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Sensors provide a continuous stream 
of data

Node 1 Node 2

Node 7

-30dBm -70dBm -40dBm



4

The motivation for my work
南华早报
2006年3月12日



5

Our Research in Wireless Sensor 
Networks (WSN)

Objective:  develop new 
algorithms for learning user 
activities

To help users conduct 
planning
To recognize users’
locations and actions
To detect abnormal user 
behavior

Questions:
Can existing inductive 
learning framework help?
If not, can we develop 
new learning algorithms?
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Three Learning Issues of AR in WSN
(AR = Activity Recognition; WSN = Wireless Sensor Net)

From Action Sequences to Action Models
Learning to attach preconditions and 
post-condition to action sequences
Learning probabilistic and factored 
models of actions

From Location and Signal Streams to 
Learning Dynamic Models to Segment 
Actions
Learning Dynamic Bayesian Networks 
for Goals

From Wireless Signals to Locations
Indoor Model-based Location 
Estimation
Learning Problems:

Manifold Learning 
Semi-supervised Learning
Feature Selection and Active 
Learning
Conditional Random Fields 
Learning
Transfer Learning

IJCAI05, IJCAI07, AAAI06,Percom05a,b,
IEEE TKDE 06a, b; IEEE TMC 07]
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Three Learning Issues of AR in WSN
(AR = Activity Recognition; WSN = Wireless Sensor Net)

From Action Sequences to Action Models
Learning to attach preconditions and 
post-condition to action sequences
Learning probabilistic and factored 
models of actions
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for Goals

From Wireless Signals to Locations
Indoor Model-based Location 
Estimation
Learning Problems:

Manifold Learning 
Semi-supervised Learning
Feature Selection and Active 
Learning
Conditional Random Fields 
Learning
Transfer Learning

[AAAI04, AAAI05a,b, 
ICDM05, AIJ 06(c)]
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Three Learning Issues of AR in WSN
(AR = Activity Recognition; WSN = Wireless Sensor Net)

From Action Sequences to Action 
Models

Learning to attach preconditions 
and post-condition to action 
sequences
Learning probabilistic and 
factored models of actions

From Location and Signal Streams to 
Learning Dynamic Models to Segment Actions
Learning Dynamic Bayesian Networks for 
Goals

From Wireless Signals to Locations
Indoor Model-based Location Estimation
Learning Problems:

Manifold Learning 
Semi-supervised Learning
Feature Selection and Active 
Learning
Conditional Random Fields Learning
Transfer Learning

Load-truck (?x - hoist ?y - box ?z - truck ?p -
place) 

pre: (at x p), (at z p), (lifting x y)
del: (lifting x y)
add: (at y p), (in y z), (available x), (clear y)

[ICAPS 05, AIJ 06]
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This Talk
Learn action models for 
planning

Statistical relational 
learning

Learn user actions from 
sensor signals, and detect 
abnormal behavior

Outlier Detection: 
Abnormal User-
Behavior Detection (if 
have time)

Difference from 
Reinforcement Learning

Reinforcement 
learning acquires 
relations between 
actions

Pr(S1|S2,A3)
We try to learn factored 
action models

More compact than RL
Can work with RL 
(later)
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background on AI planning
Before 1995

Forward and Backward Search 
based 
Traditional Planning

Propositional world 
descriptions
Precondition/Post-conditions 
given for each action

Output: A sequence of 
actions
Performance: CPU Time –
slow (5-6 actions in several 
minutes) 

Probabilistic Planning
State transitions using 
Markov models

Markov decision processes 
(MDP)
Partially observable MDPs
Output: a policy (state-action-
outcome probabilities)
Inefficient and impractical still

Action Descriptions are provided by Users

a

a

ago-north

go-north

W0

W2

W1
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Background on AI Planning
After 1995

Planning based on 
Operations Research 
Methods

Graph Optimization 
Techniques + 
Search Techniques
Much Faster: > 100 
actions in a plan in 
less than one 
second on a PC

Actions still n
eed to be provided by Users
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Learning in AI Planning
Before 2000

Main effort in learning search control
Explanation based learning

Extend knowledge of search tree 
to learn concept of success and 
failure in search
Not inductive learning

Learning Actions:
Almost none

After 2000
Search speed is not considered a 
problem anymore

Thus, search control learning 
nil

Learning MDP Policies and POMDP 
Policies from example plans

Emphasize learning of relations 
between actions and states, but 
not on learning  “factored action 
models”

Observation
No learning on action models up until 
now
Why?
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Related Work on Action Learning
Inductive Logic Programming (e.g. Sablon & Bruynooghe 1994)

But cannot learn when intermediate states are not known in a long plan 
trace (~50 steps)

Learning by observation and practice: An incremental approach for planning 
operator acquisition (Wang, X. 1995)

But requires full states to be observed
Knowledge Editors, GIPO (McCluskey, Liu, & Simpson 2003)

But requires a human editor

(X. Wang thesis CMU, 1996)
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Learning Actions’ Effects and 
Preconditions [Wang, 1996, CMU]

When states before and after actions are 
known in training

Use a covering based algorithm
Each action A corresponds to a rule: 

If fact1 and fact2 and .. Then 
effect1 and effect2..
…

Training Data:
pre-states = a set of facts before the 
action A
post-states = a set of facts after the 
action A

Data = {<pre-state, post-state, class = A, 
or not A>, i=1, 2, …}
Note: 

class=A means A can be executed in 
pre-state; 
class= not A means A cannot be 
executed 

Learning Algorithm
Initialize Precondition(A) to be first 
positive data(i)’s pre-state
Initialize Effect(A) to be the first positive 
data(i)’s post-state
For each data(i) in rest(Data), do

If class(data(i)=A) then
Remove unnecessary 
preconditions in A, and 
Add new effects

If class(data(i)) is not A, then
Label unmet preconditions
Add more preconditions

…

Comments: 
Local search algorithm, Ad Hoc in 
nature
No inductive learning
No concept of testing
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Relating Sensors to Actions: ready!
RFID (radio frequency 
identification) is a technology 
that incorporates the use of 
electromagnetic or electrostatic 
coupling in the radio frequency 
(RF) portion of the 
electromagnetic spectrum to 
uniquely identify an object, 
animal, or person. 
An RFID system consists of 
three components: an antenna
and transceiver (often combined 
into one reader) and a 
transponder (the tag). 
Range: 6 to 90 feet

Wireless LAN
Everywhere today, 
coverage can be 
citywide
Indoor alternative to 
GPS

Motes

• Jonathan Lester et al., "A Hybrid Discriminative-Generative Approach 
for Modeling Activities ," IJCAI 2005, Jul. 30, 2005
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With WSN, data are becoming available
(2000 hours of data; 
cf: Hai Leong Chieu1, et al. 2005)

7:30am     armband goes on after shower 
7:45am     subject gets into car
7:48am     timestamp for start of driving
8:15am     timestamp for end of driving
…

6:24pm     subject timestamps start of 
exercise_stationary_bike

6:44pm     subject timestamps end of 
exercise_stationary_bike

6:50pm     subject timestamps beginning of 
general_exercise (tae kwon do 

class, which isn't a possible annotation)
…

7:10pm     subject timestamps end of general_exercise
9:25pm     subject timestamps beginning of watching_tv
11:30pm   subject timestamps end of watching_tv
12:01am   subject timestamps beginning of lying_down
7:30am     subject timestamps end of lying_down and 

removes armband
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Observations
Research on learning action models 
is few in the past
Why

Data have not been available
With the WSN, the situation 
is changing

Learning actions from 
observations involves a new 
type of learning

Different from pure inductive 
learning 

because data are not in 
normalized format

Nature of learning:
Sequences
Relational 
One-class
Probabilistic
MDL: regularization is 
important because we try to 
minimize the model

Using sensors in WSN, 
Actions and parameters are given
Initial and goal facts are given 
Sequences of actions are given, 
but 

The intermediate states are 
only partially known
Lots of noise and uncertainty

to learn:
Action models!

Question:
What type of learning?
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Our Main Idea: Action Model 
Learning [ICAPS 2006; AIJ, 2006, w/ KH Wu and Y. Jiang]

Input: observed plans
init1, a11, a12, a13, …, a1n, goal1
init2, a21, a22, a23, …, a2m, goal2
…

Output: action models; e.g.
load (x - hoist y - crate z - truck p - place) 

pre: (at x p), (at z p), (lifting x y)
del: (lifting x y)
add: (at y p), (in y z), 

(available x), (clear y)
Main Issue:

Automatically guess an initial
action model
Then allow humans to edit
these models 

Key contribution: 
• can learn action models 

even when no
intermediate state observations 
are available
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Action-Relation Modeling System 
(ARMS)

Learning action models from 
observed plans with incomplete 
knowledge (0% 100%)

With or without 
intermediate states
Example plan traces 
given as input positive 
examples
Generates an 
approximately correct 
and near-minimal
logical action model

STRIPS (this work)
ADL and PDDL (future 
work)

Methodology:
Step 1: Building an 
action model from 
observed plans with 
ARMS

Build a clausal form
SAT formula, and 
Solve it using a 
Weighted MAXSAT 
solver 

A kind of one-class 
relational learning 

Step 2: Hand editing to 
make the model more 
correct
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Basic Idea of ARMS System
Observed plans = 
constraints on actions
Relations to be learned

Whether a relation 
should be in precondition 
of A, or effect of A, or not

Constraints on relations can 
be integrated into a global 
optimization formula

Maximum Satisfiability
Problem
One-class Relational 
Learning

Testing
Correctness
Conciseness

Constraints
Preconditions and effects 
must share parameters
Non-empty preconditions 
and effects
If (a1, a2, …an) is 
frequently co-occurring,

Each ai gives 
something for later 
actions

…
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The one-class learning problem:
(ref. Gal Chechik, Stanford )

Find a subset of similar/typical samples
Formally: find a ball of a given radius (with 
some metric) that covers as many data points 
as possible (related to the set covering
problem).
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The MDL principle

MDL stands for minimum description length
The description length is defined as:

space required to describe a theory (action 
model size)

+
the theory’s mistakes (constraint violations)

In our case the theory is the classifier and the 
mistakes are the errors on the training data
Aim: we want a classifier with minimal DL
MDL principle is a model selection criterion
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Input Data (Plans w/ action names)
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The ARMS Algorithm: Step1

Step 1. Initialize by 
lifting and parameter 
matching
Step 2. Frequent-set 
Mining
Step 3. Weighted MAX-
SAT problem
Step 4. Output

Example
load (gripper12 crate2 
truck2 place3)…

load (?x ?y ?z ?p)
…
Lift(?x, ?y)
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The ARMS Algorithm: Step 2
Step 1. Initialize
Step 2. Frequent-set 
Mining
Step 3. Weighted MAX-
SAT problem
Step 4. Output

init1,a11, a12, …,a1(n-
1),a1n,goal1
init2,a21, a22, …,a2(n-
1),a2n,goal2
…

initn,an1, an2, …,an(n-
1),ann,goaln

prei,ai (support=60%, conf=..)

ai, aj, (85%)

ai, aj, ak (90%)
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The ARMS Algorithm: Step 3
Step 1. Initialize
Step 2. Frequent-set 
Mining
Step 3. Encode and 
Solve a weighted MAX-
SAT problem
Step 4. Output

Input:  clauses
…

1 17 0
1 18 0 
795 -9 3 0 
795 -10 4 0 
795 1 2 3 4  0 
795 5 6 7 8  0 

Output: a SAT solution
1 1 
2 0
3 1
…
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The ARMS Algorithm: Step 4

Step 1. Initialize
Step 2. Frequent-set 
Mining
Step 3. Weighted MAX-
SAT problem
Step 4. Output,
Test by X-validation

Human Edit..

action models:
Load (?x - hoist ?y -
crate ?z - truck ?p -
place)

pre: (at ?x ?p), 
(at ?z ?p), (lifting ?x ?y)
add: (in ?y ?z), 
(available ?x)
del: (lifting ?x ?y)

Unload …
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Key Component: Weighted MAXSAT 
formulation

Explain why an action a1 often appears before a2?
Perhaps because a1 produces a proposition that a2
consumes, or
a1 and a2 both require the same precondition, or
a2 produces a proposition that a1 deletes
Or
…

Explain general requirements for a1’s preconditions, 
adds and deletes

Preconditions and adds don’t intersect
Effects are subsets of Preconditions
…
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Imposing Constraints to find a 
plausible action model

1. Proposition Constraints
For a first or last action A in a plan, an initial or 
goal proposition P, 
(P,A) is a candidate of Pre(A) if frequency of 
(P,A) is greater than a [theta] value.  
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2. Action Constraints
Precondition and Add-list :

Intersection between add-list and 
precondition must be empty

Example
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2. Action Constraints
Precondition and Del-list

Deletes are subsets of preconditions

Example
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3. Plan Constraints

Explain why two or more frequent nearby actions ai and aj in 
plans

Either they use the same precondition, or ai adds p for aj, or 
ai deletes p, but aj adds p again.

For example, suppose that 
((lift x - hoist y - crate z – surface p - place), 
(load x - hoist y - crate z - truck p - place), 0) 
Is a frequent pair. 
The relevant parameters: x-x, y-y, p-p.
Thus, these two actions are possibly connected by predicates 
(at x p), (available x), (lifting x y), (at y p), and (clear y)…
We can then formulate the plan constraints as stated…
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ARMS Learning Example
Plan: 

Initial (lift obj truck place) (load obj truck place) Goal
Initial = {at(obj, place), at(truck, place)}
Goal={In(obj, truck)}

Other propositions: { lifting(obj, truck)}
Creating Clauses:

Proposition Constraint: 
{ (at(obj,place) ∈ PRE(lift) or at(truck,place) ∈PRE(lift)},…

Action Constraint
(at(obj,place) ∈ PRE(lift) (at(obj,place) ∈ ADD (lift)

etc 
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Example: continued…

Creating Clauses:
From Plan Constraint: 

{lifting(obj, truck) ∈ADD((lift obj truck place)) and
lifting(obj, truck) ∈PRE(load obj truck place)}

or
{at(truck, place) ∈ADD((lift obj truck place)) and

at(truck, place) ∈PRE(load obj truck place)}  or 
<etc>
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Final Clausal Form:
1: lifting(obj, truck) ∈PRE(lift)
2: at(obj, place) ∈PRE(lift)
3: at(truck, place) ∈PRE(lift)
4: in(obj, truck) ∈PRE(lift)
5: lifting(obj, truck) ∈ADD(lift)
6: at(obj, place) ∈ADD(lift)
7: at(truck, place) ∈ADD(lift)
8: in(obj, truck) ∈ADD(lift)
9: lifting(obj, truck) ∈DEL(lift)
10: at(obj, place) ∈DEL(lift)
11: at(truck, place) ∈DEL(lift)
12: in(obj, truck) ∈DEL(lift)

13: lifting(obj, truck) ∈PRE(load)
14: at(obj, place) ∈PRE(load)
15: at(truck, place) ∈PRE(load)
16: in(obj, truck) ∈PRE(load)
17: lifting(obj, truck) ∈ADD(load)
18: at(obj, place) ∈ADD(load)
19: at(truck, place) ∈ADD(load)
20: in(obj, truck) ∈ADD(load)
21: lifting(obj, truck) ∈DEL(load)
22: at(obj, place) ∈DEL(load)
23: at(truck, place) ∈DEL(load)
24: in(obj, truck) ∈DEL(load)



36

Final Clausal Form: A Satisfiability
Formula

Convert to 3-CNF sentences. 
 e.g.,

(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨
¬C) ∧ (¬C ∨ ¬B ∨ E) ∧ (E ∨
¬D ∨ B) ∧ (B ∨ E ∨ ¬C)
m = number of clauses 
n  = number of symbols

Hard problems seem to 
cluster near m/n = 4.3 

 (critical point)

… can have up to 7000 
clauses
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Weighted MAX-SAT
SAT Solvers:

find an assignment of 
true values to variables 
that can satisfy a 
collection of clauses.

Weighted MAX SAT Solvers:
Assign a weight to each 
clause and seeks an 
assignment that 
maximizes the sum of the 
weights of the satisfied 
clauses
In ARMS, weights = 
probability of appearing 
in the plan examples

Weighted MAX Satisfiability
Problem:

Given a collection C of m 
clauses, C1, . . .Cm 
involving n logical 
variables, with clause 
weights Wi, find a truth 
assignment that 
maximizes the total 
weight of the satisfied 
clauses in C.

Brian Borchers and Judith Furman. A two-phase 
exact algorithm for MAX-SAT and weighted MAX-
SAT problems. Journal of Combinatorial 
Optimization, 1999.
Henry Kautz, Bart Selman, and Yueyen Jiang. A 
general stochastic approach to solving problems 
with hard and soft constraints. The Satisfiability
Problem: Theory and Applications, 35, 1997.
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WalkSAT and MaxWalkSAT

for i ← 1 to max-tries do
solution = random truth 

assignment
for j ← 1 to max-flips do

if all clauses satisfied then
return solution

c ← random unsatisfied 
clause

with probability p
flip a random variable in c

else
flip variable in c that 

maximizes number of satisfied 
clauses
return failure

The WalkSAT Algorithm The MaxWalkSAT Algorithm

for i ← 1 to max-tries do
solution = random truth assignment
for j ← 1 to max-flips do

if ∑ weights(sat. clauses) > 
threshold then

return solution
c ← random unsatisfied clause
with probability p

flip a random variable in c
else

flip variable in c that mximizes
∑ weights(sat. clauses)

return failure, best solution found

Source: Domingos, 2006
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Cross Validation in ARMS
Correctness

A plan is said to be 
correct if (1) all 
actions‘ preconditions 
hold in the state just 
before that action and (2) 
all goal propositions hold 
after the last action.
Error rate

Redundancy
A non-redundant action 
model is when every 
effect of an action is 
useful later in a plan
Redundancy rate

Demo



40

Experimental Metrics

Number of Clauses: how simple the 
ARMS encoding is
CPU Time: Efficiency of learning

The planning domains in 
International Planning Competition 
2002
Planner: MIPS, used to generate 
example plan traces
Five-fold cross-validation

Training: 160 plans
Test: 40 plans
Repeat five times, take the 
average

Plan lengths: average length=50 
actions

Number of all unsatisfied preconditionsError Rate =
Number of all preconditions
Number of all unuseful predicates in add list Redundancy Rate =

Number of all predicates in add list



41

Error, redundancy, CPU, Clauses vs. 
Theta
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Error, redundancy, CPU, Clauses vs. # 
Plans in Training Data
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The Learned Action Model in Depot 
Domain

Bold: in learned model but
not in hand-crafted model

Italic: in hand-crafted model,
but not in learned model

Model: can generate plans,
But plans may be different from
learning examples
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What type of Learning: Markov Logic 
Networks (ref Domingos, 2006) Smokers 
Example:

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀
⇒∀

1.1
5.1

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

Source: Domingos 2005.
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Learning MLNs

Data is a relational database
Closed world assumption (if not: EM)
Learning parameters (weights)

Generatively
Discriminatively

Learning structure

Source: (Domingos 2005)
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Relation to Statistical Models

Special cases:
Markov networks
Markov random fields
Bayesian networks
Log-linear models
Exponential models
Max. entropy models
Gibbs distributions
Boltzmann machines
Logistic regression
Hidden Markov models
Conditional random 
fields

Obtained by making all 
predicates zero-arity

Markov logic allows 
objects to be 
interdependent 
(non-i.i.d.)

Discrete distributions

Source: (Domingos 2005)
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Relating MLNs with ARMS
The ARMS algorithm can be considered as a special case 
of the MLN algorithm, 

We invent a new predicate InPrecond such that, for a literal P 
and action A,

InPrecond takes P and A as arguments in the form of 
InPrecond(P,A) todenote the fact that the literal P is assigned 
to the precondition of the action A

We invent a new predicate InAdd such that, for a literal E and 
action A, InAdd takes E and A as arguments in the form of 
InAdd(E,A) to denote the fact that the literal E is assigned to the 
effects of the action A.
Similarly, we define InDelete(E,A) for the delete list items.
Constraints:  the action constraint (A.1) can be represented 
as a knowledge-base (KB) formula:

A 2 Actions.InPrecond(P,A) ) ¬InAdd(P,A) which states that the intersection of 
preconditions and add list of all actions are empty.
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ARMS: What type of learning?
Statistical relational 
learning

Markov Logic 
Networks

Also learning from one-
class of data

Unlike traditional 
multi-class 
classification 
problems
Optimization used to 
ensure minimal 
model size and 
maximum coverage 
of training data

MDL principle

ARMS Learning as MLN:

Nodes  themselves are constructed 
using the domain specific predicates, 
variables and constants such as 
(on ?x,?y).
Relations between nodes include 
logical axioms that encode specific 
constraints in a problem domain.

For example, in the blocks world, an 
axiom states that the predicate 
(clear ?x)=True precludes that there 
exists an object ?y, such that 
(on ?y,?x)=True.
These axioms as well as the 
constraints form the relations 
between the nodes in the MLN. 

The weights of the hard constraints, 
such as the above example, are set 
to be the highest. The action, 
information and plan constraints 
receive their weights accordingly
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References on ARMS
Qiang Yang, Kangheng Wu and 
Yunfei Jiang. Learning Action 
Models from Plan Traces using 
Weighted MAX-SAT. Artificial 
Intelligence Journal
(AIJ). Accepted Oct 2006. 
Qiang Yang, Kangheng Wu and 
Yunfei Jiang, Learning Action 
Models from Plan Examples 
with Incomplete Knowledge. In 
Proceedings of the 2005 
International Conference on 
Automated Planning and 
Scheduling, (ICAPS 2005)
Monterey, CA USA June 
2005. Pages 241-250. 

Co-Champion for the System 
ARMS (with Kangheng Wu and 
Yunfei Jiang) for learning 
planning models,
2005 First International 
Competition on Knowledge 
Engineering for Planning and 
Scheduling, ICAPS 2005, 
Monterey CA USA 
AAAI 2005 Conference 
Highlight:

Presented as a ICAPS 05 
highlight

Machine Learning Summer 
School 2006, Australia

Highlighted in Rao’s
Presentation
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Next Topic: Abnormal Activity 
Detection in WSN

Abnormal activities
They occur rarely
They are not expected in 
advance

Challenges
Extremely scarce/no training 
data for abnormal activities

Example
User Walks around 

Normal
User takes elevator

Normal
User suddenly falls down 

Abnormal
User runs fast

Abnormal



51

Previous Works
Y. Yao, F.-Y. Wang, J. Wang, and D. D. Zeng, “Rule + exception 
strategies for security information analysis.” IEEE Intelligent Systems, 
vol. 20, no. 5, pp. 52–57, 2005.

Rule based knowledge base describe normal behavior
Exception rules describe abnormality

Our approach is probabilistic in nature, more suitable when not 
much data are available for training exception rules

J. Lester, et al. “A hybrid discriminative/generative approach for 
modeling human activities,” in IJCAI 05

a hybrid discriminative/generative approach to recognizing human 
activities using an ensemble of static classifiers and HMMs

P. Lukowicz, J. Ward, H. Junker, M. St¨ager, G. Tr¨oster, A. Atrash, 
and T. Starner, “Recognizing workshop activity using body worn 
microphones and accelerometers,” in Pervasive 04.

used body-worn microphones accelerometers track users' daily 
activities
Most of these works employ supervised learning to recognize 
users' normal activities, which requires a large amount of labeled 
training data.
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Related Works
Computer Vision Area

T. Xiang and S. Gong, “Video behaviour profiling and abnormality detection 
without manual labeling,” in ICCV 2005
T. Duong, H. Bui, D. Phung, and S. Venkatesh, “Activity recognition and 
abnormality detection with the switching hidden semi-Markov model,” in CVPR 
2005

switching hidden semi-Markov models were applied to 
represent user’s activities and perform abnormality detection.
only focused on detecting a more subtle form of abnormality, 
Abnormalities only in the state duration, but not in the state 
order.

Data Mining Area
S. D. Bay and M. Schwabacher, “Mining distance-based outliers in near linear 
time with randomization and a simple pruning rule,” In KDD 2003
[8] A. Lazarevic, L. Ert¨oz, A. Ozgur, J. Srivastava, and V. Kumar, “A comparative 
study of anomaly detection schemes in network intrusion detection,” in SDM 
2003.
For similarity-based approaches, the main task is to define pair-wise distances 
between all the data points and identify outliers by examining the distance to an 
example’s nearest neighbors.
But, distances are hard to define
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Idea of the approach
Offline: Given a collection of 
normal user traces

Each being a sequence 
of signals
First filter all traces to 
build a one-class SVM 
model
Then, construct a normal 
activity model using the 
normal traces

• Online: For a given new trace,
Use the normal activity model to 
tell if it is an abnormal trace.

If so, derive its model from the 
trace and the normal trace 
models
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Offline: Modeling Normal Activities

We assume that there is a hidden mechanism 
to generate the user behavior
This hidden state can be modeled using 
Hidden Markov Models

We use a set of m HMMs with Gaussian 
observation density to model the normal 
traces (m is fixed ahead of time)
The log likelihood of each pair <Trace, HMM>:
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Offline: Feature vectors and one-class 
SVM

for each training trace Yi, 1 <= i <= N, we can 
obtain an m-dimensional feature vector

This feature vector can be used to train a 
one-class SVM:

The parameters
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Offline: Build a Normal HMM
One-class SVM is very 
sensitive to the boundary

Can generate many false 
negatives

Meaning: abnormal 
classified as normal

Thus, we restrict one-
class SVM to bias 
towards low false 
negative rates normal 
traces with high 
confidence
We then use these 
normal traces to train a 
single normal HMM

This HMM is used in online 
phase
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Online Phase: classify a new trace
We first apply the normal 
activity HMM 

If Normal, return (0)
Else

Decide whether to 
derive an abnormal 
model

Fall down model
Running model
Crawling model
…

Issue: how to build an 
abnormal model based 
on only one trace?
Answer: adapt the 
normal HMM model

Kernel Nonlinear Regression 
(KNLR) Adaptation:
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Summary: A Two-phase Solution

Step 1: build a one-class SVM 
model based on normal data
Step 2: derive abnormal activity 
models from a general normal 
model via model adaptation
[YYP06]

Model Adaptation
Maximum Likelihood Linear 
Regression (MLLR)
Kernel Nonlinear Regression 
(KNLR)
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Experiments

Setup: 
three Crossbow MICA2s 
(MPR400) with the sensor 
board MTS310CA
“slipping on a wet floor”
and “falling down to a 
floor”

Data set: 
216 normal traces for 
training
215 normal traces and 112 
abnormal traces for testing

False Alarm Rate

D
et

ec
tio

n 
R

at
e

Y6
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Y6 This figure shows the ROC curve with respect to the detection rate and the false alarm rate. OneSVM gives the poorest performance because it
achieves a high detection rate at the cost of a high false alarm rate. By applying model adaptation techniques, SVM+MLLR and SVM+KNLR can 
improve the performance of OneSVM. However, by using nonlinear transformation techniques, SVM+KNLR can outperform SVM+MLLR.
YJ, 6/9/2006
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Experimental Setup
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Experimental Results
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Conclusions
Action Model Learning

Statistical Relational 
Learning

Connects low level 
sensors with high level 
logics
Significance

Acquires knowledge 
bases for planning 
systems
Towards realization of 
the dream of AI

Abnormal Activity Detection
Normal activities

Lots of data
Abnormal activities

Very few data
Approach is to build a 
good reliable model, then 
adapt that model for 
abnormal activities
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What does it take to do this research?

Preparation
Knowledge of high level reasoning
Knowledge of statistical learning

Impact
I believe the impact is huge for future of AI
Makes all work in first 30 years of AI research relevant

Who are doing it?
Pedro Domingos (U Washington, Seattle)
Daphne Koller (Stanford)
Pad Langley (Stanford)
…
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Students in this area…

Familiar with logic and statistics
Motivated to work in this new frontier

Not much work been done yet!

Contact: Qiang Yang @ 
http://www.cse.ust.hk/~qyang
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