V_1, V_2) = \sum_{i \in V_1, j \in V_2, \in E} e_{ij}$$

and
$$weight(V_i) = \sum_{j \in V_i} W_j$$
.

$$\min \frac{q^T L q}{q^T D q}$$
, subject to $q^T D e = 0, q \neq 0$

Solution

A

В

- Graph cut can be converted to a generalized eigenvalue problem by using continuous slacking: $Lq = \lambda Dq$
- The eigenvector associated with the second smallest eigenvalue of the Laplace matrix is an optimal embedding for cut minimization.

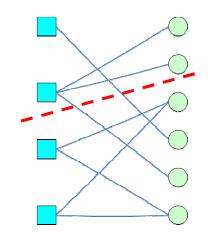
Related Work: PageRank (WWW 1998)

- PageRank ranks the popularity of vertices in a directed graph according to their linkage information.
- PageRank of a vertex is proportional to its parents' rank, but inversely proportional to its parents' outdegree.

$$R(u) = d + (1-d) \sum_{v \in B_u} \frac{R(v)}{N_v}$$
$$R = (1-d)AR + d\Pi, A_{u,v} = \frac{1}{N_v}, \Pi = \frac{1}{N} [1, 1, \dots, 1]'$$

 PageRank can be explained using a Markov random surfer model; or be explained as the principal eigenvector of the smoothed adjacency matrix of the Web graph.

Related Work: Bipartite Graph Partitioning (KDD 2001)



• Cuts bipartite relationship graph to cluster two types of data simultaneously.

$$\begin{array}{ccc} X & Y \\ M = X & \begin{bmatrix} 0 & A \\ \\ Y & \begin{bmatrix} A^T & 0 \end{bmatrix} \end{array}$$

• Due to the bipartite property of the graph, after some trivial deduction, this problem can be converted to a singular value decomposition (SVD) problem.

Related Work: Information Theoretic Co-Clustering (KDD 2003)

- $C_X : \{x_1, ..., x_m\} \to \{\hat{x}_1, ..., \hat{x}_r\}$ $C_Y : \{y_1, ..., y_n\} \to \{\hat{y}_1, ..., \hat{y}_s\}$
- An optimal co-clustering minimizes $I(X,Y) - I(\hat{X},\hat{Y})$ subject to the constraints on the number of row and column clusters.

It can be proved that $I(X,Y) - I(\hat{X},\hat{Y}) = D(p(X,Y) \parallel q(X,Y))$ where D(,) denotes the KL divergence, and q(X,Y) is a distribution of the form $q(x,y) = p(\hat{x},\hat{y}) p(x \mid \hat{x}) p(y \mid \hat{y})$

[Step 1] Set i = 1. Start with (R_i, C_i) , Compute $q_{[i,i]}$. [Step 2] For every row x, assign it to the cluster \hat{x} that minimizes $KL(p(y|x) || q_{[i,i]}(y|\hat{x}))$ [Step 3] We have (R_{i+1}, C_i) . Compute $q_{[i+1,i]}$. [Step 4] For every column y, assign it to the cluster \hat{y} that minimizes $KL(p(x|y) || q_{[i+1,i]}(x|\hat{y}))$ [Step 5] We have (R_{i+1}, C_{i+1}) . Compute $q_{[i+1,i+i]}$. Iterate 2-5.

Going Beyond...

- Modeling the relationships
 - Unified Relationship Matrix
 - Tensor
 - Collective bipartite graphs
- Designing effective data mining algorithms
 - High-order Heterogeneous Coclustering
 - High-order Heterogeneous Coranking

Unified Relationship Matrix

- Integrate pairwise relationship matrices into a unified matrix
 - L'_M: intra-type adjacency matrix
 - L'_{NM}: inter-type adjacency matrix

$$L = \begin{vmatrix} \lambda_{11}L_1 & \lambda_{12}L_{12} & \cdots & \lambda_{1N}L_{1N} \\ \lambda_{21}L_{21} & \lambda_{22}L_2 & \cdots & \lambda_{2N}L_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{N1}L_{N1} & \lambda_{N2}L_{N2} & \cdots & \lambda_{NN}L_N \end{vmatrix} \qquad \qquad L_{urm} = D^{-1}L$$

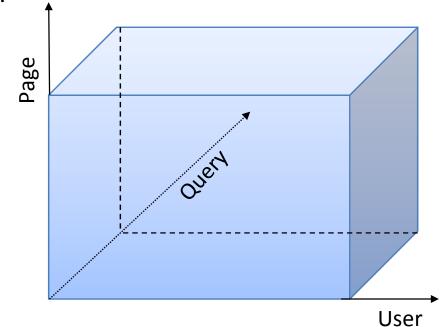
Combination coefficients can be manually set or learned from labeled data

- Representative Work
 - Wensi Xi, et al, Link Fusion: A Unified Link Analysis Framework for Multi-Type Interrelated Data Objects. WWW 2004.
 - Zaiqing Nie, et al, Object-Level Ranking: Bringing Order to Web Objects. **WWW 2005**.
 - Wensi Xi, et al, SimFusion: Measuring Similarity using Unified Relationship Matrix, SIGIR 2005.
 - Xuanhui Wang, et al, Latent Semantic Analysis for Multiple-Type Interrelated Data Objects, *SIGIR 2006*.

11/7/2006

Tensor

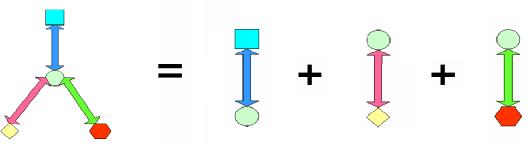
• Use multi-linear algebra to represent heterogeneous relationship.



- Representative Work
 - Jian-Tao Sun, et al, CubeSVD: A Novel Approach to Personalized Web Search, WWW 2005.

Collective Bi-partite Graphs

 Decompose heterogeneous relationship into a collections of pairwise relationships.



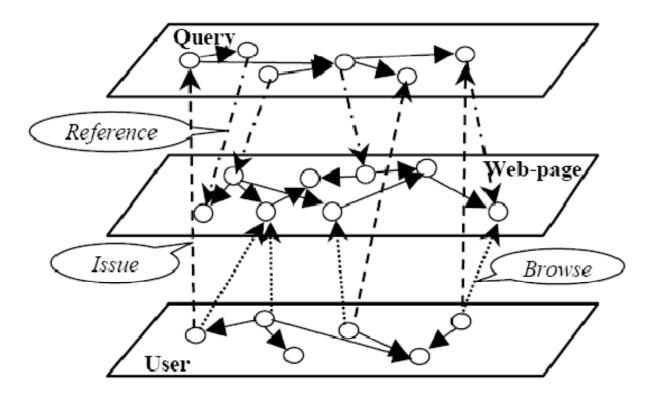
- Representative Work
 - Bin Gao, Tie-Yan Liu, et al, Hierarchical Taxonomy Preparation for Text Categorization Using Consistent Bipartite Spectral Graph Co-partitioning, *IEEE TKDE*.
 - Bin Gao, Tie-Yan Liu, et al, Consistent Bipartite Graph Co-Partitioning for Star-Structured High-Order Heterogeneous Data Co-Clustering, *KDD 2005*.
 - Bin Gao, Tie-Yan Liu, et al, Star-Structured High-Order Heterogeneous Data Co-clustering based on Consistent Information Theory, *ICDM 2006*.
 - Bo Long, Zhongfei Zhang, et al, Spectral Clustering for Multi-type Relational Data, *ICML 2006*.

Algorithms

- Unified Relationship Matrix
 - LinkFusion (WWW 2004)
 - Object-level Ranking (WWW 2005)
 - SimFusion (SIGIR 2005)
 - Multi-type LSA (SIGIR 2006)
- Tensor
 - CubeSVD (WWW 2005)
- Collective Bipartite Graphs
 - Consistent Bipartite Graph Co-partitioning (KDD 2005)
 - Consistent Information-theoretic Coclustering (ICDM 2006)
 - Generalized SVD for Co-clustering (IEEE TKDE)
 - Spectral Clustering for Multi-type Relational Data (ICML 2006)

Link Fusion

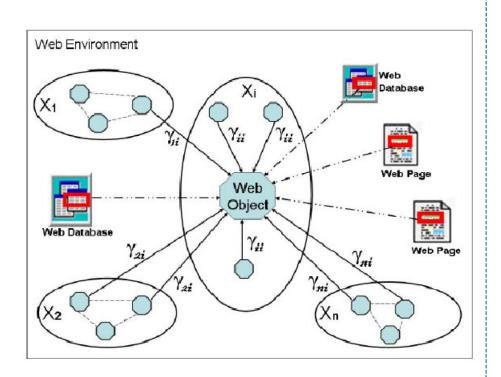
• High-order heterogeneous version of PageRank



Random Walk on Heterogeneous Graph

- Construct the URM by merging pair-wise PageRank matrices with manually-set combination coefficients.
- Imagine a Markov random walk over the heterogeneous graph represented by the URM.
- Ranking over heterogeneous data will correspond to the principle eigenvector of the URM: $w = L_{urm}^{T}w$, and the convergence can be proven.

Object-Level Ranking



Conf./
Journal
$$\gamma_1$$
 Paper γ_2 Author
 γ_3

$$R_X = \varepsilon R_{EX} + (1 - \varepsilon) \sum_{\forall Y} \gamma_{YX} M_{YX}^T R_Y$$

- Use similar URM formulation to LinkFusion
- Learn the combination coefficients with a training set.

Learning the Coefficients

Subgraph Selection

Starting with the labeling data objects, and including all other objects with less than *k*-step links from them.

Algorithm DiameterEstimator(δ :stopping threshold) for (each object type X) $n \leftarrow \text{total number of different object types related}$ to objects of type X; for (each related object type Y) $\gamma_{YX} \leftarrow \frac{1}{n}$; end for compute the *PopRank* scores over the entire graph; $R \leftarrow$ the ranking vector of the training objects; $R' \leftarrow E$; $k \leftarrow 0;$ while($||R - R'||_1 > \delta$) k + +;compute the PopRank scores over the k diameter subgraph: $R' \leftarrow$ the ranking vector of the training objects; end while return k: End DiameterEstimator;

Tie-Yan Liu @

Parameter Search

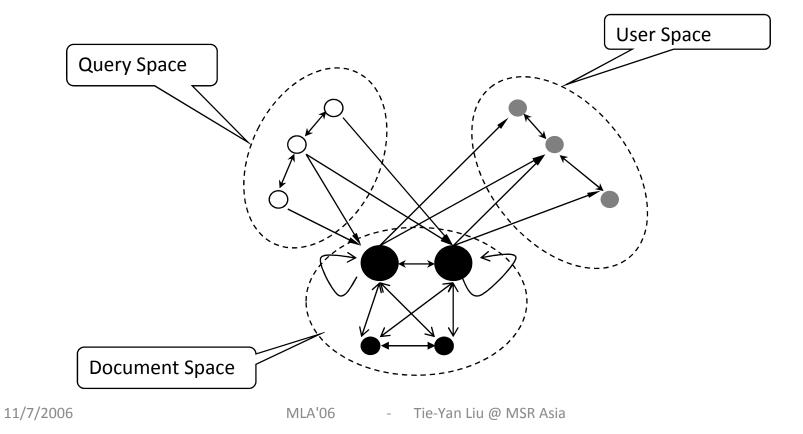
Using simulated annealing based method to search the best parameter in the selected subgraph.

```
Algorithm SAFA (timeout: stopping condition)
   for (each object type X)
     n \leftarrow \text{total number of different object types related}
           to objects of type X;
     for (each related object type Y) \gamma_{YX} \leftarrow \frac{1}{n};
   end for
   t \leftarrow a large number:
   do
     for (each object type X)
        for (each object type Y)
           repeat
             repeat
                randomly select \gamma'_{YX} in Neighbor(\gamma_{YX})
                diff \leftarrow f(\gamma_{YX}) - f(\gamma'_{YX});
               if diff > 0 then \gamma_{YX} \leftarrow \gamma'_{YX};
                else generate random x in (0,1)
                    if x < exp(-diff/t) then \gamma_{YX} \leftarrow \gamma'_{YX};
             until iteration count =
                        max_number_iteration;
             t \leftarrow 0.9t;
           until iteration count =
                       max_number_iteration;
        end for
     end for
   until timeout;
   return the best combination of \gamma_{YXs};
End SAFA;
```

6

SimFusion

The similarity of two data objects in one data type can be reinforced by the similarity value of other data objects they are related to.



Mathematical Formulation

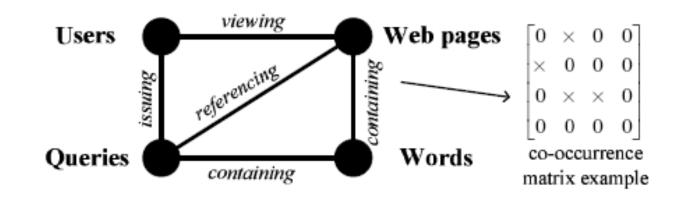
• The similarity reinforcement assumption can be represented as:

$$- S^{new} = L_{urm} S^{original} L_{urm}^{T}$$
$$- S^{n} = L_{urm} S^{n-1} L_{urm}^{T} = L_{urm}^{n} S^{0} (L_{urm}^{n})^{T}$$

- Convergence can be proven.
- The so-calculated similarity can be used for many applications such as object clustering and information retrieval.

Multi-type LSA

- The Mutual Reinforcement Principle of LSA
 - On a multiple-type graph G with N vertices and a number of pairwise co-occurrence relationships, *important* objects of a type co-occur with *important objects* of other types.



Low Rank Approximation

- Conduct EVD on the URM
- Apply similar ideas to principal component analysis, we can regard top k eigenvectors as representing the top k important concepts, and use them to span a k-dimensional semantic space to represent all the objects.
- Use the low-rank approximation of the URM to capture latent semantics, just as classical LSA does.

Discussions on URM

• Pros

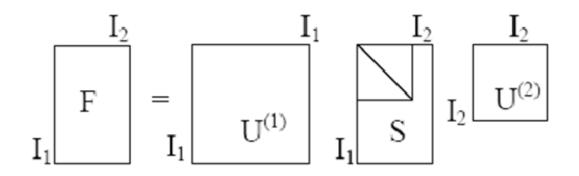
- By building URM, traditional methods for homogeneous data can be easily used.
- Linear algebra might be the most mature mathematical tool in data mining.
- Cons
 - Basic assumption in these approaches is questionable: is it really reasonable that heterogeneous relationship can become homogeneous with linear scaling?

Algorithms

- Unified Relationship Matrix (URM)
 - LinkFusion (WWW 2004)
 - Object-level Ranking (WWW 2005)
 - SimFusion (SIGIR 2005)
 - Multi-type LSA (SIGIR 2006)
- Tensor
 - CubeSVD (WWW 2005)
- Collective Bipartite Graphs
 - Consistent Bipartite Graph Co-partitioning (KDD 2005)
 - Consistent Information-theoretic Coclustering (ICDM 2006)
 - Generalized SVD for Co-clustering (IEEE TKDE)
 - Spectral Clustering for Multi-type Relational Data (ICML 2006)

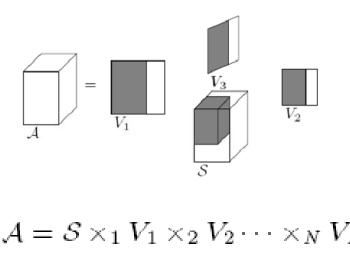
CubeSVD

- Matrix Singular Value Decomposition (SVD)
 - Latent Semantic Indexing (LSI)
 - Apply SVD on document-term matrix
 - In Recommender System
 - Apply SVD on user-item preference matrix



CubeSVD (cont.)

- Tensor Singular Value Decomposition (High-order SVD)
 - Higher-Order SVD might also capture the latent factors that govern the relations among multi-type objects.
 - These semantic relationships can be used to get better clustering.



$$\mathfrak{A} = \mathcal{S} \times_1 V_1 \times_2 V_2 \cdots \times_N V_N$$

1. Construct tensor \mathcal{A} from the clickthrough data. Suppose the numbers of user, query and Web page are m, n, k respectively, then $\mathcal{A} \in \mathbb{R}^{m \times n \times k}$. Each tensor element measures the preference of a (user, query) pair on a Web page.

2. Calculate the matrix unfolding A_u , A_g and A_p from tensor \mathcal{A} . A_u is calculated by varying user index of tensor \mathcal{A} while keeping query and page index fixed. A_q and A_p are computed in a similar way. Thus A_u , A_q , A_p is a matrix of $m \times nk$, $n \times mk$, $k \times mn$ respectively.

3. Compute SVD on A_u , A_q and A_p , set V_u , V_q and V_p to be the left matrix of the SVD respectively.

4. Select $m_0 \in [1, m], n_0 \in [1, n]$ and $k_0 \in [1, k]$. Remove the right-most $m - m_0$, $n - n_0$ and $k - k_0$ columns from V_u, V_q and V_p , then denote the reduced left matrix by W_u, W_q and W_p respectively. Calculate the core tensor as follows:

$$\mathcal{S} = \mathcal{A} \times_1 W_u^T \times_2 W_q^T \times_3 W_p^T$$

5. Reconstruct the original tensor by:

$$\hat{\mathcal{A}} = \mathcal{S} \times_1 V_u \times_2 V_q \times_3 V_p$$

11/7/2006

Discussions on Tensor

- Pros
 - Using tensor to represent heterogeneous data objects is more natural than URM
- Cons
 - Multi-linear algebra is in its initial stage, and many basic operations for tensor have not been reasonably define.
 - Tensors cannot always be "diagonalized"
 - k successive rank-1 approximations to tensors do not necessarily result in the best rank-k approximation
 - Eight factors about tensor
 - Complexity of tensor operator is very high, thus tensor based methods are difficult to scale up.

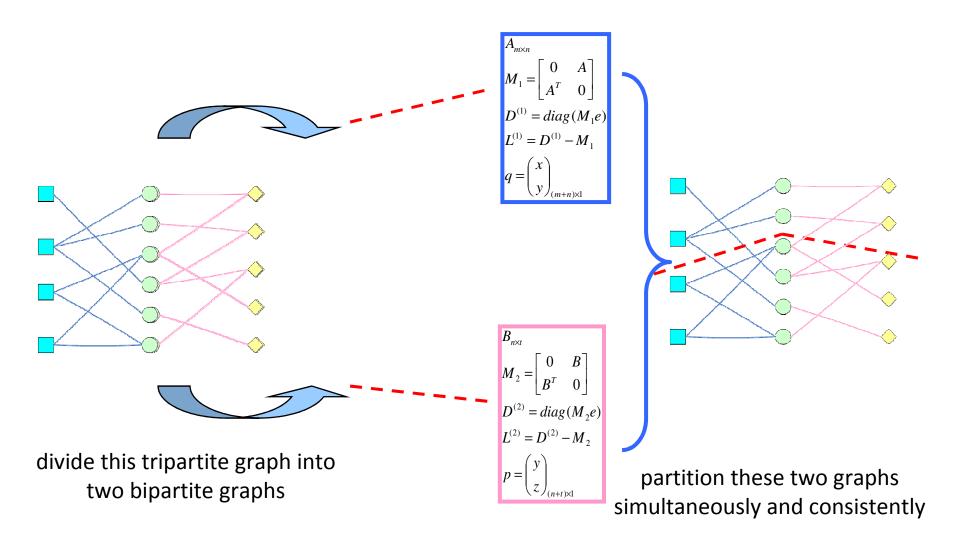
Algorithms

- Unified Relationship Matrix
 - LinkFusion (WWW 2004)
 - Object-level Ranking (WWW 2005)
 - SimFusion (SIGIR 2005)
 - Multi-type LSA (SIGIR 2006)
- Tensor
 - CubeSVD (WWW 2005)
- Collective Bipartite Graphs
 - Consistent Bipartite Graph Co-partitioning (KDD 2005)
 - Consistent Information-theoretic Coclustering (ICDM 2006)
 - Generalized SVD for Co-clustering (IEEE TKDE)
 - Spectral Clustering for Multi-type Relational Data (ICML 2006)

Consistent Bipartite Graph Copartitioning

- User graphs to represent the heterogeneous relationship.
- Divide the heterogeneous graph into a collection of bipartite graphs.
- Conduct spectral co-clustering on each bipartite graph, provided that the partitioning of the shared part of two bipartite graphs should be the same or almost the same.
- Develop an SDP-based solution to get the consistent partitioning results.

Consistent Partitioning



Formulating the Optimization Problem

- Minimize the cuts of the two bipartite graphs, with the constraints that their partitioning results on the central type of objects are the same.
- Objective Function:

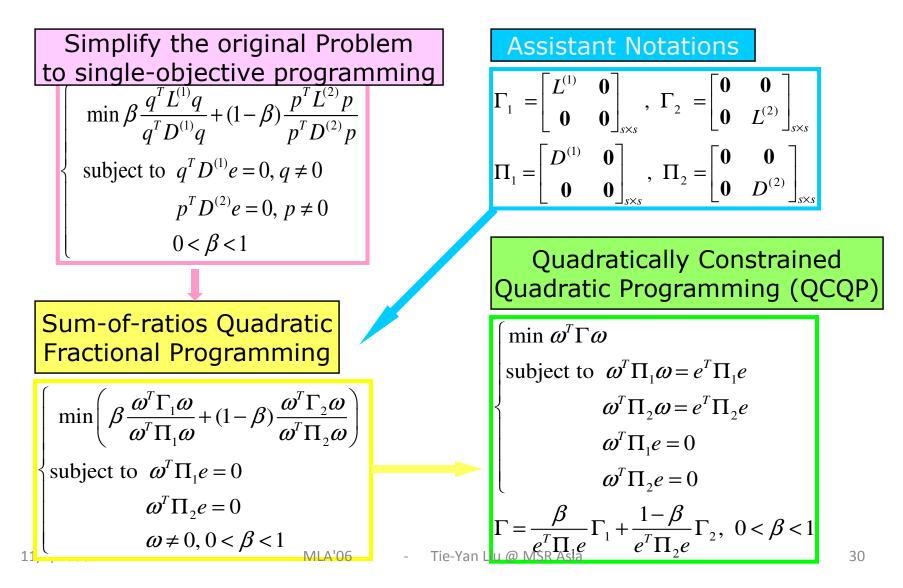
$$\min \quad \frac{q^T L^{(1)} q}{q^T D^{(1)} q}$$

$$\min \quad \frac{p^T L^{(2)} p}{p^T D^{(2)} p} \qquad \qquad q = \begin{pmatrix} x \\ y \end{pmatrix}_{(m+n) \times 1}$$
subject to $q^T D^{(1)} e = 0, q \neq 0$

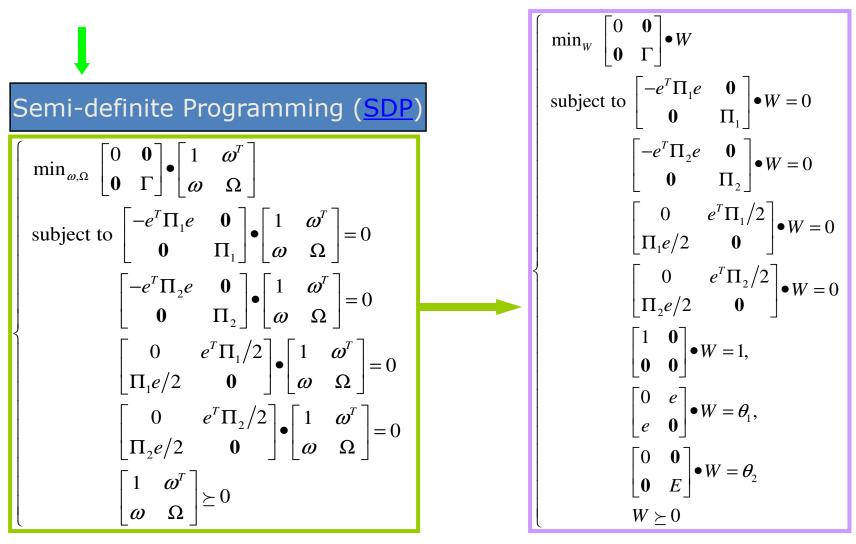
$$p^T D^{(2)} e = 0, p \neq 0$$

$$0 < \beta < 1 \qquad \qquad p = \begin{pmatrix} y \\ z \end{pmatrix}_{(n+t) \times 1}$$

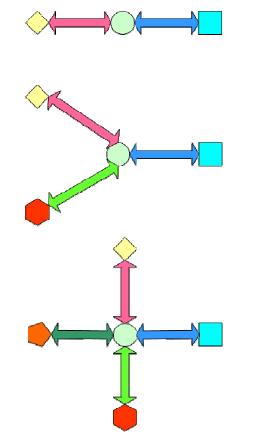
How to Solve the Optimization Problem #1: Convert it to a QCQP Problem



How to Solve the Optimization Problem #2: Convert QCQP to SDP

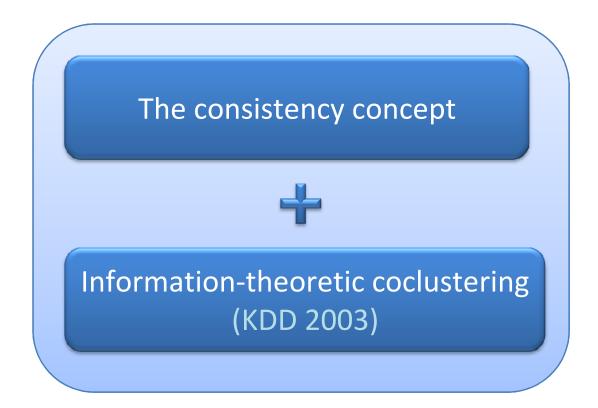


Extension to More Complex Heterogeneous Graphs



$$\begin{cases} \min \sum_{i=1}^{k-1} \beta_i \frac{q_i^T L^{(i)} q_i}{q_i^T D^{(i)} q_i} \\ \text{subject to } q_i^T D^{(i)} e = 0, q_i \neq 0, i = 1, \dots, k-1 \\ \\ \sum_{i=1}^{k-1} \beta_i = 1, \ 0 < \beta_i < 1 \end{cases}$$

Consistent Information-theoretic Co-clustering

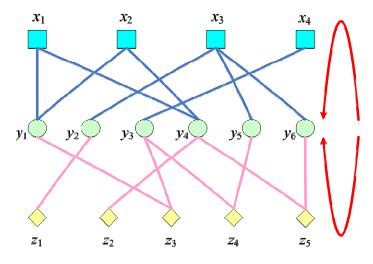


Mathematical Formulation

• Co-clustering

 $C_X : \{x_1, ..., x_m\} \to \{\hat{x}_1, ..., \hat{x}_r\}$ $C_Y : \{y_1, ..., y_n\} \to \{\hat{y}_1, ..., \hat{y}_s\}$ $C_Z : \{z_1, ..., z_l\} \to \{\hat{z}_1, ..., \hat{z}_t\}$

• A consistent co-clustering minimizes the following objective functions



(i) $F(X,Y,Z) = \alpha D(p_1(X,Y) || q_1(X,Y)) + (1-\alpha)D(p_2(Y,Z) || q_2(Y,Z)),$ where $0 < \alpha < 1$

(*ii*) $F(X,Y,Z) = \min_{X,Y,Z} \left\{ \max \left\{ D(p_1(X,Y) \| q_1(X,Y)), D(p_2(Y,Z) \| q_2(Y,Z)) \right\} \right\}$

• Similar iterative method can be used to optimize *F(X,Y,Z)*, and the convergence can be proved.

Generalized SVD for Co-clustering

- Rather than integrating heterogeneous relationship in a unified matrix or using tensor, we try to connect heterogeneous relationships using generalized SVD.
- While SVD corresponds to the optimal embedding of bipartite graph, GSVD might correspond to tripartite graph.

Theorem 1 If we have $\hat{A} \in \mathbb{R}^{m \times n}$ and $\hat{B} \in \mathbb{R}^{n \times t}$, $m \le n \le t$, then there exists unitary matrices $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{p \times t}$ and reversible matrix $X \in \mathbb{R}^{n \times n}$ such that: $\begin{cases} \hat{A} = UCX^T \\ \hat{B} = XSV^T \end{cases}$, (11) where $C = diag(c_1, c_2, ..., c_m)$, $c_i \ge 0$ and $S = diag(s_1, s_2, ..., s_n)$, $s_i \ge 0$.

Generalized SVD for Co-clustering

- 1. Given A and B, form P_1 , P_2 , R_1 , R_2 , and \hat{A} , \hat{B} .
- 2. Compute GSVD of \hat{A} , \hat{B} to get U, X, V, C, and S.
- 3. Form $H = CX^T XS$ and compute SVD of it to get U_H, V_H .
- 4. Form $U^* = UU_H, V^* = VV_H$ and take the second column vectors of them, u_2 and v_2 , to form the normalized embedding vector

$$\omega_2 = [P_1^{-1/2} u_2 \ R_2^{-1/2} v_2]^T.$$

5. Cluster on the one-dimensional data $P_1^{-1/2}u_2$ and $R_2^{-1/2}v_2$ to obtain the desired bipartition of categories and terms, respectively.

No mathematical proof yet, since generalized SVD has no explicit objective function.

Spectral Clustering for Multi-type Relational Data

Handling both pairwise relations and features

$$\begin{split} L &= \sum_{1 \leq i < j \leq m} w_a^{(ij)} ||R^{(ij)} - C^{(i)} A^{(ij)} (C^{(j)})^T ||^2 + \sum_{1 \leq i \leq m} w_b^{(i)} ||F^{(i)} - C^{(i)} B^{(i)} ||^2 \\ & & \downarrow \\ \max_{\substack{\{(C^{(i)})^T C^{(i)}\} \\ \equiv I_{k_i}\}_{1 \leq i \leq m}} \sum_{1 \leq i \leq m} w_b^{(i)} tr((C^{(i)})^T F^{(i)} (F^{(i)})^T C^{(i)}) + \sum_{1 \leq i < j \leq m} w_a^{(ij)} tr((C^{(i)})^T R^{(ij)} C^{(j)} (C^{(j)})^T (R^{(ij)})^T C^{(i)}) \\ & & \downarrow \\ & & \downarrow \\ & & (C^{(p)})^T C^{(p)} = I_{k_p} tr((C^{(p)})^T M^{(p)} C^{(p)}) \\ M^{(p)} &= w_b^{(p)} (F^{(p)} (F^{(p)})^T) + \sum_{p < j \leq m} w_a^{(pj)} (R^{(pj)} C^{(j)} (C^{(j)})^T (R^{(pj)^T})) + \sum_{1 \leq j < p} w_a^{(jp)} ((R^{(jp)})^T C^{(j)} (C^{(j)})^T (R^{(jp)})). \end{split}$$

Optimization Steps

- It can be proved the final equivalent optimization problem has close-form solution.
- The following algorithm is used to approximate this solution.

Algorithm 1 Spectral Relational Clustering Input: Relation matrices $\{R^{(ij)} \in \mathbb{R}^{n_i \times n_j}\}_{1 \le i < j \le m}$, feature matrices $\{F^{(i)} \in \mathbb{R}^{n_i \times f_i}\}_{1 \le i \le m}$, numbers of clusters $\{k_i\}_{1 \le i \le m}$, weights $\{w_a^{(ij)}, w_b^{(i)} \in R_-\}_{1 \le i < j \le m}$. Output: Cluster indicator matrices $\{C^{(p)}\}_{1 \le p \le m}$. Method: 1: Initialize $\{C^{(p)}\}_{1 \le p \le m}$ with othonormal matrices.

- 2: repeat
- 3: for p = 1 to m do
- 4: Compute the matrix $M^{(p)}$ as in Eq. (9).
- Update C^(p) by the leading k_p eigenvectors of M^(p).
- 6: end for
- 7: until convergence
- 8: for p = 1 to m do
- transform C^(p) into a cluster indicator matrix by the k-means.
- 10: **end for**

Discussions on Collective Graphs

• Pros

- It is more natural to decompose heterogeneous relationships into homogenous relationships, than to combine homogeneous relationships to heterogeneous relationships.
- Cons
 - Complexity of graph processing is relatively high than power method.
 - Graph fusion has not been well studied yet.

Summary

	URM	Tensor	Consistent Bipartite Graph
Clustering Cu	SimFusion Multi-type LSA	CubeSVD Cons	Consistent Bipartite Graph Copartitioning Consistent Information- Theoretic Coclustering istent Rank? I Data
Ranking	LinkFusion Object-level Ranking	Ş	Ş

Future Work

- Modeling the heterogeneous relationship more effectively.
 - Matrix, tensor, graphs, ...
 - What is the next?
- Develop more efficient algorithms for high-order heterogeneous data mining.
 - Scalability is an issue for most of the algorithms mentioned in this talk.
 - Large-scale (multi-)linear algebra and large scale optimization
 - Supervised or semi-supervised learning for high-order heterogeneous data (i.i.d is not a reasonable assumption).

Further Discussions

- Although data objects are heterogeneous, they can be regarded as sampled from the same probability space.
 - The heterogeneity just comes from different views of the space.
- Can we recover the unified probability space and solve this problem from the root?
 - Reference paper
 - Ying Liu, Tao Qin, Tie-Yan Liu, et al, Similarity Space Projection: A Novel Framework for Web Image Search and Annotation. MIR 2005.

Thanks!

tyliu@microsoft.com

http://research.microsoft.com/users/tyliu/