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i Multistability

= Multistability Analysis in Recurrent Neural
Networks

= Multistability Analysis in Learning
Algorithms

= Multistability Analysis with Applications



i Concepts

= Monostability
= A dynamic system has
only one equilibrium
point.
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= Multistability

= A dynamic system has
more than one ~d
equilibrium points.
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i Recurrent Neural Networks

= Multistability is closely related to RNNSs.

= Recurrent feedback loops pervade the synaptic
connectivity of the brain.

----Amit, 1995
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i Recurrent Neural Networks
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i On Monostability of RNNs

A RNN has only one
equilibrium point.

Problem: whether or not the
equilibrium point is a global
attractor?

Main method: Lyapunov
second method

Applications: optimizations
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On Monostability of RNNs

= There are a lot of publications.

= My view: most of these
publications are not very
Interesting.
= No more new methods.

= Parallel generalization of existing
method from mathematics.

= Most results are not new from the
point of mathematic. Seung 1996

= Applications are restrictive.

= Not strongly motivated by brain
RNNSs.




i Multistability in Recurrent NNs

= Recurrent feedback loops pervade the
synaptic connectivity of the brain. One
possible role of these feedback loops
IS to endow neural networks with
multiple stable states, or dynamical
attractors.

............. Amit, 1995



i Multistability Analysis Methods

= Problem: dynamical behaviors of a system with multiple
equilibrium points.
= Boundedness
= Continuous/discrete attractors
= Convergence of trajectories

= Methods:

= Energy method
= Invariant set principle
= Cauchy convergence principle



i Multistability in Hopfield NNs
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i Multistability in Hopfield NNs
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continuous g )
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i Multistability in Hopfield NNs
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Multistability in Oculomotor

i Control

= H. S. Seung, How the brain keeps the eyes still,
Proc. Natl. Acad. Sci. USA, vol. 93, pp.
13339-13344, 1996
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Line Attractor

X, =k (E B Ei)
r dxdit(t) +x;(t) = ,an‘wuxi +h 2

<

Seung 1996

14



i Attractor RNNs

= H. S. Seung, Pattern analysis and synthesis in
attractor neural networks
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Attractor RNNSs
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Attractor RNNSs

( vz (hidden) Ty = [Wihr]™
.]'!'3 + T = [Trrgl.??l + .F':I"'.-'_..F'_..I'I'_..:']-I_ .
( x (visible)
Wi = [;I.f__;?; : 1
r - =1
Was = I—Wolhs. 2

Memory The no-dimensional linear manifold

Z+ = {(xr.m0) sy = 0,2 = Wiars )
17



i Continuous Attractors

dedi_t(t)+xi(t):f[%wuxj+bij *‘ -

= Seung 1998 propose two important theoretical
guestions:

= First, Is it possible to implement continuous attractors
In nonlinear networks?

= Second, can nonlinearity make continuous attractors
more robust?
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i Multistability in Nonlinear RNNs

= Zhang Yi, K. K. Tan and T. H. Lee, Multistability analysis for

recurrent neural networks with unsaturating piecewise linear transfer
functions, Neural Computation, vol. 15, no. 3, pp. 639-662, 2003.

= A global attractive compact set exist.

= Conditions for calculating the attractive compact set are obtained.
= Each trajectory converge — complete stable.

() = —x(t) + Welx(t) + h

a(s)

U

19



Continuous Attractors
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Global attractivity and complete convergence
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Multistability of Lotka-Volterra
RNNS

+

= Derived from conventional membrane dynamics
of competing neurons.

= Successful applications in many “winner-take-
all” types of problems.
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Multistability of Lotka-Volterra
RNNS

Global Attractivity and Complete Stability

A global attractive compact set exist.

Conditions for calculating the attractive compact set are
obtained.

Each trajectory converge — complete stable.

Z. Y1 and K. K. Tan, Dynamic stability conditions for
Lotka-Volterra recurrent neural networks with delays,
Physical Review E, 66, 011910 (2002).
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Multistability of Discrete RNNSs
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i Multistability of Discrete RNNs

x2
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A global attractive compact set exist.
Conditions for calculating the attractive compact set are obtained.
Each trajectory converge — complete stable.

Z.Y1and K. K. Tan, Multistability of discrete-time recurrent neural networks
with unsaturating piecewise linear activation functions, IEEE Trans. Neural
Networks, vol. 15, no. 2, pp. 329-336, 2004.

Continuous Attractor




i Multistability in CLM

Competitive Layer Model
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Competitive Layer Model
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Competitive Layer Model

s

wh(k+1) = a [Ty abyoh, (k) — hy Bl (k) + A
vh (k) = o (a(k)) |

27



i Medical Image Segmentation

= Medical Image Segmentation
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Medical Image Segmentation
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Fig. 3. Divide and merge system architecture.
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i Medical Image Segmentation

(b)

(a) (c) (d)
Fig. 7. (a) The original image with noise of 2%. (b), (¢) and (d) are the segmentation results form FCM, CHNN and CDRNN,

respectively. Due to the low noise level, all the three methods segmented the given image correctly.
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Medical Image Segmentation

) (b)

(a (c) (d)

Fig. 8. (a) The original image with noise of 3%. (b), (c) and (d) are the segmentation results form FCM, CHNN and CDRNN,

respectively. The three results are almost the same except for a little difference of the amount of isolated fragments.
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Medical Image Segmentation

(a) (b)

Fig. 9. (a) The original image with heavy noise of 6%. (b), (c) and (d) are the segmentation results form FCM, CHNN and

(d)

CDRNN, respectively. The proposed CDRNN method is obviously more accurate in image segmentation than the other two

methods.
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Medical Image Segmentation

Fig. 11.

(a) (b) (c) (d)

(a) The original CT image. (b). (¢) and (d) are the segmentation results by FCM, CHNN and CDRNN. respectively.
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Medical Image Segmentation

(a) (b) (c) (d)

Fig. 12. (a) The original MRI brain image. (b), (¢) and (d) are the segmentation results by FCM, CHNN and CDRNN,

respectively.
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Multistability in Learning
Algorithms

+

= A learning algorithm has many
equilibrium points.

= Convergence study requires
multistability analysis.

= Derive conditions for a learning
algorithm to converge to a particular
equilibrium point.
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i Oja’s PCA Learning Algorithm

y(k) = wl (k)z(k), (k=0,1,2,--)

w(k + 1) = w(k) + ny(k) [z(k) — y(k)w(k)]

X
= Convergence Analysis \Wl\

= DCT method o Q "y

. DDT method . s
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i Oja’s PCA Learning Algorithm

Theorem 2: Given any constant [ such that 1 <[ < 2,if 3
2-
3v2 — 2
ne < - )
< o
then. the set
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S(l) = {ul

1s an invariant set of (2). Fig 1 o

= Zhang Yi, etc., Convergence analysis of a deterministic discrete
time system of Oja’s PCA learning algorithm, IEEE Trans.
Neural Networks, vol. 16, no. 6, pp. 1318-1328.
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Convergence of Oja’s PCA
Learning Algorithm

Theorem 3: Suppose that

372 —2

no < — ~ (.8899

if w(0) and w(0) € V-, then the trajectory of (2) starting from
w(0) will converge to a unit eigenvector associated with the
largest eigenvalue of the correlation matrix '
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Convergence of Oja’s PCA
Learning Algorithm

+
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i Books on Multistability

= Zhang Yi and K. K. Tan, Convergence Analysis of
Recurrent Neural Networks, Kluwer Academic
Publisheres, Boston Hardbound, ISBN 1-4020-
7694-0, 2004, 250pp.

= H.J. Tang, K. C. Tan and Zhang Y1, Neural
Networks: Computational Models and
Applications, Springer-Verlag, 2006.
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i Special Issue on Multistability

= Special issue: Multistability in Dynamical
Systems

= International Journal of Bifurcation and Chaos
= Submission deadline: January 1, 2007.

s Guest Editors
= Prof. Alexander N. Pisarchik
= Prof. Celso Grebogi
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