ECE s

Regularization Techniques In
Classifier Learning

Songcan Chen Hui Xue

Dept. of Computer Science & Engineering
Nanjing University of Aeronautics & Astronautics

2007-11-12


mailto:s.chen@nuaa.edu.cn
http://parnec.nuaa.edu.cn/

=

Outline

«» Regularization Techniques:
A Brief Survey

< Our work:

1) Discriminative Regularization

2) Locality Regularization
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SN Regularization Techniques

|~~~

< Formulation of problem

< Problem Examples

<« Why to regularize learning models
<+ Regularization techniques
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Formulation of problem

1) Given a set of training data
S={(x,,y)eR'xY,i=12,---,N}

2) Given F={f , | 0 ¢ E}is a hypothesis set
from which a desired f is derived based on S
and yields good generalization performance

for future unseen data, i1.e. minimizing
_ _ 2
Rgen o I\S (t(X) f(X)) dP(X)
t(x) Is a true but unknown mapping function from x to label y.
However, the generalization error iIs incomputable due to
unknown P(x) and t(x)!
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=2/ Problem Examples

«» Regression

< Classification
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Regression

Example
F(X)=0.5+0.4sIn(27 X)

adding Gaussian noise to each data, o =0.05

N
fits t(x), minimizing R, = = %Z( f, (Xn,W)— yn)
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Regression (Cont’d)

| SUAY

Under-fitting Good fitting

g 0.2 0.4 0.6 0.8 1 g 0.2 0.4 0B 0. 1

Figl(a) Figl(b)
One-order fitting polynomial Three-order fitting polynomial
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Regression (Cont’d)

Overfitting Accuracy
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Classification

0: Traming Sample in Class 1 X: Training Sample in Class 2
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Classification (Cont’d)

« Over-fitting, high generalization error: A small emprical risk
Remp does not imply small generalization error R,

ample

0: Tramming Sample in Class 1 X: Training Sample in Class 2
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Classification (Cont’d)

soor1rs, @ Traming Sample in Class 1 X: Training Sample in Class 2




Classification (Cont’d)

« Under-fitting
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0: Traming Sample 1 Class 1 X: Traming Sample in Class 2
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Classification (Cont’d)

soorars, O Tramning Sample mn Class 1 X: Tramning Sample in Class 2




Classification (Cont’d)

0: Traming Sample in Class 1 X: Training Sample in Class 2
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Classification (Cont’d)

« Good fitting
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0: Traming Sample in Class 1 X: Training Sample in Class 2
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Classification (Cont’d)

0: Tramming Sample in Class 1 X: Traming Sample in Class 2
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Common Characteristics

In the above Problems
< Limited training samples
« Large types of fitting functions (Complexity)

Our focus iIs on how to make the fitting function yield
good prediction on unseen data, i.e., good
generalization (or fitting);

Difficulty: a ill-posed problem, i.e., there are lots of
fitting functions which can yield very small training
error but just a few can have good generalization!
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’m‘ Il Posed Problem

NLGRY

Note: Small loss as well as Smooth curves
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How to Boost Generalization

Four Basic Categories of Methods

1. Model Selection

2. Regularization ()
3. Model Combination or Ensemble

4. Multiview approach on single dataset

D. Schuurmans, F. Southey. Metric-based methods for adaptive model selection and regularization. ML, 48, 51-
84, 2002
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Why to Use Regularization?

The previously stated problem is ill-posed but a
well-posed (& = B¢ K &) one refers to such a
problem if it satisfies three conditions below

+» EXxistence
» Unigueness
» Continuity (Stability)

S. Haykin. Neural Networks: A Comprehensive Foundation. Tsinghua University Press, 2002

2007-11-12 20



) Regularization Techniques

ECE s

< Tikhonov Regularization
< Typical Regularization Methods

Regularization i1s a means of controlling the
complexity of the fitting function being
learnt.
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AR Tikhonov Regularization

| LR
In 1963, Tikhonove proposed a new method
called Regularization for solving ill-posed

problems.

The basic idea of Regularization or
Motivation:

Stabilize the solution by means of some
auxiliary nonnegative functional that embeds
prior information about the solution.
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Essence

Incorporating Prior Information to develop model

The most common of prior information involves the
assumption that the input-output mapping function is
smooth, in the sense that similar inputs correspond to
similar outputs

Related Concepts:
Tikhonov Functional

Green’s function
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Tikhonov Functional

Given the training input-output pairs {(x.,y,)}",
R(f) = Repp (f) + AR, (T)
1 , 1 2
=5 21 = T oA of|

where Rg,,(f) and R, (f ) are the empirical risk term

and the regularization term respectively
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Tikhonov Functional (Cont’d)

« AlIsaregularization parameter that controls the trade-off
between the fitting goodness of data and the roughness
(complexity) of the solution, its selection is, up to now, an
open problem!

< D denotes a linear differential operator, which is defined as the
Frechet differential of Tikhonov functional.

Geometrically, D is interpreted as a local linear approximation
of the manifold in high-dimensional space. The smoothness
prior implicitly involved in D makes the solution stable.

Z. Chen, S. Haykin. On different facets of regularization theory. Neural Computation, 14(2): 2791-2846, 2002
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Green’s function

The solution of the classical Tikhonov regularization
problem can be represented by the expansion:

f,(X)= ZN:WiG(X1 X; )

where W, =Ly, = T(X)I/4  and G(x,x.) isthe Green’s
function, RBF s its special case.

C form a (neural) network called regularization network (RN)

2007-11-12 26
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« Regularization Networks (RN)

< Generalized Radial Basis Function
Networks (GRBFN)

«» Support Vector Machines (SVM)
«» Manifold Regularization (MR), etc.

View the classifier learning as a
multivariate functional fitting problem

2007-11-12

Typical Regularization Methods
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P Regularization Networks (RN)

Input Hidden Output
layer layer layer
of N Green’s
functions

If the multivariate Gaussian function is selected as the Green’s
function, the solution will be an optimal interpolant in the sense
that it minimizes the Tikhonov functional.
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Defic

<+ The one-to-one corres
training Input data anc

lencies of RN

nondence between the
the Green’s function

causes expensive com

putational cost, especially

for large N ==mp GRBFN

«» Only emphasize the smoothness of the classifier
and do not incorporate any prior intra-class and
Inter-class information into the formulation which
IS vital for classification

2007-11-12
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m Generalized Radial Basis Function
=t Networks (GRBFN)
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GRBFN (Cont’d)

« Apply clustering strategies to determine the
parameters of hidden neurons and then adopt the

regularization technique to optimize a least squares
error criterion to derive a classifier

<« Incorporate the intra-class information generated
from clustering into the traditional regularization

«» However, still neglect the inter-class information
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NGy Support Vector Machines (SVM)

1 C<
min 2o + £ 3

st. y(Wx+b)>1-& i=1---N
£ >0 i=1-- N

Richard O. Duda et al. Pattern Classification. Wiley, 2001
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SVM (Cont’d)

+ Use the hinge-loss function as the R, () instead
of the common square-loss function, which more
emphasizes the prior inter-class discriminative

Knowledge than traditional regularization

<+ However, does not take the intra-class
Information into account and thus does not make

sufficient use of the prior class structural
knowledge

2007-11-12 33



=

Manifold Regularization (MR)

I
TE'F?{NZV (yi’ f(Xi))+7/A Hin 7 HfHIZ}
i1

; . 2
where the regularization term | f . controls the
complexity of the classifier and the other regularization

2
term H f H| controls the complexity measured by the
manifold geometry of the sample distribution
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MR (Cont’d)

“\:X\' | f’/\ﬁ

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from
examples. Department of Computer Science,University of Chicago, Tech.Rep, TR-2004-06, 2004.
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LapRLS and LapSVM

| NUA~

« LapRLS

min = Z(y,—f(x)) + 7 f H + Z_fTLE

feHK 1 I)

«» LapSVM

min < le(l Vi £ (), + 74| [ g +'|) frLf
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Supervised MR

<« MR Is a semi-supervised framework
<« |ts supervised Version

(1
it SOV (3, 100)+ 7l £+ X, 1
1=1

feH

Where c Is the number of classes.

The number of regularizers equals to c

2007-11-12
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Deficiencies of Supervised MR

Construct a graph for each class, 1.e. different

f| correspond to different classes, which undoubtedly
eads to the appearance of many free regularization
parameters in the formulation, especially for the multi-
class problems.

As a result, the computational complexity in training
of MR will increase sharply, coined as “curse of the
number of regularizers”

2007-11-12 38



Comparison
on Use of Prior Information

Method Prior Information
Inter-class Intra-class
(Discriminant information) (Structural information)
RN X (Least Squares loss) X
GRBFN X (Least Squares loss) i
SVM v (Hinge loss) X
MR v (Hinge loss) v (Manifold)

2007-11-12
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‘@l Our Work

——

= Discriminative Regularization for
classification

-- RN, GRBFN, SVM, MR

2007-11-12
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LA Motivation
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Deficiencies of Traditional methods

« Essentially derived from multivariate functional fitting or
regression problems, however, classification is just its special
case;

« Data independent;

« (Consequently,) in classifier design, these methods give more
concerns to the smoothness of the classifier

J

*

S. Haykin, Neural Networks: A Comprehensive Foundation. Tsinghua University Press, 2001.

Z. Chen, S. Haykin. On different facets of regularization theory. Neural Computation, 14(2): 2791-2846, 2002

T. Poggio, F. Girosi. Networks for approximation and learning. Proc. Of the IEEE. 78: 1481-1497, 1990a

T. Poggio, F. Girosi. Regularization algorithms for learning that are equivalent to multilayer networks. Science,

247,978-982, 1990b

2007-11-12
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Deficiencies (Cont’d)

« In classification, similar inputs near the discriminant
boundaries are more likely to belong to different classes,
Implying that the same global smoothness constraint
Imposed on the whole domain may not sufficiently
formulate the discrimination among classes.

« The main goal of classification is to separate the samples
of different classes in the output space as far as possible.
Hence, the prior discriminative information is crucial for

classification.

2007-11-12 42



Characteristics of DR
v

< The “No Free Lunch” Theorem

A model is good when incorporating prior knowledge of
the problem at hand

« Directly introduce the intra-class and inter-class information

as the new discriminative regularization term to seek an more
effective classifier

« Integrate the prior geometrical information into the single
regularization term

« Analytic solutions

2007-11-12 43



\i.iy Discriminative Regularization Term

feF

(1 , 1
mln{EZ[yi o f(XI)] +§Rdisreg(f’77)}
A general definition for Ry, (f.7)

Riisreg (T,77) =7 A(T) = (1—77)B(T)

2007-11-12 44
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DR Term (Cont’d)

Use the generalized variance (GV) in statistics, similar to
Maximum Margin Criterion (MMC)

A(f)=S, = Z Z

f(Xi(k))— Z f(X(k’)

le

B(1) =5, =3

k=1 I=k

O MICRESY x|

IJ1

--- yielding a DR-GV learning model.

Focus on the global class relationship between the samples and thus fail to sufficiently
characterize the local manifold structure of the data

H. Li, T. Jiang, and K. Zhang. Efficient and robust feature extraction by maximun margin criterion.

IEEE Trans. on Neural Networks, vol.17(1), 157-165, 2006.
2007-11-12 45
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Manifold Structure

For each sample x;, in terms of Locality Sensitive
Discriminant Analysis (LSDA), we first divide the
nearest neighborhood ne(l) into two nonoverlapping
subsets

neb(i)z{xij‘ if x) and x. belong to same class, 1£j£k}
ne, (i) ={x}| if x/ and x belong to different classes, 1< j <k}

D. Cai, X. He, K. Zhou, J. Han, and H. Bao. Locality sensitive discriminant analysis. [JCAI, 708-713, 2007.
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Weight Matrices

ECE s

Define the two weight matrices of G, and G, respectively

|1 1t x; ene,(i)orx; ene,())
"I |0 otherwise

W, i

_ 1 if x; ene,(i)orx; ene,(])
0 otherwise

2007-11-12 47
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DR Term (DRT)

Characterize the intra-class compactness from the intra-class graph

P Y LIELCH!|TS

Characterize the inter-class separability from the inter-class graph
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The Optimization Problem

min |+ y, — f(x)] + ;[775 —(1-n)S, ]

feF | 2 —

where 7] Is the parameter that regulates the relative
significance of the intra-class compactness versus the
inter-class separability, 0 <n <1

2007-11-12 49
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An Intuitive interpretation for the regularizing term

Intuitive Interpretation

1 i 1 N 5
min E[nSb —1-7n)S,]1& maXE[(l—n)SW —nS,]

Hence, it maximizes the average margin between classes and plays
a similar role in SVM.

A large average margin indicates that patterns in the output
space are close to each other if they are from the same class but
are far from each other if they are from different classes.

Haifeng Li, Tao Jiang, and Keshu Zhang, Efficient and Robust Feature Extraction by Maximum
Margin Criterion, IEEE TNN, VOL. 17, NO. 1, JAN. 2006, 157-165
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L_inear Classifiers

f(X)=w'x+b
!

:%ZZ[f{xi)—f(xj-)lzﬂi,ﬁ- S, %ZZW) f&)[ W,

i=l j=l i=l j=1

]. -hr -hr i’ T I' 2

=—E E |ﬁ ‘E—‘ﬁ J; W =—E E (w 11.—11'1.)1717,..
- . i) wi
— 1

i=l j=I i=1 j=I
=w X(D,—-W,)X'w =w XD, - W, )X'w
= “-'T}H_‘bxr'w = wfl‘{leIw

2007-11-12 51



£ Relationship between DR and
Dimensionality Reduction Methods

ECE s

min {%i[% —(w'x, +b)]2 +%WTX[77Lb —(1—77)LW]XTW}

i=1

« FInd an orientation for which the projected samples are well
separated, similar to the intuitive motivation in DR

< Any similar supervised dimensionality reduction methods
can be also embedded in DR as the regularization term

<« Provide a brand-new viewpoint to combine dimensionality
reduction with classification

2007-11-12 52



A Differences of DR and MR

| NUA~

DR: mm{EZ[M — f(Xi)]2+%[77§b(177)5~W”

feF | 2 —

===)> Only have one adjustable regularization parameter

N -
MR:  min {—N DV (i F D)+ 7all Fl + 27, Hin}
i=1 j=1

=== The number of regularization parameters depends on
the class number
Effectively avoid the potential “Curse of the number of the
reqgularizers” of MR In the optimization
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Analytic Solutions to DR

«» Many traditional regularization methods use
conjugate gradient algorithms

. Converge slowly
. Can not guarantee to converge to the global optimum
« DR obtains the solutions directly from solving a set
of linear equations
+ Simple
= Stable

J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters,
9: 293-300, 1999.

2007-11-12 54
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Analytic Solutions (Cont’d)

«» Many existing learning machines decompose the
multiclass classification problem into multiple
two-class classification problems

«» DR solves directly both two-class and multi-class
problems in a unified framework in terms of the
simple analytic solution

B.K. Natarajan, Machine Learning: A Theoretical Approach. Morgan Kaufmann, Los Alamitos, CA, 1991.
E. Gelenbe, K.F. Hussain. Learning in the multiple class random neural network. IEEE Trans. on Neural
Networks, 13(6): 1257-1267, 2002.

G. Ou, Y.L. Murphey. Multi-class pattern classification using neural networks. PR, 40(1): 4-18, 2007.
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Vector Labeled Outputs

Code the class labels following the one-of-c rule,
l.e. If X; belongs to the kth class, then

y. :[0,...,1,...,0]T c R¢
where the kth element is 1 and the other elements
are0, vi=1...,N
f(X)=W'x+b

where W ecR™ ., beR¢

2007-11-12 56



The Equality Constraints

ECE s

~
7

1SN 1 & ~
min {QZ;Hei [+ [nS, —a-ms.];
subject to
WTXi -I—b—l—ei =y, | Vi=1---,N
Given the parameter 1 €[0,1] | the global solution is characterized
by the dual linear system with dual variablest € R®"

0 1

b a
1, Q +1,

~[o, V]

2007-11-12 _



Toy Problems
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(G Overfitting?
~ | Training and Testing Accuracies

| NUA~

Training accuracies (%) compared between RN, DRGV and DRLSC in the three Two-
Moon datasets

(A) (B) (€)
RN 99.00 95.00 90.00
DRGV 100.0 100.0 98.00
DRLSC 100.0 100.0 99.00

Testing accuracies (%) compared between RN, DRGV and DRLSC in the three
Two-Moon datasets

(A) (B) (€)
RN 100.0 98.00 93.00
DRGV 100.0 100.0 93.00
DRLSC 100.0 100.0 98.00
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Linear

Kernel.

DR:
10 /20

2007-11-12

Number

Classification accuracy

Dataset Dimension
of classes SVM MR DR-GV DE
Ionosphere 2 34 8778 85.00% 85.17% 88.01
Sonar 2 60 7788 79.87* T0.77* 76.83
Water 2 38 98.64* 97 958% 04 58%* 96.27
Wdbc 2 30 94 98% 04 42% 05 65% 96.21
Bupa 2 6 66.99% 68.90* 66.94% 70.23
Pid 2 3 73.96% 69.19% 76.93% 78.26
Diabetes 2 8 75.05% 69 40% T7.24% 78.72
Wine 3 13 95.67% 97.11* 99.00 99.00
Lenses 3 4 74 .62% 82 85% 82.31% 84.62
Tae 3 5 50.39% 51.58% 51.97*% 56.58
New _thyroid 3 5 95.65% 90.00 89.81%* 91.11
Iris 3 4 94 53% 96.53% 86.13* 87.07
Cme 3 9 55.68* 52.38 50.93%* 51.96
Balance scale 3 4 87.86% 89.20* 87.83% 88.75
Soybean small 4 35 100.0 100.0 0917 00 53
Vehicle 4 18 79.81* 79.72% 77.48% 78.16
Dermatology 6 33 96.74% 98 21 96.63% 98.26
Ecoli 6 86.96* 83.04% 8548 85.71
Glass 6 62.57 61.65% 61.93% 63.76
Yeast 10 52.35% 55.54% 56.66% 56.27

60
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RBF

Kernel

DR:
16 /20

2007-11-1

Classification accuracy

Dataset
RN GRBFN SVM MR DR-GV DR
Ionosphere 89 60% 36.88% 95.11% 98.30% 04 26% 99.43
Sonar 82 88% 77.02% 85.00% 92 31% 87.50% 04.23
Water 95 59% 01.02% 90.51* 98 31% 98 31 09.32
Widbce 93 12% 04 28% 04 25% 95.09% 05 51% 96.60
Bupa 72.43% 73 64% 73.06% 78.03% 73.29% 81.73
Pid 76.25% 77.54 76.56% 80.73% T7.42% 78.36
Diabetes 77.08% 75.16% 77.08% T7.37%* 78.91%* 79.07
Wine T73.67% 76.11% 77.78% 83 56% 96 45% 97.56
Lenses 75.38% 70.00% 7O 23% 81 54% 86.15 87.69
Tae 52.63% 47 37* 54 34% 58.29% 56.58% 61.32
New thyroid  93.33% 90.83* 96.02 97.31% 94 81 96.02
Iris 96.80% 96.80* 098.27 98.67 96.67* 08.80
Cmc 55.33% 56.29 5641 56.36 55.43% 56.82
Balance scale 91.28% 91.21% 92.04 91.63 91.25% 9182
Soybean small 100.0 82.02% 62.50% 100.0 100.0 100.0
Vehicle 73.35% 70.66% 74.76% 73.70% 81.82 82.61
Dermatology ~ 97.37% 96.36% 97.28%* 98.70 98.53 98.91
Ecoli 88.61 69.11 89.17 89.70% 88.39 85.63
Glass 70.37 65.69% 7275 76.24% 70.73 71.65
Yeast 60.56 50 22% 60.58% 61.57% 60.28% 60.56
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Classification accuracy boost (DR)

Dataset
Linear Kern RBF Kernel
lonosphere 88.01 99.43
Sonar 76.83 94.23
Water 96.27 99.32
Wdbc 96.21 96.60
Bupa 70.23 81.73
Pid 78.26 78.36 (80.73MR)
Diabetes 18.72 79.07
Wine 99.00 97.56
Lenses 84.62 87.69
Tae 56.58 61.32
New_thyroid 91.11 96.02 (97.31MR)
Iris 87.07 98.80
Cmc 51.96 56.82
Balance_scale 88.75 91.82 (92.04SVM)
Soybean_small 99.58 100.0
Vehicle 78.16 82.61
Dermatology 98.26 98.91
Ecoli 85.71 88.63 (89.70MR)
Glass 63.76 71.65 (76.24MR)
Yeast 56.27 60.56 (61.57MR)
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Image Recognition (AR base)

oSOk
S b

G3/P11 G5/P9 G7/P7

RN 71.73 77.56 92.14
GRBFN 10.73 12.00 24.43
SVM 64.18 71.78 91.43
MR 68.45 72.22 91.00
DR-GV 70.00 78.78 92.00
DR 74.27 $0.89 93.57

2007-11-12
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}ml Coil-20 Image Recognition (Cont’d)

G9/P63 G18/P54 G36/P36
RN 96.03 97.41 98.19
GRBFN 59.92 66.39 58.47
SVM 96.98 98.98 99 44
MR 9738 98.33 98.75
DR-GV 98.10 99.07 99 44
DR 98.33 99.17 99.72

2007-11-12
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USPS Character Recognition
OV f2 1=V
r_.. . "

L /1T

Available at:



http://www.cs.toronto.edu/~roweis/data.html

Experimental Results

Ny
G10/P1090 Classification accuracy
BN GEBEN SVM ME DE-GV DE
Lvs 7 9477 a7.39 95.69 9573 9578 96.97
2vs. 3 04 54 04 .04 95.69 95.00 04 45 06.79
2ws. 7 96.61 95.83 96.65 06.63 9638 097.71
3vs. 8 9257 0243 9275 0298 o147 03.58
4vs. 7 08.35 0495 98.62 98.53 08.39 09.08
Classification accuracy
G100/P1000 ;
RN GRBFN SVM MR DE-GV DR
1ws. 7 9975 96.90 99 55 0995 99 85 09.95
2vs. 3 98.00 96.45 88.10 08.35 98.15 98.40
2vs. 7 09955 98.95 99.70 99.70 99 .60 99.70
3vs. 8 97.70 05 85 98 .40 9790 9520 08.50
4vs. 7 99 30 98.30 99.70 99 50 99 40 99.70

2007-11-12
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In Summary

Loss Function Regularization Term Dependent on
Regularization | Square-Loss Hinge-Loss 2 2 the number of
) {ll-"unr:ricrn Puzlc:tiﬂn ”‘f“f‘ ”f”*' Rd""”g (7:m) classes
RLSC v v
LapRLSC v v v v
SVM v v
LS-5VM v v v
LapSVM v v v v
DR v v
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Future work

« Generalization error bound;
« Semi-supervised (discriminant) framework;
« Sparse solutions;
« Parameter selection;
« Structured DR framework;
« Applications;
etc.

2007-11-12

68



Thanks a lot!
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