
MLA’07, Nanjing

From Tetris to Relational
Reinforcement Learning

Dr. Yang Gao (gaoy@nju.edu.cn)
Mr. Shen Ge, Mr. Weiwei Wang, Mr. Xingguo Chen

State Key Laboratory for Novel Software Technology,
Nanjing University

MLA’07, Nanjing

Outline

• Tetris
• Learn optimal policy by

reinforcement learning (RL)
• RL + function approximation is

enough?
• Features of Tetris
• Towards first order logic
• Markov logic networks
• Conclusion

MLA’07, Nanjing

Tetris (1)
• Rewards (scores) = number of cleared lines

Tetris is a falling-blocks puzzle video game originally designed and
programmed by Alexey Pajitnov in 1985.

MLA’07, Nanjing

Tetris (2)

• Play the “offline” version of Tetris, where
the initial board and piece sequence are
known, is NP-hard. [Demaine et al., 2003]

• Artificial Tetris player [Ramon and Driessens,
2004]
– 500,000 lines when they only include

information about the falling block.
– 5,000,000 lines when the next block

is considered.

O J L Z S I T

MLA’07, Nanjing

Known algorithms
• Average scores of various algorithms [Szita and Lorincz,

2006]
– Non-reinforcement learning algorithms
– Reinforcement learning algorithms

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

Mean Score

Hand-coded

GA

RRL-KBR

Policy iteration

LSPI

LP+Bootstrap

Natural policy
gradient
CE+RL

CE+RL, constant
noise
CE+RL, decreasing
noise

MLA’07, Nanjing

Abstract of Tetris

• State space (S):
– 2200*7*4*10(7) > 1060

• Action (A):
– Drop, turn, right, left

• Goal:
– Maximize the expected

rewards (scores).

Sequence decision problem.

MLA’07, Nanjing

Modeling Tetris

• Markov Decision Process (MDP)
– A set of States:
– A set of Actions:
– Reward function:
and
– State transition function: The next

block’s shape is undetermined.

• However, the model of Tetris is
unknown in advance. Planning (or
optimizing) is infeasible in Tetris.

S
A

:r S A× →ℜ

:P S A S× →

s0

s1

s2

s3

a

a

a

MLA’07, Nanjing

Tetris

Unknown MDP ???

Model Algorithm

MLA’07, Nanjing

Learn model or learn optimal policy?

• Learn model
– By Monte Carlo sampling, can

learn (or estimate) the model.
– Given the estimated model, use

planning technology to obtain
the optimal policy.

• Learn optimal policy
– By trial-and-error, get some

experiences (or samples)
– Learn the optimal policy from

experiences directly.

′, , ,s a s r

MLA’07, Nanjing

Key question: how to predict the long
term rewards
• Return function

• Bellman equation
– Using iterative method to

compute the return (value)
function

discounted - parameter γ<1. return =∑
undiscounted or average reward

0

i
i i

i
γ r(s ,a)

∞

=

()
1

0

1lim ,
N

i iN i
return r s a

N

−

→∞
=

= ∑

MLA’07, Nanjing

() ()a a
ss ss

s
V s P R V sπ πγ′ ′

′

′⎡ ⎤= +⎣ ⎦∑

Bellman equation given the determined
policy Π

()
2 3

1 2 3 4

2
1 2 3 4

1 1

t t t t t

t t t t

t t

R r r r r

r r r r

r R

γ γ γ

γ γ γ

γ

+ + + +

+ + + +

+ +

= + + +

= + + +

= +

{ }
(){ }1 1

() t t

t t t

V s E R s s

E r V s s s

π
π

π γ+ +

= =

= + =

The basic idea (in one episode):

So, in many episodes :

Or, without the expectation operator:

is unknown

MLA’07, Nanjing

s0

s1
s2 sn

One step

rt+1

[])()()()(
:TD(0) method, TD simplest The

11 ttttt sVsVrsVsV −++← ++ γα

Temporal-Difference learning

[]
Simple Monte Carlo method:

() () ()t t t tV s V s R V sα← + −

target: the actual return after time t.

target: an estimate of the return.

The detail materials can be found in the talk of MLA'04.

s0

s1
s2 sn

One episode

Rt

MLA’07, Nanjing

• For each , calculate/predict the Q
values.

• The optimal policy:

as

() () (),(,) , max , ,α γ′ ′

Q-learning

⎡ ⎤′ ′← + + −⎣ ⎦
a

s s a
Q s a Q s a r Q s a Q s a

() ()* arg max ,Π ←
a

s Q s a

MLA’07, Nanjing

The detail materials can be found in the talk of MLA'06.

Average reward reinforcement learning
algorithm
• Average reward G-learning algorithm

() () () ()

() ()
, 0

0 0 0

(,) , max , ,

 , max ,

a
s s a

a

G s a G s a r g s G s a G s a

if s s g s G s a

α ′ ′
⎡ ⎤′ ′← + − + −⎣ ⎦

= ←

reference state

MLA’07, Nanjing

Tetris

Unknown MDP Average RL Algorithm

Model Algorithm

MLA’07, Nanjing

How to speed up the learning process

• Problem: large state space
– State space: 10*20 grids, 7 shapes

and 10 locations.
– Action space: 4 actions.

• Solution: in similar state-action pairs,
the Q-value may be similar.

• Technical points: using function
approximation to general the Q-values.

Question: after learn a Q(s,a), when will visit the state ‘s’ again?

MLA’07, Nanjing

RL FA

Subset of states learnt values as inputs
Q (s, a)

Generalization of
the value function
to the entire state
space

RL + function approximation

• Neural network et al.

() ()() ()()()
()()()()

0 0 0 0

0

Q M Q M Q M M Q

M M Q

→ →Γ → Γ

→Γ Γ →

MLA’07, Nanjing

Tetris

Markov Decision
Process Average RL Algorithm

Model Algorithm

Large Scale MDP RL + FA

MLA’07, Nanjing

Features of states & actions

• Relative features
– Height of wall (max, avg, min)
– Number of Holes
– Height difference adjacent cols
– Canyon (width, height)
– ...

• Macro actions
– Fits
– Increasesheight, ...
– Number of deleted lines
– ...

Hole

Canyon

Relative height

Good features beat good learning! [Feng, MLA07]

MLA’07, Nanjing

Some discussions and thinking…

• Classical RL
– Use look-up table

• RL + FA
– Use function to generalize the Q-table

• Relative features
– Use features to generalize the Q-table

Is it enough?

MLA’07, Nanjing

Relational domain

• Challenges [Tadepalli et al., 2004]

– Function approximation
– Prior Knowledge
– Generalization across objects
– Transfer learning across tasks
– Run-time planning and reasoning

MLA’07, Nanjing

Relational reinforcement learning

• RRL
– Reinforcement learning + relational

representation
• Relational representation

– Represents value function as a first
order logic regression tree

• Algorithms
– TG algorithm [Driessens et al, 2001]

– RIB (instance based algorithm) [Driessens
and Ramon, 2003]

– KBR (kernel based algorithm) [Gartner et
al, 2003]

MLA’07, Nanjing

Decision Tree

• Each internal node of a decision tree
contains a test.

• Decision trees partition the whole
example space and assign class values
to each example.

• Make prediction
– Starts in the root of the tree
– Applies a test to the example
– Propagates the example to the

corresponding subtree
– Leaf is the prediction

MLA’07, Nanjing

First order logical decision tree

• Differences between LDT and DT
– Example: a relational database
– Test: query

• Example 1 : (s, a, Q)
– Qvalue(1)
– WidCanyon(b, 1)
– HeightCanyon(b, 4)
– Hole(3,2)
– NumHoles(1)
– Hight(3,3)
– Shape(a, ‘O’)
– Drop(1,’O’,vert)

Q-value

state

action

MLA’07, Nanjing

noyes

Shape(B,’O’)

For example: a LDT

Canyon(S)

noyes

Qvalue=0.8

Drop(1,’O’,vert) Drop(1,’O’,hor)

MLA’07, Nanjing

Relational RL algorithm

• RRL algorithm [Driessens et al, 2001]
– 0. Represent the state and action with

relational method, initialize the Q-values
– 1. Run the first episode

• Choose the action randomly
– 2. Obtain examples (s,a,Q)
– 3. Use TG algorithm to expand tree
– 4. Run next episode

• Choose the action according to the tree
• Update the Q-value

– 5. Return step 2

MLA’07, Nanjing

TG algorithm (1)

• Build first order logical tree

– Create an empty leaf
– While (examples available)

• Sort example down to leaf
• Update statistics in leaf
• If (split needed)

– Create two empty leafs

• The heuristical rule is same as in C4.5.

MLA’07, Nanjing

Example 1
State:

WidCanyon(1,2),---column 1, width 2

HeightCanyon(1,3),---column 1, height 3

Hole(3,2),

NumHoles(1),

Height(3,3),

Height(4,3),

Height(5,3),

Action:

Drop(1,’O’,Vertical)---Put Shape 'O' on column 1 with direction
Vertical

Qvalue:

Qvalue(1)---1 line is cleared

MLA’07, Nanjing

State:

WidCanyon(1,2),---column 1, width 2

HeightCanyon(1,3),---column 1, height 3

Hole(3,2), Hole(5,1)

NumHoles(2),

Height(1,1), Height(2,1),

Height(3,4), Height(4,3),

Height(5,3),

Action:

Drop(1,’O’,Vertical)---Put Shape 'O' on column 1 with direction Vertical

Qvalue :

Qvalue(1)---1 line is cleared

Example 2

MLA’07, Nanjing

State:

WidCanyon(1,1),---column 1, width 1

HeightCanyon(1,3),---column 1, height 3

Hole(3,2),

NumHoles(1),

Height(2,3), Height(3,3),

Height(4,3), Height(5,3),

Action:

Drop(1,’L’,Vertical)---Put Shape 'L' on column 1 with direction
Vertical

Qvalue :

Qvalue(0)---No line is cleared

Example 3

MLA’07, Nanjing

State:

WidCanyon(1,2),---column 1, width 2

HeightCanyon(1,3),---column 1, height 4

Hole(3,1),

NumHoles(1),

Height(3,3),

Height(4,3),

Height(5,3),

Action:

Drop(1,L,Vert)---Put Shape 'L' on column 1 with direction Vertical

Qvalue :

Qvalue(0)---No line is cleared

Example 4

MLA’07, Nanjing

noyes

Drop(F,’O’,H)

WidCanyon(A,2)

noyes
Qvalue=0 (example 3)

NumHoles(1) NumHoles(2)

How to build first order logical tree?

WidCanyon(A,B),HeightCanyon(C,D),NumHoles(E),Drop(F,G,H)

Qvalue=0 (example 4)Qvalue=1 (example 1,2)

MLA’07, Nanjing

TG algorithm (2)

• TG algorithm
– When stop to split the leaf node?

• Tree updated algorithm
– New examples, update the tree

incrementally

• Test to choose an action
– Test all possible actions, combine

any possible example, according to
the tree to get their Q-values.

MLA’07, Nanjing

Tetris

Unknown MDP Average RL Algorithm

Model Algorithm

Large Scale MDP RL + FA

Logical MDP Relational RL

MLA’07, Nanjing

Prior Knowledge

• Formula 1
– ‘If exist a canyon

whose width is 2
and the shape of
dropping block is I,
put the block in
the canyon, then
the canyon’s width
is 1.’

MLA’07, Nanjing

Markov logic networks

• What is MLN?
– First order logic

• Constants, variables, functions, predicates,
formulas

– Markov network

MLA’07, Nanjing

Explain

• Prior knowledge
– ‘If exist a canyon whose width is 2 and the

shape of dropping block is I, put the block
in the canyon, then the canyon’s width is 1.’

• First-order logic

• Clausal form

• Weight
– 0.8

() () () ()∃ ∃ ∧ ∧ ⇒, ,2 , , ,1x y WidCanyon x BolckShape y O Drop y x WidCanyon x

() () () ()¬ ∨ ¬ ∨ ¬ ∨,2 , , ,1WidCanyon x BolckShape y I Drop y x WidCanyon x

MLA’07, Nanjing

Markov logic network

WidCanyon(x,2)

BlockShape(y,I) Drop(y,x)

WidCanyon(x,1)

MLA’07, Nanjing

Example
State:

WidCanyon(1,1),---column 1, width 1

HeightCanyon(1,2),---column 1, height 2

Height(2,1),

Height(3,2),

Height(4,2),

Height(5,1)

Action:

Drop(1,’I’,Vertical)---Put Shape 'O' on column 1 with direction
Vertical

Qvalue:

Qvalue(1)---1 line is cleared

MLA’07, Nanjing

How to predict?

WidCanyon(x,2)

BlockShape(y,I) Drop(y,x)

WidCanyon(x,1)

Compute the probability of WidCanyon(x,1) using MLN

Then compute the Q-value by LDT

Choose the predict (action) to maximize the Q-value

MLA’07, Nanjing

Tetris

Unknown MDP Average RL Algorithm

Model Algorithm

Large Scale MDP RL + FA

Logical MDP Relational RL

Markov Logic
Networks MLN-based RRL

MLA’07, Nanjing

Conclusion
• Traditional reinforcement learning

– Too large state space, to re-visit it.
• RL + FA

– Propagate the Q values to similar states.
• Features

– Similar states have same features.
• Relational RL

– Compute which feature is most important.
• Markov logic network

– Describe the causal relationship between
features

Doing the task is not difficult, Describing the
task is difficult.

MLA’07, Nanjing

Thanks …

MLA’07, Nanjing

• [Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and Tsitsiklis, J. N. (1996).
Neuro-Dynamic Programming. Athena Scientific.

• [Demaine et al., 2003] Demaine, E. D., Hohenberger, S., and Liben-Nowell, D.
(2003). Tetris is hard, even to approximate. In Proc. 9th International
Computing and Combinatorics Conference (COCOON 2003), pages 351–363.

• [Farias and van Roy, 2006] Farias, V. F. and van Roy, B. (2006). Probabilistic
and Randomized Methods for Design Under Uncertainty, chapter Tetris: A
Study of Randomized Constraint Sampling. Springer-Verlag UK.

• [Kakade, 2001] Kakade, S. (2001). A natural policy gradient. In Advances in
Neural Information Processing Systems (NIPS 14), pages 1531–1538.

• [Lagoudakis et al., 2002] Lagoudakis, M. G., Parr, R., and Littman, M. L.
(2002). Least-squares methods in reinforcement learning for control. In
SETN ’02: Proceedings of the Second Hel lenic Conference on AI, pages
249–260, London, UK. Springer-Verlag.

• [Ramon and Driessens, 2004] Ramon, J. and Driessens, K. (2004). On the
numeric stability of gaussian processes regression for relational
reinforcement learning. In ICML-2004 Workshop on Relational
Reinforcement Learning, pages 10–14.

• [Szita and Lorincz, 2006] Istvan Szita, András Lörincz: Learning Tetris
Using the Noisy Cross-Entropy Method. Neural Computation 18(12): 2936-
2941 (2006)

MLA’07, Nanjing

• [Tadepalli et al., 2004] Prasad Tadepalli, Robert Givan, and Kurt
Driessens (2004). Relational Reinforcement Learning: An Overview. In
Proc. ICML-04 Workshop on Relational Reinforcement Learning.

• [Driessens et al, 2001] Driessens K., Ramon J., Blockeel�H. Speeding
up relational reinforcement learning through the use of an
incremental first order decision tree learner Lecture Notes in
Computer Science 2167.

• [Ramon and Driessens, 2004] Ramon, J. and Driessens, K. (2004). On
the numeric stability of gaussian processes regression for relational
reinforcement learning. In ICML-2004 Workshop on Relational
Reinforcement Learning, pages 10-14.

• [Driessens and Ramon, 2003] Driessens K., Ramon J. Relational
instance based regression for relational reinforcement learning.
Proceedings of the Twentieth International Conference on Machine
Learning pp 123-130, AAAI Press.

• [Gartner et al, 2003] Gartner T., Driessens�K., Ramon J. a Graph
kernels and Gaussian processes for relational reinforcement learning
Inductive Logic Programming, 13th International Conference ILP
Proceedings pp 146-163 Springer.

	From Tetris to Relational Reinforcement Learning
	Outline
	Tetris (1)
	Tetris (2)
	Known algorithms
	Abstract of Tetris
	Modeling Tetris
	Learn model or learn optimal policy?
	Key question: how to predict the long term rewards
	Bellman equation given the determined policy Π
	Temporal-Difference learning
	Q-learning
	Average reward reinforcement learning algorithm
	How to speed up the learning process
	RL + function approximation
	Features of states & actions
	Some discussions and thinking…
	Relational domain
	Relational reinforcement learning
	Decision Tree
	First order logical decision tree
	For example: a LDT
	Relational RL algorithm
	TG algorithm (1)
	Example 1
	Example 2
	Example 3
	Example 4
	How to build first order logical tree?
	TG algorithm (2)
	Prior Knowledge
	Markov logic networks
	Explain
	Markov logic network
	Example
	How to predict?
	Conclusion
	Thanks …

