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Outline

• Tetris
• Learn optimal policy by 

reinforcement learning (RL)
• RL + function approximation is 

enough?
• Features of Tetris
• Towards first order logic
• Markov logic networks
• Conclusion
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Tetris (1)
• Rewards (scores) = number of cleared lines

Tetris is a falling-blocks puzzle video game originally designed and 
programmed by Alexey Pajitnov in 1985.
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Tetris (2)

• Play the “offline” version of Tetris, where 
the initial board and piece sequence are 
known, is NP-hard. [Demaine et al., 2003] 

• Artificial Tetris player [Ramon and Driessens, 
2004]
– 500,000 lines when they only include 

information about the falling block.
– 5,000,000 lines when the next block 

is considered.

O      J      L     Z      S     I      T
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Known algorithms
• Average scores of various algorithms [Szita and Lorincz, 

2006] 
– Non-reinforcement learning algorithms
– Reinforcement learning algorithms
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Abstract of Tetris

• State space (S):
– 2200*7*4*10(7) > 1060

• Action (A):
– Drop, turn, right, left

• Goal:
– Maximize the expected 

rewards (scores).

Sequence decision problem.
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Modeling Tetris

• Markov Decision Process (MDP)
– A set of States:
– A set of Actions:
– Reward function:
and
– State transition function: The next 

block’s shape is undetermined.

• However, the model of Tetris is 
unknown in advance. Planning (or 
optimizing) is infeasible in Tetris.
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Tetris

Unknown MDP ???

Model Algorithm
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Learn model or learn optimal policy?

• Learn model
– By Monte Carlo sampling, can 

learn (or estimate) the model.
– Given the estimated model, use 

planning technology to obtain 
the optimal policy. 

• Learn optimal policy
– By trial-and-error, get some 

experiences (or samples)
– Learn the optimal policy from 

experiences directly.

′, , ,s a s r
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Key question: how to predict the long 
term rewards
• Return function

• Bellman equation
– Using iterative method to 

compute the return (value) 
function

discounted - parameter γ<1. return =∑
undiscounted or average reward
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The basic idea (in one episode):

So, in many episodes :

Or, without the expectation operator:

is unknown
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Temporal-Difference learning

[ ]
Simple Monte Carlo method:
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target: the actual return after time t.

target: an estimate of the return.

The detail materials can be found in the talk of MLA'04.
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• For each                   ,  calculate/predict the Q 
values.

• The optimal policy:

as

( ) ( ) ( ),( , ) , max , ,α γ′ ′

Q-learning
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The detail materials can be found in the talk of MLA'06.

Average reward reinforcement learning 
algorithm
• Average reward G-learning algorithm
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Tetris

Unknown MDP Average RL Algorithm

Model Algorithm
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How to speed up the learning process

• Problem: large state space
– State space: 10*20 grids, 7 shapes 

and 10 locations.
– Action space: 4 actions.

• Solution: in similar state-action pairs, 
the Q-value may be similar.

• Technical points: using function 
approximation to general the Q-values.

Question: after learn a Q(s,a),  when will visit the state ‘s’ again?
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RL FA

Subset  of states learnt values as inputs
Q (s, a)

Generalization of 
the value function 
to the entire state 
space

RL + function approximation

• Neural network et al.
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Tetris

Markov Decision
Process Average RL Algorithm

Model Algorithm

Large Scale MDP RL + FA
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Features of states & actions

• Relative features
– Height of wall (max, avg, min)
– Number of Holes
– Height difference adjacent cols
– Canyon (width, height)
– ...

• Macro actions
– Fits
– Increasesheight, ...
– Number of deleted lines
– ...

Hole

Canyon

Relative height

Good features beat good learning! [Feng, MLA07]
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Some discussions and thinking…

• Classical RL
– Use look-up table

• RL + FA
– Use function to generalize the Q-table

• Relative features
– Use features to generalize the Q-table

Is it enough?
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Relational domain

• Challenges [Tadepalli et al., 2004]

– Function approximation
– Prior Knowledge
– Generalization across objects 
– Transfer learning across tasks 
– Run-time planning and reasoning
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Relational reinforcement learning

• RRL
– Reinforcement learning + relational 

representation
• Relational representation

– Represents value function as a first 
order logic regression tree

• Algorithms
– TG algorithm [Driessens et al, 2001]

– RIB (instance based algorithm) [Driessens
and Ramon, 2003] 

– KBR (kernel based algorithm) [Gartner et 
al, 2003] 
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Decision Tree

• Each internal node of a decision tree 
contains a test.

• Decision trees partition the whole 
example space and assign class values
to each example.

• Make prediction
– Starts in the root of the tree
– Applies a test to the example
– Propagates the example to the 

corresponding subtree
– Leaf is the prediction
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First order logical decision tree

• Differences between LDT and DT
– Example: a relational database
– Test: query

• Example 1 : (s, a, Q)     
– Qvalue(1)
– WidCanyon(b, 1)
– HeightCanyon(b, 4)
– Hole(3,2)
– NumHoles(1)
– Hight(3,3)
– Shape(a, ‘O’)
– Drop(1,’O’,vert)

Q-value

state

action
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noyes

Shape(B,’O’)

For example: a LDT

Canyon(S)

noyes

Qvalue=0.8

Drop(1,’O’,vert) Drop(1,’O’,hor)
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Relational RL algorithm 

• RRL algorithm [Driessens et al, 2001]
– 0. Represent the state and action with 

relational method, initialize the Q-values
– 1. Run the first episode

• Choose the action randomly
– 2. Obtain examples (s,a,Q)
– 3. Use TG algorithm to expand tree
– 4. Run next episode

• Choose the action according to the tree
• Update the Q-value

– 5. Return step 2
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TG algorithm (1)

• Build first order logical tree

– Create an empty leaf
– While (examples available)

• Sort example down to leaf
• Update statistics in leaf
• If (split needed)

– Create two empty leafs

• The heuristical rule is same as in C4.5.
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Example 1
State:

WidCanyon(1,2),---column 1, width 2

HeightCanyon(1,3),---column 1, height 3

Hole(3,2),

NumHoles(1),

Height(3,3),

Height(4,3),

Height(5,3),

Action:

Drop(1,’O’,Vertical)---Put Shape 'O' on column 1 with direction 
Vertical

Qvalue:

Qvalue(1)---1 line is cleared
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State:

WidCanyon(1,2),---column 1, width 2

HeightCanyon(1,3),---column 1, height 3

Hole(3,2), Hole(5,1)

NumHoles(2),

Height(1,1), Height(2,1),

Height(3,4), Height(4,3),

Height(5,3),

Action:

Drop(1,’O’,Vertical)---Put Shape 'O' on column 1 with direction Vertical

Qvalue :

Qvalue(1)---1 line is cleared

Example 2



MLA’07, Nanjing

State:

WidCanyon(1,1),---column 1, width 1

HeightCanyon(1,3),---column 1, height 3

Hole(3,2),

NumHoles(1),

Height(2,3), Height(3,3),

Height(4,3), Height(5,3),

Action:

Drop(1,’L’,Vertical)---Put Shape 'L' on column 1 with direction 
Vertical

Qvalue :

Qvalue(0)---No line is cleared

Example 3
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State:

WidCanyon(1,2),---column 1, width 2

HeightCanyon(1,3),---column 1, height 4

Hole(3,1),

NumHoles(1),

Height(3,3),

Height(4,3),

Height(5,3),

Action:

Drop(1,L,Vert)---Put Shape 'L' on column 1 with direction Vertical

Qvalue :

Qvalue(0)---No line is cleared

Example 4
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noyes

Drop(F,’O’,H)

WidCanyon(A,2)

noyes
Qvalue=0 (example 3)

NumHoles(1) NumHoles(2)

How to build first order logical tree?

WidCanyon(A,B),HeightCanyon(C,D),NumHoles(E),Drop(F,G,H)

Qvalue=0 (example 4)Qvalue=1 (example 1,2)
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TG algorithm (2)

• TG algorithm
– When stop to split the leaf node?

• Tree updated algorithm
– New examples, update the tree 

incrementally

• Test to choose an action 
– Test all possible actions, combine 

any possible example, according to 
the tree to get their Q-values. 
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Tetris

Unknown MDP Average RL Algorithm

Model Algorithm

Large Scale MDP RL + FA

Logical MDP Relational RL
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Prior Knowledge

• Formula 1
– ‘If exist a canyon 

whose width is 2 
and the shape of 
dropping block is I, 
put the block in 
the canyon, then 
the canyon’s width 
is 1.’
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Markov logic networks

• What is MLN?
– First order logic 

• Constants, variables, functions, predicates, 
formulas

– Markov network
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Explain

• Prior knowledge
– ‘If exist a canyon whose width is 2 and the 

shape of dropping block is I, put the block 
in the canyon, then the canyon’s width is 1.’

• First-order logic

• Clausal form

• Weight
– 0.8

( ) ( ) ( ) ( )∃ ∃ ∧ ∧ ⇒,   ,2 , , ,1x y WidCanyon x BolckShape y O Drop y x WidCanyon x

( ) ( ) ( ) ( )¬ ∨ ¬ ∨ ¬ ∨,2 , , ,1WidCanyon x BolckShape y I Drop y x WidCanyon x
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Markov logic network

WidCanyon(x,2)

BlockShape(y,I) Drop(y,x)

WidCanyon(x,1)
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Example
State:

WidCanyon(1,1),---column 1, width 1

HeightCanyon(1,2),---column 1, height 2

Height(2,1),

Height(3,2),

Height(4,2),

Height(5,1)

Action:

Drop(1,’I’,Vertical)---Put Shape 'O' on column 1 with direction 
Vertical

Qvalue:

Qvalue(1)---1 line is cleared
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How to predict?

WidCanyon(x,2)

BlockShape(y,I) Drop(y,x)

WidCanyon(x,1)

Compute the probability of WidCanyon(x,1) using MLN

Then compute the Q-value by LDT

Choose the predict (action) to maximize the Q-value
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Tetris

Unknown MDP Average RL Algorithm

Model Algorithm

Large Scale MDP RL + FA

Logical MDP Relational RL

Markov Logic 
Networks MLN-based RRL
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Conclusion
• Traditional reinforcement learning

– Too large state space, to re-visit it.
• RL + FA

– Propagate the Q values to similar states.
• Features

– Similar states have same features.
• Relational RL

– Compute which feature is most important.
• Markov logic network

– Describe the causal relationship between 
features

Doing the task is not difficult, Describing the 
task is difficult.
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Thanks …
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