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Outline

- Tetris

* Learn optimal policy by
reinforcement learning (RL)

* RL + function approximation is
enough?

+ Features of Tetris

- Towards first order logic

* Markov logic networks

- Conclusion
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Tetris (1)

- Rewards (scores) = number of cleared lines

Tetris is a falling-blocks puzzle video game originally designed and
programmed by Alexey Pajitnov in 1985.
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Tetris (2)

Play the "offline" version of Tetris, where
the initial board and piece sequence are

known, is NP-hard. [Demaine et al., 2003]

JL A%
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g\gggficid Tetris player [Ramon and Driessens,fm
]

- 500,000 lines when they only include
information about the falling block.

- 5,000,000 lines when the next block L.
is considered. -

O
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Known algorithms

Average scores of various algorithms [Szita and Lorincz,

2006]

- Non-reinforcement learning algorithms
- Reinforcement learning algorithms
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Abstract of Tetris

- State space (S):

- 2200%7%4*10(7) > 1060
+ Action (A):

- Drop, turn, right, left
* Goal:

- Maximize the expected
rewards (scores).

~

Sequence decision problem.
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Modeling Tetris

ﬁ\sl

Markov Decision Process (MDP) (s, o s,
- A set of States: S k/

- A set of Actions: A 94~ 53

- Reward function: r:SxA—R

and

- State transition function: The next
block's shape is undetermined.

P:SxA—>S

However, the model of Tetris is
unknown in advance. Planning (or i
optimizing) is infeasible in Tetris.
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Unknown MDP ’@) 2?7 '

Model

Algorithm
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Learn model or learn optimal policy?

- Learn model

- By Monte Carlo sampling, can
learn (or estimate) the model.

- Given the estimated model, use
planning technology to obtain
the optimal policy.

» Learn optimal policy

- By frial-and-error, get some

experiences (or samples)(s.,a,s',r)

- Learn the optimal policy from
experiences directly. \
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Key question: how to predict the long
term rewards

» Return function

discounted - parameter y<1. return= Zy‘r(si ,3; )
=0

undiscounted or average reward

N —o0

1 N -1
return = lim WZ r(s.a)
i=0

* Bellman equation

- Using iterative method to
compute the return (value)
function
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Bellman equation given the determined
policy II
The basic idea (in one episode):
Rt t+1+7/t+2+7/ t+3+7/ t+4

t+1+7/( t+2+7/t+3 7/ t+4 )

t+1 +7/Rt+1
So, in many episodes :

V7(s)=E,{R|s =5}
=E { t+1 +7/V (St+1)
Or, without the expectation operator:

V7 (s) =; ()]

is unknown
MLA'O7, +veer ey

s, =S}




Temporal-Difference learning

One episode
=% s - S, - >
1 S,
Simple Monte Carlo method:  “%o
V(s,) <V (s)+a[R-V(s)] R

target: the actual return after time 7.

_ﬂi‘.

The simplest TD method, TD(0) :
V(st) - V(st)+alr 1+ NV (Sts1) -V (st)]

One step [ ,
/ﬂsl T > 52 RREEEEEE > s
So , target: an estimate of t
Y r‘T+1 lr -

The detail materials can be found in the talk of MLA'O4.M'

MLA’07, Nanjing



Q-learning

* For each @—a>_. calculate/predict the Q

values.
Q(s,a) <—Q(s,a)+a[rs‘j‘s, +ym3xQ(s’,a’)—Q(s,a)}
* The optimal policy:

IT"(s)« argmaxQ(s,a)

a
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Average reward reinforcement learning
algorithm

Average reward G-learning algorithm

G(s,a) « G(s,a)+a[rs"j‘s, —-g(sy)+ mng(s’,a’)—G(s,a)}

if (sO)<—maxG(so,a)

reference state ""‘é

Fig
The detail materials can be found in the talk of MLA'06. " =

MLA’07, Nanjing



Unknown MDP

)

Average RL Algorithm

o

Tetris

Model

Algorithm
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How to speed up the learning process

* Problem: large state space

- State space: 10*20 grids, 7 shapes
and 10 locations.

- Action space: 4 actions. -

. p 'fé.

- Solution: in similar state-action paifs, =P
the Q-value may be similar. (—

+ Technical points: using function
approximation to general the Q-valugs: =+

e
l

Question: after learn a Q(s,a), when will visit the sTBTt‘E’“d‘gEWi?
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RL + function approximation

Neural network et al. Generalization of
the value function

to the entire state
Subset of states _ learnt values as inputs  space

> Q(S, G)

RL

»
»

FA

v v

Qo M (Qy) >T(M(Qy)) > M (I(M(Q)))
—>F(M<F(M(QO))))—>---
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Large Scale MDP ’<<:>> RL + FA

)

10)

Markov Decision
Process

)

<<::>> Average RL Algorithm

o

Tetris

Model

Algorithm
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Features of states & actions

+ Relative features
- Height of wall (max, avg, min)
- Number of Holes
- Height difference adjacent cols
- Canyon (width, height)

* Macro actions
- Fits
- Increasesheight, ... ._
- Number of deleted lines  Hole

Canyon —_

Good features beat good learning! [Feng, MLAO7]
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Some discussions and thinking...

» Classical RL
- Use look-up table

- RL+FA

- Use function to generalize the Q-table

- Relative features -“é

- Use features to generalize the Q m

- r——— s

Is it enough?
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Relational domain

* Challenges (Tadepalli et al., 2004]
- Function approximation
- Prior Knowledge
- Generalization across objects
- Transfer learning across tasks i

- Run-time planning and reasonin h
pranning I =
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Relational reinforcement learning

- RRL

- Reinforcement learning + relational
representation

* Relational representation

- Represents value function as a fn:.s,t--L
order logic regression tree

» Algorithms

- TG alqori’rhm [Driessens et al, 2001]

and Ramon, 2003]

- KBR (kernel based algorithm) [Gartndesr—
al, 2003]
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Decision Tree

- Each internal node of a decision tree
contains a test.

- Decision trees partition the whole

example space and assign class values
to each example.

- Make prediction

Starts in the root of the tree
Applies a test to the example

Propagates the example to the
corresponding subtree

Leaf is the prediction

MLA’07, Nanjing
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First order logical decision tree

- Differences between LDT and DT

- Example: a relational database
- Test: query

Example 1: (s, a, Q)

- Qualue(1) > Q-value
- WidCanyon(b, 1) )
- HeightCanyon(b, 4)

- Hole(3,2)

- NumHoles(1)

- Hight(3,3)

- Shape(a, 'O’) )
- Drop(1,0' vert) > action

> state
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For example: a LDT

Canyon(S)

O
yes no
Shape(a,'O')./ N
yes/ \no

Qvalue=0.8@

Drop(1,'O’,vert) Drop(1,'0O’, hor)
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Relational RL algorithm

- RRL algori’rhm [Driessens et al, 2001]

- 0. Represent the state and action with
relational method, initialize the @-values

- 1. Run the first episode
* Choose the action randomly

- 2. Obtain examples (s,a.Q) _-é.
- 3. Use TG algorithm to expand tree :

- 4. Run next episode

* Choose the action according to the t
- Update the Q-value

- 5. Return step 2
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TG algorithm (1)

» Build first order logical tree

- Create an empty leaf
- While (examples available)
» Sort example down to leaf
- Update statistics in leaf
» If (split needed)
- Create two empty leafs

. The heuristical rule is same as in C4.5 % mm—
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Example 1

State:

WidCanyon(1,2),---column 1, width 2
HeightCanyon(1,3),---column 1, height 3
Hole(3,2),

NumHoles(1),

Height(3,3),

Height(4,3),

Height(5,3),

Action:

Drop(1,O',Vertical)---Put Shape 'O’ on column 1 with direct
Vertical

Quvalue:

_Q\lnlnaf’l\ 1 line ic cleared
''''' \d-l a 1111w o wiWwUAl WA

N e |
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Example 2

State:

WidCanyon(1,2),---column 1, width 2
HeightCanyon(1,3),---column 1, height 3
Hole(3,2), Hole(5,1)

NumHoles(2),

Height(1,1), Height(2,1),

Height(3,4), Height(4,3),

Height(5,3),

Action:

Drop(1,O',Vertical)---Put Shape 'O’ on column 1 with direct

Qvalue :

Qvalue(1)---1 line is cleared | Fee———
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Example 3

State:

WidCanyon(1,1),---column 1, width 1
HeightCanyon(1,3),---column 1, height 3
Hole(3,2),

NumHoles(1),

Height(2,3), Height(3,3),

Height(4,3), Height(5,3),

Action:

Drop(1,L'Vertical)---Put Shape ‘L’ on column 1 with directig ._
Vertical

Qvalue :

N e |

Qvalue(0)---No line is cleared
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Example 4

State:

WidCanyon(1,2),---column 1, width 2
HeightCanyon(1,3),---column 1, height 4
Hole(3,1),

NumHoles(1),

Height(3,3),

Height(4,3),

Height(5,3),

Action: :
Drop(1,L,Vert)---Put Shape 'L’ on column 1 with direction V4 ,-,_

Qvalue :

Qvalue(0)---No line is cleared | Fee———
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How to build first order logical tree?

WidCanyon(A,B) HeightCanyon(C,D),NumHoles(E),Drop(F,G,H)

WidCanyon(A, 2)
yes no
Drop(F,'0".H)@ Qvalue=0 (example

A

Qvalue=1 (example 1,2)  Qvalue=0 (example 4)

g ————— "=

NumHoles(1) NumHoles(2) t

N e |
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TG algorithm (2)

TG algorithm
- When stop to split the leaf node?

Tree updated algorithm

- New examples, update the tree
incrementally

Test to choose an action

- Test all possible actions, combine
any possible example, according to
the tree to get their @Q-values.
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Logical MDP

)

|<<Z>> Relational RL

15)

Large Scale MDP

)

=) RL + FA

10)

Unknown MDP

)

<<:,>> Average RL Algorithm

o

Tetris

Model

Algorithm
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Prior Knowledge

- Formula 1

- 'If exist a canyon
whose width is 2
and the shape of
dropping block is I,
put the block in
the canyon, then
the canyon's width
is 1.
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Markov logic networks

* What is MLN?

- First order logic

- Constants, variables, functions, predicates,
formulas

- Markov network
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Explain

* Prior knowledge

- 'Tf exist a canyon whose width is 2 and the
shape of dropping block is I, put the block
in the canyon, then the canyon's width is 1.

* First-order logic ———
Ax,3y WidCanyon(x,2) A BolckShape(y,O) A Drop(y,x) :?WXI)

— WidCanyon(x,2)v —BolckShape(y,I)v —Drop(y,x)v Wid€a R L)

- 0.8 s
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Markov logic network

WidCanyon(x,2)
BlockShape(y,I) .

WidCanyon(x,1)
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Example
State:
WidCanyon(1,1),---column 1, width 1
HeightCanyon(1,2),---column 1, height 2
Height(2,1),
Height(3,2),
Height(4,2),
Height(5,1)
Action:

Drop(1,T' Vertical)---Put Shape 'O on column 1 with directior
Vertical

Quvalue:

Qvalue(1)---1 line is cleared

N e |
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How to predict?

WidCanyon(x,2)

BlockShape(y,I) -

N\
- - T

N\

WidCanyon(x,1)

Compute the probability of WidCanyon(x,1) using MLN

Then compute the Q-value by LD

Choose the predict (action) to maximize the Q-value

M

T

LA’07, Nanjing




Markov Logic
Networks

T

’<<i>> MLN-based RRL ’

Logical MDP

<<Z:>> Relational RL

)

15)

Large Scale MDP

=) RL + FA

)

10)

Unknown MDP

<<:,>:J>‘ Average RL Algorithm

)

o

Tetris

Model

Algorithm
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Conclusion

» Traditional reinforcement learning
- Too large state space, to re-visit it.

* RL +FA
- Propagate the Q values to similar states.
+ Features

- Similar states have same fea’rureé_

= |
- Compute which feature is most mﬁ
* Markov logic network A_

Doing the task is not difficult, Describing the
task is difficult.
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Thanks ...
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