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On cluster analysis

= With rapid development of information
technology, the velocity of collecting data for
human being Is increasing dramatically and
prior knowledge for data is not increasing at
the same speed.

= Compression and Partition are two simple
tools for data processing.

m Therefore, Cluster analysis are becoming
popular.
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Definition of cluster analysis

B partitioning a data set into most similar
and meaningful subsets according to
specific requirements

B \What a pity, similar relation is not a
equivalence relation

B Unrealistic to enumerate



based on a real application

According to clustering results, the existing
clustering algorithms can be divided into

m Compression type: Hope to get a proper
cluster prototype (C-means, FCM, EM, etc)

m Partition type: Hope to find a proper data
partition(Hierarchical method, Normalized
Cuts (Shi & Malik, PAMI 2000))

How to design a clustering algorithm
m a clustering algorithm is usually developed
[



Compression type: C-means
(MacQueen, 1967)
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C-means

VAL ATy VO = {0 WO O 1=0,
B NIATHT, BH ¢
Step 1: FH FAIALTEHr uf™

1 if i = argmlnﬂ‘xk H}

otherW|se

Step2 H R H0 A58 v
14 Z_1U.i*1xk

I+1
_1 Ik

& max‘ (+) v H<gji%l>T sk, &l 1=1+1 %% step 1.




The advantages of C-means
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Drawbacks of C-means

m 1. Hard Partition

m 2. equal weight for every sample in the
data set



From hard partition to soft partition
= FCM
]



Fuzzy C-means
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Conditional FCM (Not equal
welghts but needing predefined)
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How to determine sample weights in
the literature

m Sample weights in Conditional FCM are
not auto

m (R, B SR AR R BRI L,
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Nock & Nielsen’s method (1)

The data set X:{xl,xz,---,xn}, vx €R", where R" i

[ d-dimensional metric space, and the point X; has the weight W,

. is the distortion function for the point X, then the objective func

for the Nock and Nieslen’ method can be rewritten as follows:
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Nock & Nielsen's method (2)

efinition 1. The advantage over distribution W, at iteration t is called the quantity

7, €R that satisfies |, (w )l (W=—y,, Wt>0. Vector d;; is defined as
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ti t+Li

hen they minimize a Bregman divergence to find the optimal solution as follows:
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Nock & Nielsen's method (3)
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Nock & Nielsen's method 1] 4t i
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The Contribution of Nock &
Nielsen's method

m Declaring the significance of
automatically computing the sample
welighting In the clustering process




How to determine sample weighting?
Maximum entropy principle

m Our Idea:

Sample weighting is considered as a
sampling distribution, maximum entropy

principle can be appliec
determine sample weig

to automatically
nting as no prior

knowledge about samp

e weighting.



A new method to automatically
compute sample weighting

m Lagrange multiplier method can result in
the objective function of our new
clustering algorithms as follows.

-
I D = Zp( Ni+g Zp( )log p(x;)
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Sample weighting equation
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The impact of the parameter ¢
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An intuitional explanation for
sample weighting equation

m The larger the sample distortion from
cluster prototype, the smaller the
sample weighting.

m [t Is consistent with our intuition. |deally,
the final clustering results has no
residual. Hence, the smaller sample
distortion shows the importance of the
sample, consistent with our equation



How to apply sample weighting

I equation
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GCM clustering model & its PDF
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Sample weighting C-means
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Sample weighting EM
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On convergence of sample
welghting clustering algorithms

m Sample Weighting C-means
m Sample Weighting FCM
m Sample Weighting EM

LaSalle Theorem guarantee that the
above three algorithms are convergent.




On robustness of Sample weighting

clustering
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m The Iris data set has 150 data points. It is
divided into three groups and two of them are
overlapping. Each group has 50 data points.
Each point has four attributes. More details
about the IRIS data are available in Anderson
[12].

Data_3: a sample of 600 points includes 3
cluster centers:, =[0,6], =[4,0]. Each cluster
consists of 200 points and the points in the ith
cluster obey the normal distribution.
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Table 1. Outlier samples for two data sets

Data set

IRIS

Data 3

Added outlier

samples

[100,100,100,100]

[9,-8]
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Table 2. Average and Minimum Error number of clustering
results for C-means, FCM and EM in 100 runs

IRIS IRIS* | Data 3 | Data 3*
C-means | (44.17,16) | (56,50) | (4.8,0) | (8.2,0)
FCM(m=2) | (16,16) | (50,50) | (0,0) | (0,0)
DA(f=2) |(16.68,16) | (50,50) | (0.2,0) | (1.2,0)
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Teble3  Average nuer and of dustering results for VWOV WFOMand VABEMIin 100 1urs

IRIS*
- Dia 3
Dita 3*
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RS | 17 16 16 16 16 16 16 16 16 16 5 5 5 41 47 512 |51 028 | 5.8
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Dita 3* | 04 1 06 04 06 02 08 1 2 08 08 12 |07 | 1l& |58 138 | 1092 |37 | 1906|515




Outlook 1: Parameter selection

m How to select a proper ¢

m For sample weighting EM, ¢ <5 should
hold.

m For other sample weighting clustering
algorithms, it Is open.



Outlook 2. Outlier detection

m Intuitionally, it Is possible to detect
outlier point by sample weighting
method.

[
I = How to realize this point
I



Outlook 3 Switch regression

m Since clustering algorithms can be used
INn the regression problem, sample
weighting equation can be easily

[
I applied to switch regression problem
_
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Thanks for your attention!
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