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Sensors provide a continuous stream
of data
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Big Brother tracking device
that will help to save lives
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Spy technology right out of a James Bond film has

been brought to life and will soon help save lives, or -

to the horror of the inventors - supply Big Brother
with its ultimate tool.

Artificial-intelligence experts at the University of
Science and Technology have created a cevice of
tiny sensors and a computer program that interprets
data to track a person’'s every move, and even see
what they are doing.

"It is the ultimate dream for any science fiction fan.
Using these sensors we can tell the temperature of
a person, the brightness of their surroundings,
whether they have come into contact with any
machinery, how fast they are moving, and hear what
they are hearing,” said Yang Qiang, a professor.

"It is like GPS for the indoor environment. All you
have to do is put sensors on a person and along the
path insice the building. Data is sent to a computer
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Our Research in Wireless Sensor
Networks (WSN)

Objective: develop new
algorithms for learning user
activities
To he_lp users conduct = = 4
planning = :
To recognize users’
locations and actions

To detect abnormal user

behavior - - & g
Questions:
Can existing inductive | ~ 0"

learning framework help?

If not, can we develop
new learning algorithms?



Three Learning Issues of AR In WSN

(AR = Activity Recognition; WSN = Wireless Sensor Net)
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Three Learning Issues of AR In WSN

(AR = Activity Recognition; WSN = Wireless Sensor Net)

From Location and Signal Streams to
Learning Dynamic Models to Segment

Actions Locaioh | s
Learning Dynamic Bayesian Networks R RN
for Goals Location-based
Sensor Model
Signals
SSi1 SSik1 SSk S8t S8: S8k
I Sy }—) 8y |
' v
[AAAIO4, AAAIOSa,b, % 050 g
ICDMO5, AlJ 06(c)] e 3 :



Three Learning Issues of AR In WSN

(AR = Activity Recognition; WSN = Wireless Sensor Net)

From Action Sequences to Action
Models S

Learning to attach preconditions S
and post-condition to action

Sequences ARMS Actiin Model
Learning probabilistic and
factored models of actions ?3/3@

ﬁ\ctlml.l.’ﬁ Ac n5
=
Act{ﬁ.ﬂ_.

5 *M

L Actiond

Load-truck (?x - hoist ?y - box ?z - truck ?p -
place)

pre: (at x p), (at z p), (lifting X y)

del: (lifting x y)

add: (aty p), (iny z), (available x), (clear y)

[ICAPS 05, AlJ 06]



This Talk

Learn action models for
planning

Statistical relational
learning

Learn user actions from
sensor signals, and detect
abnormal behavior

Outlier Detection:
Abnormal User-
Behavior Detection (if
have time)

Difference from

Reinforcement Learning
Reinforcement
learning acquires

relations between
actions

Pr(S1|S2,A3)
We try to learn factored
action models
More compact than RL

Can work with RL
(later)



background on Al planning

Before 1995

Forward and Backward Search
based

Traditional Planning

Propositional world
descriptions

stow (5-6 actions in several WO

minutes)

State transitions using
Markov models

Markov decision processes
(MDP)

Partially observable MDPs

Output: a policy (state-action-
outcome probabilities)

Inefficient and impractical still
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Background on Al Planning

After 1995

Planning based on
Operations Research
Methods o
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Learning in Al Planning

RS HTEE
Before 2000 q}?*%_r)gle learning probabilistic planning policies iggig%

9 . . @ BHEREN O MBRERIEE ONSYRPIEE
Main effort in learning search control
Explanation based learning BRES paxs snve #87 810HR &leaming probabi
Extend knowledge of search tree

&R #T: TAENSPY (BR) MER. TEFMESRT PLUEENSIET.
to learn concept of success and M Littman
0 . —— Value-function approximations for partially observable Markow decision processes - 2 {82140 »
fallure In SearCh W M Hauskrecht - Journal of Adificial Intelligence Research, 2000 - citeseerist psu.edu
g 3 g = Hoenig ... 1995 139 Probabilistic planning with information gathering and contin.. - Draper,
NOt IndUCtlve Iearnlng L Kaelbling Hanks et al. - 1884 125 Exploiting structure in policy construction - Boutilier,
- - . W Hauskrecht Foole - 1996 107 Learning policies for partially observable environments: sca ...
Learning Actions: PR i o0k mEE - TS RS
Almost none Agent F4EH T (/BT T RMAE R - 2 BEA
HEE, B B PEtE - SRS, 2004 - BAEREERS
After 2000 ... cost. Operations Research, 1978 ,26: 282~304 [35] Madani O, Hank S, Condon A, On
g a the undecidahility of probahilistic planning and infinite ... Massachusetts Institute
SearCh Speed IS not COﬂSldered a of Technalogy, Cambridge, 2000 [38] Littman ML Cassandra AR Kaelbling L P. Leaming ...
problem anymore #WalH 1k - HETE - HEES
d The complexity of Markov decision processes - 5 EEHE »
Thus’ SearCh ContrOI Iearnlng 9 C Papadimitriou, JM Tsisiklis - Mathermatics of Operations Research, 1987 - portal acm.org
n|| ... Paolo Liberatare, The size of MDP factored policies, Eighteenth national conference
on Avtificial intelligence, p ... C. Ribeiro, Reinforcement Learning Agents, Artificial
1 1~1 Intelligence Review, v.17 n.3, p ... Omid Madani , Steve Hanks , Anne Condan, ...
Learnlng MDP POlICIeS and POMDP WK 2200% - HETE - HEHS - EEEES
Policies from example plans
. . . irs1 MAXPLAN: a new approach to probabilistic planning - 5 EZ5H »
EmphaSlze Iearnlng Of relatlons St Majercik, ML Littman - === International Conference on Adtificial Intelligence Planning, 1995 - csl.mtu.edu
g Page 1. MAKPLAN: A Mew Approach to Probabilistic Planning Stephen M. Majercik and
betweeln aCtIOnS fand Staées, bUt Michael L. Littman Department of Computer ... sizes. max- plan is a new probabilistic
not on earnlng M actore actlon planning tthnique that aims at combining the best of these two worlds. max- ...
WA 4 ik - HEANE - HIML AR - S
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- The NSF workshop on reinforcement learming. Summary and observations - 2 EEHE »
Observatlon S Mahadevan, LP Kaelbling - Al Magazine, 1996 - citeseer.ist. psu.edu
. R . ... Zhang, Distterich - 1995 BB Robot shaping: Developing autonomous agents through
NO Iearr”ng on aCt'on mOdeIS up unt” Iearning_(comgxt) - Dungu_, C_olombetti - 1994 54 Planning under L_mcgrtainty ... 1885
now ;?ghla%mﬂg\is|n%%%r£;t|0%5%%%emfm(é_§;{gl) - Rummery, Niranjan - 1954 53 ...
%, - HHES = -4

Why?

a1 Leaming generalized policies in planning using concept languages - 5 & »
I Martin, H Gefiner - Proc. 7th Int. Conf. on Knowledge Representation and ==, 2000 - |dc.usb.ve
Paoge 1. Learning aeneralized policies in planning using concent languanes ... YWe are
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Related Work on Action Learning

Inductive Logic Programming (e.g. Sablon & Bruynooghe 1994)

But cannot learn when intermediate states are not known in a long plan
trace (~50 steps)

Learning by observation and practice: An incremental approach for planning
operator acquisition (Wang, X. 1995)

But requires full states to be observed
Knowledge Editors, GIPO (McCluskey, Liu, & Simpson 2003)
But requires a human editor

Drillo
op-name: hold-with-vise
Pre-state: Spot-drilld
(has-device drill0 vise0)
(on-table drilld partd) | [
(is-clean part0) ' \\j - _’/
(is-empty-holding-device vise0 drill0) Parid ]| Viee? [/
(is-available-table drill0 vise0) Ll |
(holding-tool drill0 spot-drillQ) .
(is-available-part part0) Figure 3.2: Pre-state of observation (X O Wang theSIS C M U y 1996)
(hardness-of partO hard) in Figure 3.1.

(material-of part0 iron)
(size-of part0 width 2.75)
(gize-of part0 height 4.25) Drillo
(size-of part0 length 5.5)
(shape-of part0 rectangular)

Delta-state: Spot-drilld

adds:

(holding drill0 viseQ part0 side5) T Partd

dels: \NTo (

(is-empty-holding-device vise0 drillQ) y| Vise0 .: 13
(on-table drill0 part0) Table0 |

(is-available-part part0)

- i . X ) Figure 3.3: Post-state of observation
Figure 3.1 An observation of the state belore and A L



Learning Actions’ Effects and
Preconditions [Wang, 1996, CMU]

When states before and after actions are Learning Algorithm
known in training . Initialize Precondition(A) to be first
Use a covering based algorithm positive data(i)'s pre-state
Each action A corresponds to a rule: Initialize Effect(A) to be the first positive
If factl and fact2 and .. Then data(i)’s post-state
effectl and effect2.. For each data(j) in rest(Data), do
o If class(data(i)=A) then
Training Data: Remove unnecessary
pre-states = a set of facts before the preconditions in A, and
action A Add new effects
post-states = a set of facts after the If class(data(i)) is not A, then
action A

Label unmet preconditions

Data = {<pre-state, post-state, class = A, Add more preconditions

or not A>, i=1, 2, ...}

Note:
cla?szA _means A can be executed in Comments:
pre-state; i [
oA I Local search algorithm, Ad Hoc in
executed nature

No inductive learning
No concept of testing

14



Relating Sensors to Actions: ready!

RFID (radio frequency Wireless LAN
Identification) is a technology

that incorporates the use of Everywhere today,
electromagnetic or electrostatic coverage can be
coupling in the radio frequency citywide

(RE) portion of the Indoor alternative to
electromagnetic spectrum to GPS

uniquely identify an object,
animal, or person.

An RFID system consists of MOteS e
three components: an antenna Ll
and transceiver (often combined
Into one reader) and a
transponder (the tag).

Range: 6 to 90 feet

« Jonathan Lester et al., "A Hybrid Discriminative-Generative Approach
for Modeling Activities ," IJCAI 2005, Jul. 30, 2005 15




With WSN, data are becoming available
(2000 hours of data;
cf: Hai Leong Chieul, et al. 2005)

7:30am  armband goes on after shower
7:45am  subject gets into car

7:48am timestamp for start of driving
8:15am timestamp for end of driving

6:24pm  subject timestamps start of
exercise_stationary_bike

6:44pm  subject timestamps end of
exercise_stationary_bike

6:50pm  subject timestamps beginning of
general_exercise (tae kwon do

class, which isn't a possible annotation)

7:10pm  subject timestamps end of general_exercise
9:25pm  subject timestamps beginning of watching_tv
11:30pm subject timestamps end of watching_tv

12:01am subject timestamps beginning of lying_down

7:30am  subject timestamps end of lying_down and
removes armband

16



Observations

Research on learning action models : ;
S i e [ Using sensors in WSN,
Why Actions and parameters are given
Data have not been available L -
With the WSN, the situation Initial and goal facts are given
IS changing Sequences of actions are given,
Learning actions from
observations involves a new but

type of learning

Different from pure inductive The intermediate states are

learning only partially known
because data are not in . .
normalized format Lots of noise and uncertainty
Nature of learning: i
Sequences to learn:
Relational .
A —— Action models!

Probabilistic

MDL: regutl)arization is QUEStIOn:
miimize the model What type of learning?

17



Our Main ldea: Action Model

L_earni NQ [cAPs 2006; AlJ, 2006, w/ KH Wu and Y. Jiang]

Input: observed plans Key contribution:
init1, a11, a12, ais, ..., ain, goal * can learn action models
Init2, a21, a2, azs, ..., azm, goalz even when no |
Intermediate state observations
Output: action models; e.g. are available

load (x - hoist y - crate z - truck p - place)

pre: (at x p), (at z p), (lifting x y)
del: (lifting X y)

add: (aty p), (iny 2), %

(available x), (clear y)

33

Action Model

—— Main Issue: @ ﬁ
Automatically guess an initial s G i&@
action mode| _ Zj/z\? _

Then allow humans to edit "‘“‘l‘“ﬂ'ﬁ% ﬂs

these models ey ﬁ1 &7&

SEEUTE Actiond



Action-Relation Modeling System

(ARMS)

Learning action models from
observed plans with incomplete
knowledge (0% ->100%)

With or without
intermediate states

Example plan traces
given as input =» positive
examples

Generates an
approximately correct
and near-minimal
logical action model
STRIPS (this work)

ADL and PDDL (future
work)

Methodology:

Step 1: Building an
action model from
observed plans with
ARMS

Build a clausal form=>
SAT formula, and

Solve it using a
Weighted MAXSAT
solver

A kind of one-class
relational learning

Step 2: Hand editing to
make the model more
correct

19



Basic Idea of ARMS System

Observed plans = Constraints

constraints on actions Preconditions and effects

Relations to be learned must share parameters
Whether a relation Non-empty preconditions

should be in precondition
of A, or effect of A, or not

Constraints on relations can

and effects
If (al, a2, ...an) s

be integrated into a global frequently co-occurring,
optimization formula Each ai gives
Maximum Satisfiability something for later
Problem actions
One-class Relational
Learning
Testing
Correctness

conciseness

20



The one-class learning problem:
(ref. Gal Chechik, Stanford )

Find a subset of similar/typical samples

Formally: find a ball of a given radius (with
some metric) that covers as many data points
as possible (related to the set covering
problem). 5 ©

21



The MDL principle

MDL stands for minimum description length

The description length is defined as:
space required to describe a theory

+
the theory’s mistakes

In our case the theory is the classifier and the
mistakes are the errors on the training data

Aim: we want a classifier with minimal DL
MDL principle is a model selection criterion

22



Input Data (Plans w/ action names)

domain Deg;nt Table 2: Three plan examples
types place locatable - object Planl Plan2 Plan3
depot distributor - place Initial I 2 I3
truck hoist surface - locatable state
pallet crate - surface Stepl | (ifthl cOpl | (lfthl cl (lift h2 ¢l c0
predicates  (at x - locatable v - place) ds0). (drive c0 ds0} ds0)
{on x - crate v - surface) t0 dp0 ds0)
(in x - crate y - truck) Step? | (load hl c0 | (loadhl cl | (load h2 cl tl
(lifting x - hoist y - crate) FD ds0) FD =, : sl
(available x - hoist) Step3 | (drive t0 dsO | (laft hl cO (lift h2 c0 p2
(clear x - surface) dp) pl ds0) ds0), (drve tl
actions drive (x - truck v - place z - place) ds0 dpl)

. : Stepd (unload hi (load hl c0 | (unload hl ¢l
lift(x - hoist v - crate z - surface p - place) <0 t0 dp0) 0 ds0 1 dp1). (load
drop(x - hoist v - crate z - surface p - place) P s0) 1o f[: i[] dzg;
1"‘"'1"(-“;‘ h"';ft Y - crate z - truck g Placl“*'} Step5 | (droph0c0 | (drive t0 | (drop bl cl pl
unload(x - hoist v - crate z - truck p - place) p0 dp0) ds0 dp0) dp1). (drive t0

ds=0 dp0)
11 - (at p0 dp0). (clear p0). (available h0). (at h0 dp0). (att0 | Stepbd (unload h0 | (unload hO c0
dp0). (at p1 ds0), (clear c0), (on c0 pl). (available h1), (at cl t0 dp0) tl dp0)
hl ds0) Step/ (drop hO c1 | (drop hO <D p0
I : (at p0 dp0), (clear p0). (available h0), (at h0 dp0). (at t0 p0 dp0) dp0)
ds0). (at pl ds0). (clear c1), (on c1 c0). (on c0 pl). Step8 (unload h0
(available hl). (at hl ds0) c 0 dp)
I5 - (at p0 dp0). (clear p0), (available h0). (at hO dp0). (at Step9 (drop hO c0
pl dpl), (clear pl), (available hl), (at hl dpl), (at p2 ds0). cl dpl)
(clear c1). (on cl c0). (on c0 p2), (available h2). (at h2 ds0). Goal (on c0 pO}) (on cl p0) (on c0 p0)
(at t0 ds0). (at t1 ds0) State {on cO cl) {on cl pl)

23



The ARMS Algorithm: Stepl

Step 1. Initialize by
lifting and parameter
matching

Example

load (gripperl2 crate2
truck2 place3l)...

4

load (?x ?y ?z ?p)

Lift(?x, ?y)

24



The ARMS Algorithm: Step 2

Step 2. Frequent-set
Mining




The ARMS Algorithm: Step 3

Step 3. Encode and
Solve a weighted MAX-
SAT problem

Input: clauses

1170

1180

795-930

795-1040

7951234 0

7955678 0
Output: a SAT solution

11

20

31

26




The ARMS Algorithm: Step 4

Step 4. Output,
Test by X-validation
Human Edit..

action models:
Load (?X - hoist ?y -
crate ?z - truck ?p -
place)
pre: (at ?x ?p),
et 2z za, (e 22¢ 2
add: (in ?y ?2),
(available ?x)
del: (lifting ?x ?y)
Uhleas

27




Key Component: Weighted MAXSAT
formulation

Explain why an action al often appears before a2?

Perhaps because al produces a proposition that a2
consumes, or

al and a2 both require the same precondition, or
a2 produces a proposition that al deletes
Or

Explain general requirements for al’s preconditions,
adds and deletes

Preconditions and adds don’t intersect
Effects are subsets of Preconditions

28



Imposing Constraints to find a
plausible action model

1. Proposition Constraints

For a first or last action A in a plan, an initial or
goal proposition P,

(P,A) Iis a candidate of Pre(A) if frequency of

(P,A) Is greater than a [theta] value.

Table 3: Examples of All Supported Predicate Constraints
Label | Predicate Constraints | Support

ivi (clear v)E prepge 3
ix. p} (at x p) € pregp 3
ix | | (available x) € preg, 4 3
{z.p} | (atzp) € pres: 3
5 0 e
{y. z} (ony z) € preg gy 3
{x.v} | (atxy) € predrive 1
3

{y. z} (ony z)€ addgrop 3 s




2. Action Constraints
Precondition and Add-list :

Intersection between add-list and
precondition must be empty

pre; Madd; = @

Example
— (lifting x Y€ add; = (lifting x y)& pre;
— (atyp)e add; = {atyp)é pre;

— (inyz)E add; = (inyz)E pre;

— (clear y)< add; = (clear y)& pre;

— (atz p)e add; = (atz p)& pre;

— (lifting x y)€ pre; = (lifting x y)¢ add;
— (aty p)E€ pre; = (aty p)¢ add;

— (inyz)E pre; = (iny:z)g¢ add;

— (clear y)< pre; = (cleary)¢ add;

— (atz p)e pre; = (atzp)d add;



2. Action Constraints
Precondition and Del-list

Deletes are subsets of preconditions

del; C pre;.
Example
— (lifting x y)< del; = (lifting x y)€ pre;
— (atyp)e del;, = (atyp)e pre;
— (inyz)e del; = (inyz)e pre;
— (clear y)< del; = (cleary)< pre;
— (atzp)e del; = (atzp)< pre;

31



3. Plan Constraints

Explain why two or more frequent nearby actions ai and aj in
plans

Either they use the same precondition, or ai adds p for aj, or
ai deletes p, but aj adds p again.

dp.ip = (pre; Npreg) Apl & idely)) v (p e (add; M
pre; ) v (p e (del; Madd;))

For example, suppose that

((lift x - hoist y - crate z — surface p - place),

(load x - hoist y - crate z - truck p - place), 0)

Is a frequent pair.

The relevant parameters: x-x, y-y, p-p.

Thus, these two actions are possibly connected by predicates
(at x p), (available x), (lifting x y), (aty p), and (clear y)...

We can then formulate the plan constraints as stated...

32



ARMS Learning Example

Plan:
Initial = (lift obj truck place) 2 (load obj truck place) =2 Goal
Initial = {at(obj, place), at(truck, place)}
Goal={In(obj, truck)}

Other propositions: { lifting(obj, truck)}

Creating Clauses:

Proposition Constraint:
{ (at(obj,place) € PRE(lift) or at(truck,place) € PRE(lift)},...

Action Constraint
(at(obj,place) € PRE(lift) =» (at(obj,place) € ,ﬁDD (lift)

etc

33



Example: continued...

Creating Clauses:
From Plan Constraint:

{lifting(obj, truck) € ADD((lift obj truck place)) and
lifting(obj, truck) € PRE(load obj truck place)}
or

{at(truck, place) € ADD((lift obj truck place)) and
at(truck, place) € PRE(load obj truck place)} or
<etc>

34



Final Clausal Form:

lifting(obj, truck) € PRE(lift)
at(obj, place) € PRE(lift)
at(truck, place) € PRE(lift)
in(obj, truck) € PRE(lift)
lifting(obj, truck) € ADD(lift)
at(obj, place) € ADD(lift)
at(truck, place) € ADD(lift)
in(obj, truck) € ADD(lift)

. lifting(obj, truck) & DEL(lift)
10: at(obj, place) € DEL(lift)
11: at(truck, place) € DEL(lift)
12: in(obj, truck) € DEL(lift)

‘900\1@0"-“00'\"—‘

13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

lifting(obj, truck) € PRE(load)
at(obj, place) € PRE(load)
at(truck, place) € PRE(load)
in(obj, truck) € PRE(load)
lifting(obj, truck) € ADD(load)
at(obj, place) € ADD(load)
at(truck, place) € ADD(load)
in(obj, truck) € ADD(load)
lifting(obj, truck) € DEL(load)
at(obj, place) € DEL(load)
at(truck, place) € DEL(load)
in(obj, truck) € DEL(load)

35



Final Clausal Form: A Satisfiability
Formula

Convert to 3-CNF sentences.

e.g.,
(-Dv-BvC)A(Bv-Av
—C)A(-Cv =BV E)A(EV
—D v B)A (B Vv EvVv-=C)

m = number of clauses

n = number of symbols

Hard problems seem to
cluster near m/n = 4.3
(critical point)

... can have up to 7000
clauses

Runtime

DPLL — ﬁ |
WalkSAT - ITJ{
4 |
\ |
Iil\ \ |
| Y
||4| " .
|
| _
|
|I £ i
|| ﬂd
| X 1% %_‘-\ -
Jl {*M& * "&__qx."“x“ -
LT Mg
e i & . , , 5
o 1 2 3 4 5 6 1 8

Clause/symbol ratio m/n
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Weighted MAX-SAT

SAT Solvers:

find an assignment of
true values to variables
that can satisfy a
collection of clauses.

Weighted MAX SAT Solvers:

Assign a weight to each
clause and seeks an
assignment that
maximizes the sum of the
weights of the satisfied
clauses

In ARMS, weights =
probability of appearing
In the plan examples

Weighted MAX Satisfiability
Problem:

Given a collection C of m
clauses, C1, .. .Cm
involving n logical
variables, with clause
weights Wi, find a truth
assignment that
maximizes the total
weight of the satisfied
clauses in C.

Brian Borchers and Judith Furman. A two-phase

exact algorithm for MAX-SAT and weighted MAX-

SAT problems. Journal of Combinatorial

Optimization, 1999.

Henry Kautz, Bart Selman, and Yueyen Jiang. A
general stochastic approach to solving problems

with hard and soft constraints. The Satisfiability
Problem: Theory and Applications, 35, 1997. 37



WalkSAT and MaxWalkSAT

The WalkSAT Algorithm

for i < 1 to max-tries do
solution = random truth
assignment
for j < 1 to max-flips do
iIf all clauses satisfied then
return solution
c < random unsatisfied
clause
with probability p
flip a random variable in c
else
flip variable in ¢ that
maximizes number of satisfied
clauses
return failure

Source: Domingos, 2006

The MaxWalkSAT Algorithm

for 1 < 1 to max-tries do
for j < 1 to max-flips do

threshold then
return solution

with probability p

else

If > weights(sat. clauses) >

flip a random variable in c

solution = random truth assignment

c < random unsatisfied clause

flip variable in ¢ that mximizes
>. weights(sat. clauses)
return failure, best solution found
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Cross Validation in ARMS

Correctness Demo

A plan is said to be
correct if (1) all

actions' preconditions
hold in the state just
before that action and (2)
all goal propositions hold
after the last action.

Error rate
Redundancy

A non-redundant action
model is when every
effect of an action is
useful later in a plan

Redundancy rate



Experimental Metrics

Number of all unsatisfied preconditions

Number of all preconditions
Number of all unuseful predicates in add list

Number of all predicates in add list

Error Rate =

Redundancy Rate =

The planning domains in
International Planning Competition
2002

Planner: MIPS, used to generate
Number of Clauses: how simple the example plan traces

AR Elieelite) [ | Five-fold cross-validation
CPU Time: Efficiency of learning Training: 160 plans
Test: 40 plans

Repeat five times, take the
average

Plan lengths: average length=50
actions
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Error, redundancy, CPU, Clauses vs.
Theta
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Error, redundancy, CPU, Clauses vs. #
Plans in Training Data
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The Learned Action Model in Depot
Domain

Table 3: The Learned Action Model{Depots Domain, # =

80%)

ACTION  dove (x - truck v - place z - place)

PRE: (atx v)

ADD: (at x z)

DEL.: (at x v)

ACTION  lift(x - hoist v - crate z - surface p - place)

PEE: (at x p).(available x).(at v p).(on v 2).
(clear v).(at z p)

ADD: (lifting x v).(clear z)

DEL.: (at v p).(clear v).(available x).(on v z)

ACTION  drop(x - hoist v - crate z - surface p - place)

PEE: (at x p).(at z p).(clear z)_ (lifting x v)

ADD: (available x).(clear v).(on v z)

DEL.: (lifting x v).(clear z)

ACTION load(x - hoist v - crate z - truck p - place)

PEE: (at x p).fat z p).(hifting x v)

ADD: (1 v z).(available x).(at v p). (clear v)

DEL.: (lifting x v)

ACTION unload(x - hoist v - crate z - truck p - place)

PRE: (at x p) (at z p) (available x) (in v z).
(clear v)

ADD: (lifting x v)

DEL.: (1 v z).(available x).(clear v)

Bold: in learned model but
not in hand-crafted model

ltalic: in hand-crafted model,
but not in learned model

Model: can generate plans,

But plans may be different from
learning examples
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What type of Learning: Markov Logic
Networks (ref Domingos, 2006) Smokers

Example:

1.5 | VX Smokes(x) = Cancer(Xx)
1.1 |vx, y Friends(x, y) = (Smokes(x) < Smokes(y))

Two constants: Anna (A) and Bob (B)

PSR

—

Source: Domingos 2005. 44




Learning MLNs

Data Is a relational database
Closed world assumption (if not: EM)

Learning parameters (weights)
Generatively
Discriminatively

Learning structure

Source: (Domingos 2005)
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Relation to Statistical Models

Obtained by making all

Special cases: . :
predicates zero-arity

Markov networks
Markov random fields
Bayesian networks
Log-linear models
Exponential models
Max. entropy models
Gibbs distributions
Boltzmann machines
Logistic regression
Hidden Markov models

Conditional random Source: (Domingos 2005)
fields 46

Markov logic allows
objects to be
Interdependent
(non-i.i.d.)

Discrete distributions



Relating MLNs with ARMS

The ARMS algorithm can be considered as a special case
of the MLN algorithm,

We invent a new predicate InPrecond such that, for a literal P
and action A,
InPrecond takes P and A as arguments in the form of

InPrecond(P,A) todenote the fact that the literal P is assigned
to the precondition of the action A

We invent a new predicate InAdd such that, for a literal E and
action A, InAdd takes E and A as arguments in the form of
InAdd(E,A) to denote the fact that the literal E is assigned to the
effects of the action A.

Similarly, we define InDelete(E,A) for the delete list items.

Constraints: the action constraint (A.1) can be represented
as a knowledge-base (KB) formula:

A 2 Actions.InPrecond(P,A) ) =InAdd(P,A) which states that the intersection of
preconditions and add list of all actions are empty.
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ARMS: What type of learning?

Statistical relational
learning

Markov Logic
Networks

Also learning from one-
class of data

Unlike traditional
multi-class
classification
problems

Optimization used to
ensure minimal
model size and
maximum coverage
of training data

MDL principle

ARMS Learning as MLN:

Nodes themselves are constructed
using the domain specific predicates,
variables and constants such as
(on ?x,?y).
Relations between nodes include
logical axioms that encode specific
constraints in a problem domain.
For example, in the blocks world, an
axiom states that the predicate
(clear ?x)=True precludes that there
exists an object ?y, such that
(on ?y,?xX)=True.
These axioms as well as the
constraints form the relations
between the nodes in the MLN.
The weights of the hard constraints,
such as the above example, are set
to be the highest. The action,
information and plan constraints
receive their weights accordingly
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References on ARMS

Qiang Yang, Kangheng Wu and
Yunfei Jiang. Learning Action
Models from Plan Traces using
Weighted MAX-SAT. Artificial
Intelligence Journal

(AlJ). Accepted Oct 2006.

Qiang Yang, Kangheng Wu and
Yunfei Jiang, Learning Action
Models from Plan Examples
with Incomplete Knowledge. In
Proceedings of the 2005
International Conference on
Automated Planning and
Scheduling, (ICAPS 2005)
Monterey, CA USA June

2005. Pages 241-250.

Co-Champion for the System
ARMS (with Kangheng Wu and
Yunfei Jiang) for learning
planning models,

2005 First International
Competition on Knowledge
Engineering for Planning and
Scheduling, ICAPS 2005,
Monterey CA USA

AAAI 2005 Conference
Highlight:
Presented as a ICAPS 05
highlight
Machine Learning Summer
School 2006, Australia

Highlighted in Rao’s
Presentation
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Next Topic: Abnormal Activity
Detection in WSN

Abnormal activities
They occur rarely

They are not expected in
advance

Challenges

Extremely scarce/no training
data for abnormal activities
Example
User Walks around
Normal
User takes elevator
Normal
User suddenly falls down
Abnormal
User runs fast

Abnormal

50



Previous Works

Y. Yao, F.-Y. Wang, J. Wang, and D. D. Zeng, “Rule + exception
strategies for security information analysis.” IEEE Intelligent Systems,
vol. 20, no. 5, pp. 52-57, 2005.

Rule based knowledge base describe normal behavior

Exception rules describe abnormality

Our approach is probabilistic in nature, more suitable when not
much data are available for training exception rules

J. Lester, et al. “A hybrid discriminative/generative approach for
modeling human activities,” in IJCAI 05

a hybrid discriminative/generative approach to recognizing human
activities using an ensemble of static classifiers and HMMs

P. Lukowicz, J. Ward, H. Junker, M. St"ager, G. Tr oster, A. Atrash,
and T. Starner, “Recognizing workshop activity using body worn
microphones and accelerometers,” in Pervasive 04.

used body-worn microphones accelerometers track users' daily
activities
Most of these works employ supervised learning to recognize

users' normal activities, which requires a large amount of labeled ®
training data.



Related Works

Computer Vision Area

T. Xiang and S. Gong, “Video behaviour profiling and abnormality detection
without manual labeling,” in ICCV 2005

T. Duong, H. Bui, D. Phung, and S. Venkatesh, “Activity recognition and
abnormality detection with the switching hidden semi-Markov model,” in CVPR
2005
switching hidden semi-Markov models were appliedto
represent user’s activities and perform abnormality detection.

only focused on detecting a more subtle form of abnormality,

Abnormalities only in the state duration, but not in the state
order.

Data Mining Area

S. D. Bay and M. Schwabacher, “Mining distance-based outliers in near linear
time with randomization and a simple pruning rule,” In KDD 2003

[8] A. Lazarevic, L. Ert'oz, A. Ozgur, J. Srivastava, and V. Kumar, “A comparative
study of anomaly detection schemes in network intrusion detection,” in SDM
2003.

For similarity-based approaches, the main task is to define pair-wise distances
between all the data points and identify outliers by examining the distance to an
example’s nearest neighbors.
But, distances are hard to define
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|dea of the approach

Orline: Given a collection of

normal user traces * Online: For a given new trace,
Each being a sequence Use the normal activity model to
of signals tell if it is an abnormal trace.

First filter all traces to
build a one-class SVM
model

If so, derive its model from the
trace and the normal trace

}

Signal Strength (dBm)

models
Then, construct a normal
activity model using the o
Normal Activity Model
normal traces :
» O Abnormal Actrvity Model
) Segl I: Seg2 I : ‘“—elgEa : g4 : q
e : : r | ® APT|+
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Offline: Modeling Normal Activities

We assume that there i1s a hidden mechanism
to generate the user behavior

This hidden state can be modeled using
Hidden Markov Models

We use a set of m HMMs with Gaussian
observation density to model the normal
traces (m is fixed ahead of time)

The log likelihood of each pair <Trace, HMM>:

LYi; ) =log P(Yi|\). 1 <t <N, 1<j< M

— —
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Offline: Feature vectors and one-class
SVM

for each training trace Yi, 1 <=1<= N, we can
obtain an m-dimensional feature vector

X; = (L(Y M) L(Y A )

This feature vector can be used to train a

one-class SVM: :
min R +C ZE:-.

le —xi|® < B* + &,

& > 0.

The parameters

Here, the slack vanables &; are introduced to allow some data points to lie outside the sphere,

and the parameter C' = 0 controls the tradeoff between the volume of the sphere and the number
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Offline: Build a Normal HMM

One-class SVM is very
sensitive to the boundary

I
Can generate many false 71

negatives o]

Meaning: abnormal |

classified as normal T T 7177
Thus’ we restrlct one- ‘---...i.._..:...-.:.-..-:..-...:.. : l.
class SVM to bias SNSRI E
towards low false ! ;
negative rates=> normal ot
traces with high |
confidence 'Rl

We then use these afodo— L
normal traces to train a
single normal HMM

This HMM is used in online LT
phase




Online Phase: classify a new trace

We first apply the normal Kernel Nonlinear Regression

activity HMM (KNLR) Adaptation:
If Normal, return (0)
Else ;= - puft 4+ (1 —a) -l
Decide whether to
derive an abnormal o R
model i, = (BK + FAK ™ (K + )7 K.

Fall down model
Running model
Crawling model

Issue: how to build an
abnormal model based
on only one trace?

Answer: adapt the
normal HMM model
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Summary: A Two-phase Solution

Step 1: build a one-class SVM Model Adaptation

model based on normal data Maximum Likelihood Linear
Step 2: derive abnormal activity Regression (MLLR)

models from a general normal Kernel Nonlinear Regression
model via model adaptation (KNLR)

|_~, General Normal
d Model

| Adaptation [ Detection

w

Normal
Activities

| Feature | | One-class |
Extraction [ | SVM [
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Experiments

Setup:
three Crossbow MICAZ2s
(MPR400) with the sensor
board MTS310CA
“slipping on a wet floor”
and “falling down to a
floor”

Data set:
216 normal traces for
training
215 normal traces and 112
abnormal traces for testing

Detection Rate

MICA2Dot

False Alarm Rate
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Slide 59

Y6 This figure shows the ROC curve with respect to the detection rate and the false alarm rate. OneSVM gives the poorest performance because it

achieves a high detection rate at the cost of a high false alarm rate. By applying model adaptation techniques, SVM+MLLR and SVM+KNLR can

improve the performance of OneSVM. However, by using nonlinear transformation techniques, SYM+KNLR can outperform SVM+MLLR.
YJ, 6/9/2006



Experimental Setup

Normal Activities

Abnormal Activities

sitting down
walking
walking downstairs
walking upskairs
running

slipping on the ground
falling down backwards
falling down forwards

TABLEI

EXAMPLES OF NORMAL AND ABNORMAL ACTIVITIES

Detection

Falzse Alarm Rate =

TN
TN +FN’
FP
FP+TP

Rate =
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Experimental Results

! ! ! !
O OneSWVM
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Conclusions

Action Model Learning

Statistical Relational
Learning

Connects low level
sensors with high level

Abnormal Activity Detection
Normal activities
Lots of data
Abnormal activities
Very few data

logics _ _
g Approach is to build a
Significance good reliable model, then
Acquires knowledge adapt that model for
bases for planning abnormal activities
systems

Towards realization of
the dream of Al
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What does It take to do this research?

Preparation

Knowledge of high level reasoning

Knowledge of statistical learning
Impact

| believe the impact is huge for future of Al

Makes all work in first 30 years of Al research relevant
Who are doing it?

Pedro Domingos (U Washington, Seattle)

Daphne Koller (Stanford)

Pad Langley (Stanford)
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Students In this area...

Familiar with logic and statistics

Motivated to work In this new frontier
Not much work been done yet!

Contact: Qilang Yang @
http://www.cse.ust.hk/~gyang
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