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Outline

Regularization Techniques: 

A Brief Survey

Our work:
1) Discriminative Regularization

2) Locality Regularization
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Regularization Techniques

Formulation of problemFormulation of problem
Problem ExamplesProblem Examples
Why to regularize learning modelsWhy to regularize learning models
Regularization techniquesRegularization techniques
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Formulation of problem

{ , , 1, 2, , }= ∈ × =（ ） d
i iS x y R Y i N

1) Given a set of training data

2) Given F={fθ |θ∈Ξ}is a hypothesis set 
from which a desired f is derived based on S
and yields good  generalization performance 
for future unseen data, i.e. minimizing

2

\
( ( ) ( )) ( )gen S

R t f dP
Π

= −∫ x x x

t(x) is a true but unknown mapping function from x to label y. 
However, the generalization error is incomputable due to 
unknown P(x) and t(x)!
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Problem Examples

Regression

Classification



2007-11-12 6

( ) 0.5 0.4sin(2 )F x xπ= +

05.0=σ

Regression
Example::

0 1
0

( , )fθ
=

= + + + = ∑
M

M j
M j

j

x w w w x w x w x

Objective::

fits t(x), minimizing ( )( )
2

1

1 ,
2empR fθ

=

= −∑
N

n n
n

x w y

adding Gaussian noise to each data, 
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Regression (Cont’d)

Fig1(a)
One-order fitting polynomial

Under-fitting

Fig1(b)
Three-order fitting polynomial

Good fitting
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Regression (Cont’d)

Fig1(c)
Ten-order fitting polynomial

Overfitting

Fig1(d)
Test and Training Accuracies

Accuracy
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Classification
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Over-fitting, high generalization error: A small emprical risk 
Remp does not imply small generalization error Rgen

Classification (Cont’d)
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Classification (Cont’d)
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Classification (Cont’d)

Under-fitting
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Classification (Cont’d)



2007-11-12 14

Classification (Cont’d)
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Classification (Cont’d)
Good fitting
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Classification (Cont’d)
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Common Characteristics

In the above ProblemsIn the above Problems
Limited training samplesLimited training samples
Large types of fitting functions (Complexity)Large types of fitting functions (Complexity)

Our focus is on how to make the fitting function yield Our focus is on how to make the fitting function yield 
good prediction on unseen data, i.e., good good prediction on unseen data, i.e., good 
generalization (or fitting);generalization (or fitting);

Difficulty:  a illDifficulty:  a ill--posed problem, i.e., there are lots of posed problem, i.e., there are lots of 
fitting functions which can yield very small training fitting functions which can yield very small training 
error but just a few can have good generalization! error but just a few can have good generalization! 
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Note:Note: Small loss as well as Small loss as well as SmoothSmooth curvescurves

Ill Posed Problem
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How to Boost Generalization

Four Basic Categories of MethodsFour Basic Categories of Methods

1.  Model Selection

2.  Regularization   (√)

3.  Model Combination or Ensemble

4.  Multiview approach on single dataset
D. Schuurmans, F. Southey. Metric-based methods for adaptive model selection and regularization. ML, 48, 51-
84, 2002
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Why to Use Regularization?

The previously stated problem is ill-posed but a 
well-posed (适定或良态) one refers to such a 
problem if it satisfies three conditions below 

Existence

Uniqueness

Continuity (Stability)

S. Haykin. Neural Networks: A Comprehensive Foundation. Tsinghua University Press, 2002
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Regularization Techniques

TikhonovTikhonov RegularizationRegularization
Typical Regularization MethodsTypical Regularization Methods

Regularization is a means of controlling the Regularization is a means of controlling the 
complexity of the fitting function being complexity of the fitting function being 
learnt.learnt.
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Tikhonov Regularization

In 1963, Tikhonove proposed a new method 
called Regularization for solving ill-posed 
problems.

The basic idea of Regularization or

Motivation:

Stabilize the solution by means of some 
auxiliary nonnegative functional that embeds 
prior information about the solution.
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Essence

Incorporating Prior Information to develop modelIncorporating Prior Information to develop model

The most common of prior information involves the 
assumption that the input-output mapping function is 
smooth, in the sense that similar inputs correspond to 
similar outputs

Related Concepts:

TikhonovTikhonov FunctionalFunctional

GreenGreen’’s functions function
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Tikhonov Functional 

Given the training input-output pairs 1{( , )}N
i i iyx =

( ) ( ) ( )emp regR f R f R fλ= +

22

1

1 1[ ( )]
2 2

N

i i
i

y f Dfx λ
=

= − +∑

where Remp(f ) and Rreg(f ) are the empirical risk term
and the regularization term respectively
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Tikhonov Functional (Cont’d)
λλis a regularization parameter that controls the trade-off 
between the fitting goodness of data and the roughness 
(complexity) of the solution, its selection is, up to now, an 
open problem!

D denotes a linear differential operator, which is defined as the 
Fréchet differential of Tikhonov functional.

Geometrically, D is interpreted as a local linear approximation 
of the manifold in high-dimensional space. The smoothness 
prior implicitly involved in D makes the solution stable.

Z. Chen, S. Haykin. On different facets of regularization theory. Neural Computation, 14(2): 2791-2846, 2002
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Green’s function 
The solution of the classical Tikhonov regularization 
problem can be represented by the expansion:

where                            , and               is the Green’s 
function, RBF is its special case.

1
( ) ( , )

N

i i
i

f w Gλ
=

= ∑x x x

[ ( )] /i i iw y f λ= − x ( , )iG x x

form a (neural) network called regularization network (RN)
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Typical Regularization Methods

Regularization Networks (RN)

Generalized Radial Basis Function 
Networks (GRBFN)

Support Vector Machines (SVM) 

Manifold Regularization (MR), etc.

View the classifier learning as a 
multivariate functional fitting problem
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Regularization Networks (RN)

If the multivariate Gaussian function is selected as the Green’s 
function, the solution will be an optimal interpolant in the sense 
that it minimizes the Tikhonov functional.
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Deficiencies of RN

The one-to-one correspondence between the 
training input data and the Green’s function  
causes expensive computational cost, especially 
for large N           
Only emphasize the smoothness of the classifier 
and do not incorporate any prior intra-class and
inter-class information into the formulation which 
is vital for classification

GRBFN
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Generalized Radial Basis Function 
Networks (GRBFN)
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GRBFN (Cont’d)

Apply clustering strategies to determine the 
parameters of hidden neurons and then adopt the 
regularization technique to optimize a least squares 
error criterion to derive a classifier

Incorporate the intra-class information generated 
from clustering into the traditional regularization

However, still neglect the inter-class information
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Support Vector Machines (SVM)

Richard O. Duda et al. Pattern Classification. Wiley, 2001

2 2

, 1

1min
2 2

N

iw b i

Cw ξ
=

+ ∑

. . ( ) 1 1, ,
0 1, ,

T
i i i

i

s t y w x b i N
i N

ξ
ξ
+ ≥ − =
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SVM (Cont’d)

Use the hinge-loss function as the Remp(f ) instead 
of the common square-loss function, which more 
emphasizes the prior inter-class discriminative 
knowledge than traditional regularization

However, does not take the intra-class
information into account and thus does not make 
sufficient use of the prior class structural 
knowledge
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Manifold Regularization (MR)

( ) 2 2

1

1min , ( )
N

i i A IK If H i
V y f f f

N
γ γ

∈
=

⎧ ⎫+ +⎨ ⎬
⎩ ⎭
∑ x

2

K
fwhere the regularization term controls the

complexity of the classifier and the other regularization
term

2

I
f controls the complexity measured by the

manifold geometry of the sample distribution
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MR (Cont’d)

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from 
examples. Department of Computer Science,University of Chicago,Tech.Rep, TR-2004-06, 2004. 



2007-11-12 36

LapRLS and LapSVM

LapRLS

LapSVM

22
2

1

1min ( ( ))
( )K

l
TI

i i A Kf H i
y f x f f Lf

l u l
γγ

∈
=

− + +
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2
2

1
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l
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y f x f f Lf

l u l
γγ+∈
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Supervised MR

MR is a semiMR is a semi--supervised frameworksupervised framework
Its supervised VersionIts supervised Version

( ) 2

1 1

21min , ( )
j j

N

i i

c

A Kf H i
I I

j
V y f

N
ff γ γ

∈
==

⎧ ⎫
+ +⎨ ⎬

⎩ ⎭
∑∑ x

Where c is the number of classes. 

The number of regularizers equals to c
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Deficiencies of Supervised MR

Construct a graph for each class, i.e. different  

correspond to different classes, which undoubtedly 
leads to the appearance of many free regularization 
parameters in the formulation, especially for the multi-
class problems.

As a result, the computational complexity in training 
of MR will increase sharply, coined as , coined as ““curse of the curse of the 
number of number of regularizersregularizers””

2

I
f
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Comparison 
on Use of Prior Information

Method Prior Information

Inter-class
(Discriminant information)

Intra-class
(Structural information)

RN × (Least Squares loss) ×

GRBFN × (Least Squares loss) √

SVM √(Hinge loss) ×

MR √(Hinge loss) √ (Manifold)
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Our Work

Discriminative Regularization for 
classification

-- RN, GRBFN, SVM, MR
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Motivation

Essentially derived from multivariate functional fitting or 
regression problems, however, classification is just its special
case;
Data independent;
(Consequently,) in classifier design, these methods give more 
concerns to the smoothness of the classifier

S. Haykin, Neural Networks: A Comprehensive Foundation. Tsinghua University Press, 2001.
Z. Chen, S. Haykin. On different facets of regularization theory. Neural Computation, 14(2): 2791-2846, 2002
T. Poggio, F. Girosi. Networks for approximation and learning. Proc. Of the IEEE. 78: 1481-1497, 1990a
T. Poggio, F. Girosi. Regularization algorithms for learning that are equivalent to multilayer networks. Science, 
247, 978-982, 1990b

Deficiencies of Traditional methods
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Deficiencies (Cont’d)

In classification, similar inputs near the discriminant
boundaries are more likely to belong to different classes, 
implying that the same global smoothness constraint 
imposed on the whole domain may not sufficiently 
formulate the discrimination among classes.

The main goal of classification is to separate the samples 
of different classes in the output space as far as possible. 
Hence, the prior discriminative information is crucial for 
classification.
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Characteristics of DR

The “No Free Lunch” Theorem

A model  is good when incorporating prior knowledge of A model  is good when incorporating prior knowledge of 
the problem at handthe problem at hand

Directly introduce the intra-class and inter-class information 
as the new discriminative regularization term to seek an more to seek an more 
effective classifiereffective classifier

Integrate the prior geometrical information into the single 
regularization term

Analytic solutions



2007-11-12 44

Discriminative Regularization Term

2

1

1 1min [ ( )] ( , )
2 2

N

i i disregf F i
y f R f η

∈
=

⎧ ⎫− +⎨ ⎬
⎩ ⎭
∑ x

A general definition for ( , )disregR f η

( , ) ( ) (1 ) ( )disregR f A f B fη η η= − −
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DR Term (Cont’d)
Use the generalized variance (GV) in statistics, similar to 

Maximum Margin Criterion (MMC)
2

( ) ( )

1 1 1

1 1( ) ( ) ( )
k kN Nc

k k
b i j

k i jk k

A f S f f
N N

x x
= = =

= = −∑ ∑ ∑
2

( ) ( )

1 1 1

1 1( ) ( ) ( )
k lN Nc

k l
w i j

k l k i jk l

B f S f f
N N

x x
= ≠ = =

= = −∑ ∑ ∑ ∑

H. Li, T. Jiang, and K. Zhang. Efficient and robust feature extraction by maximun margin criterion. 
IEEE Trans. on Neural Networks, vol.17(1), 157-165, 2006.

--- yielding a DR-GV learning model.
Focus on the global class relationship between the samples and thus fail to sufficiently 
characterize the local manifold structure of the data
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Manifold Structure 
For each sample xi, in terms of Locality Sensitive 

Discriminant Analysis (LSDA), we first divide the 
nearest neighborhood ne(i) into two nonoverlapping
subsets

{ }( ) , 1j j
b i i ine i if and belong to same class j k= ≤ ≤x x x

{ }( ) , 1j j
w i i ine i if and belong to different classes j k= ≤ ≤x x x

D. Cai, X. He, K. Zhou, J. Han, and H. Bao. Locality sensitive discriminant analysis. IJCAI, 708-713, 2007.
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Weight Matrices 

,

1 ( ) ( )
0

j b i b
b ij

if ne i or ne j
W

otherwise
∈ ∈⎧

= ⎨
⎩

x x

,

1 ( ) ( )
0

j w i w
w ij

if ne i or ne j
W

otherwise
∈ ∈⎧

= ⎨
⎩

x x

Define the two weight matrices of Gb and Gw respectively
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DR Term (DRT)

2

,
1 1

1 ( ) ( )
2

N N

b i j b ij
i j

S f f Wx x
= =

= −∑∑

Characterize the inter-class separability from the inter-class graph

Characterize the intra-class compactness  from the intra-class graph

2

,
1 1

1 ( ) ( )
2

N N

w i j w ij
i j

S f f Wx x
= =

= −∑∑
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The Optimization Problem

[ ]2
1

1 1min ( ) (1 )
2 2

N

i i b wf F
i

y f S Sx η η
∈

=

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤− + − −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑

η

0 1η≤ ≤

where       is the parameter that regulates the relative 
significance of the intra-class compactness versus the 
inter-class separability,

.
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Intuitive Interpretation

1 1min [ (1 ) ] max [(1 ) ]
2 2b w w bS S S Sη η η η− − ⇔ − −

An Intuitive interpretation for the regularizing term

Hence, it maximizes the average margin between classes and plays 
a similar role in SVM.

A large average margin indicates that patterns in the output 
space are close to each other if they are from the same class but 
are far from each other if they are from different classes.

Haifeng Li, Tao Jiang, and Keshu Zhang,  Efficient and Robust Feature Extraction by Maximum 
Margin Criterion, IEEE TNN, VOL. 17, NO. 1, JAN. 2006, 157-165
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Linear Classifiers

( ) Tf b= +x w x
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Relationship between DR and 
Dimensionality Reduction Methods

Find an orientation for which the projected samples are well 
separated, similar to the intuitive motivation in DR
Any similar supervised dimensionality reduction methods 
can be also embedded in DR as the regularization term
Provide a brand-new viewpoint to combine dimensionality 

reduction with classification

( ) [ ]
2

, 1

1 1min (1 )
2 2

N
T T T

i i b wb i
y b η η

=

⎧ ⎫⎡ ⎤− + + − −⎨ ⎬⎣ ⎦⎩ ⎭
∑w

w x w X L L X w
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Differences of DR and MR

[ ]2
1

(1 1min ( 1 ))
2 2

N

i if F
i

b wS Sy f x η η
∈

=

⎡ ⎤−
⎧ ⎫⎪ ⎪⎪ ⎪− +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

−⎢ ⎥⎣ ⎦∑

( ) 2

1 1

21min , ( )
j j

N

i i

c

A Kf H i
I I

j

V y f
N

ff γ γ
∈

==

⎧ ⎫
+ +⎨ ⎬

⎩ ⎭
∑∑ x

Only have one adjustable regularization parameter

The number of regularization parameters depends on 
the class number

Effectively avoid the potential “Curse of the number of the 
regularizers” of MR in the optimization

DR:

MR:
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Analytic Solutions to DR

Many traditional regularization methods use 
conjugate gradient algorithms

Converge slowly
Can not guarantee to converge to  the global optimum

DR obtains the solutions directly from solving a set 
of linear equations

Simple
Stable

J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 
9: 293-300, 1999. 
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Analytic Solutions (Cont’d)

Many existing learning machines decompose the 
multiclass classification problem into multiple 
two-class classification problems

DR solves directly both two-class and multi-class 
problems in a unified framework in terms of the 
simple analytic solution  
B.K. Natarajan, Machine Learning: A Theoretical Approach. Morgan Kaufmann, Los Alamitos, CA, 1991.
E. Gelenbe, K.F. Hussain. Learning in the multiple class random neural network. IEEE Trans. on Neural 
Networks, 13(6): 1257-1267, 2002. 
G. Ou, Y.L. Murphey. Multi-class pattern classification using neural networks. PR, 40(1): 4-18, 2007. 
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Vector Labeled Outputs 

Code the class labels following the one-of-c rule, 
i.e. if xi belongs to the kth class, then   

where the kth element is 1 and the other elements 
are 0,                          

[0, ,1, ,0]T c
i Ry = ∈

1, ,i N∀ =

n cRW ×∈ cR∈bwhere                ,

( ) Tf x W x b= +
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The Equality Constraints 
2

,
1

1 1min (1 )
2 2

N

i b w
i

S S
W b

e η η
=

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤+ − −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑

T
i i i+ +W x b e = y 1, ,i N∀ =

subject to 

, 
,

[0,1]η ∈
c NR ×∈α

Given the parameter , the global solution is characterized

by the dual linear system with dual variables 

[ ] [ ]
0 T

N
c

N N

1
b α 0 Y

1 Ω Iη

⎡ ⎤
⎢ ⎥ =⎢ ⎥+⎢ ⎥⎣ ⎦
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Toy Problems

RN:

DR-GV:

DR:
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Overfitting?
Training and Testing Accuracies

Training accuracies (%) compared between RN, DRGV and DRLSC in tTraining accuracies (%) compared between RN, DRGV and DRLSC in the three Twohe three Two--
Moon datasetsMoon datasets

(A) (B) (C)

RN 99.00 95.00 90.00
DRGV 100.0 100.0 98.00
DRLSC 100.0 100.0 99.00

Testing accuracies (%) compared between RN, DRGV and DRLSC in thTesting accuracies (%) compared between RN, DRGV and DRLSC in the three e three 
TwoTwo--Moon datasetsMoon datasets

(A) (B) (C)
RN 100.0 98.00 93.00

DRGV 100.0 100.0 93.00
DRLSC 100.0 100.0 98.00
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Linear 

Kernel:

DR:

10 /20
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RBF 

Kernel:

DR:

16 /20
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Classification accuracy boost (DR)
Dataset

Linear Kern RBF Kernel

Ionosphere 88.01 99.43

Sonar 76.83 94.23

Water 96.27 99.32

Wdbc 96.21 96.60

Bupa 70.23 81.73

Pid 78.26 78.36 (80.73MR) 

Diabetes 78.72 79.07

Wine 99.00 97.56

Lenses 84.62 87.69

Tae 56.58 61.32

New_thyroid 91.11 96.02 (97.31MR)

Iris 87.07 98.80

Cmc 51.96 56.82

Balance_scale 88.75 91.82 (92.04SVM)

Soybean_small 99.58 100.0

Vehicle 78.16 82.61

Dermatology 98.26 98.91

Ecoli 85.71 88.63 (89.70MR)

Glass 63.76 71.65 (76.24MR)

Yeast 56.27 60.56 (61.57MR)
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Image Recognition (AR base)
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Coil-20 Image Recognition (Cont’d)
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USPS Character Recognition 

Available at: http://www.cs.toronto.edu/~roweis/data.html

http://www.cs.toronto.edu/~roweis/data.html
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Experimental Results
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In Summary



2007-11-12 68

Future work

Generalization error bound;
Semi-supervised (discriminant) framework;
Sparse solutions; 
Parameter selection;
Structured DR framework; 
Applications;
etc.
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Thanks a lot!Thanks a lot!

Q&AQ&A
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