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Popularity of Kernel Methods

Supervised learning: classification / regression

e.g., text classification

e.g., face detection (video surveillance, digital camera)

standard digital camera: 10M pixels

Kernel method: Support vector machines (SVM) / support vector
regression
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Support Vector Machines (SVM)

Classification problem:

training set {(xi , yi )}mi=1, xi ∈ Rd , yi ∈ {±1} (labels)

Large-margin method: Maximize the margin separating opposite
classes
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Maximizing the Margin

Let the (linear) classifier be w′x + b

min
1

2
‖w‖2(primal)

s.t. w′xi + b ≥ 1, if yi = 1,

w′xi + b ≤ −1, if yi = −1

max
m∑

i=1

αi −
1

2

m∑
i ,j=1

αiαjyiyjx
′
ixj

s.t.
m∑

i=1

αiyi = 0, αi ≥ 0 (dual)

(αi : Lagrange multiplier)
Quadratic programming (QP) problem (globally optimal solution)
Support vectors: patterns with αi > 0
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Kernel Trick

Classifier: linear → nonlinear

map the data from input space to feature space F using ϕ

Only inner products in F are needed: ϕ(xi )
′ϕ(xj) → k(xi , xj)︸ ︷︷ ︸

kernel
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SVM Optimization

Needs a QP solver

Problem 1

Needs O(m2) memory just to write down m ×m kernel matrix
= [k(xi , xj)]

m
i ,j=1 (m training examples)

If m = 20, 000 and it takes 4 bytes to represent a kernel entry,
we would need 1.6Gbytes to store the kernel matrix

Problem 2

Involves inverting the kernel matrix → O(m3) time

Key observation

Near-optimal approximate solutions are often good enough in
practical applications
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Core Vector Machine (CVM) [Tsang, Kwok, Cheung 2005]

1 Formulate kernel methods as minimum enclosing ball problems
2 Obtain approximately optimal solutions efficiently with the use

of core-sets

Classification

one/two-class CVM [Tsang, Kwok & Cheung, (JMLR) 2005]
one-class classification with Bregman divergence [Nock &
Nielsen, (ECML) 2005]
cluster based CVM [Asharaf, Murty & Shevade, (ICDM) 2006]
multiclass CVM [Asharaf, Murty & Shevade, (ICML) 2007]

Regression

core vector regression [Tsang, Kwok & Lai, (ICML) 2005]

Semi-supervised learning

sparsified LapCVM [Tsang & Kwok, (NIPS) 2006]

Others

coreset learning [Har-Peled, Roth & Zimak, (IJCAI) 2007]
feature extraction [Tsang, Kocsor & Kwok, (KDD) 2006]
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Minimum Enclosing Ball (MEB) ⇔ SVM

A problem in Computational Geometry

Given S={x1, . . . , xm}, minimum
enclosing ball of S (MEB(S)):

the smallest ball B(c,R) that
contains all x’s in S

(primal) min
R,c

R2

s.t. ‖c− ϕ(xi )‖2 ≤ R2, i = 1, . . . ,m

(dual) max
α

α′diag(K)−α′Kα

s.t. α′1 = 1, α ≥ 0

α = [αi , . . . , αm]′: Lagrange multipliers

Km×m = [k(xi , xj)]: kernel matrix

0 = [0, . . . , 0]′, 1 = [1, . . . , 1]′
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MEB ⇔ SVM...

Assume k(x, x) = κ, a constant (1)

Holds for

1 isotropic kernel k(x, y) = K (‖x− y‖) (e.g., Gaussian)

2 dot product kernel k(x, y) = K (x′y) (e.g., polynomial) with
normalized inputs

3 any normalized kernel k(x, y) = K(x,y)√
K(x,x)

√
K(y,y)

Combine with α′1 = 1, we have α′diag(K) = κ

max
α
−α′Kα : α ≥ 0, α′1 = 1 (2)

Conversely, whenever the kernel k satisfies (??),

Any QP of the form in (??) ↔ a MEB problem
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Example: Two-Class SVM

maxα −α′Kα : α′1 = 1, α ≥ 0

{zi = (xi , yi )}mi=1

(primal) min
w,b,ρ,ξi

‖w‖2+b2−2ρ+C
m∑

i=1

ξi
2 : yi (w

′ϕ(xi )+b) ≥ ρ−ξi

(dual) max
α

−α′
(

K� yy′ + yy′ +
1

C
I

)
α : α ≥ 0, α′1 = 1

K̃ =

[
yiyjk(xi , xj) + yiyj +

δij

C

]
, with k̃(z, z) = κ+1+

1

C
(constant)
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Approximate MEB Algorithm

Finding exact MEBs is inefficient for large d

(1 + ε) -approximation

the (1 + ε)-expansion of the
blue ball contains all the points

the blue ball is the MEB of the
red points (coreset)

Approximate MEB algorithm [Bădoiu & Clarkson, 2002]
1 At the tth iteration, the current estimate B(ct , rt) is

expanded incrementally by including the furthest point outside
the (1 + ε)-ball B(ct , (1 + ε)rt)

we relax it to any point outside B(ct , (1 + ε)rt)

2 Repeat until all the points in S are covered by B(ct , (1 + ε)rt)
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Example
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Core Vector Machine (CVM)
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Numerical Optimization

CVM algorithm

1: Initialize c0 = ϕ(z0), R0 = 0 and S0 = {ϕ(z0)}.
2: Terminate if no ϕ(z) falls outside B(ct , (1 + ε)Rt). Otherwise,

let ϕ(zt) be such a point. Set St+1 = St ∪ {ϕ(zt)}
3: Find MEB(St+1)
4: Increment t by 1 and go back to step 2

Numerical solver is still required in finding MEB(St)

QP subproblem
requires the use of a sophisticated numerical solver for an
efficient implementation

LIBSVM

For complicated/very large data sets ⇒ internal optimization
can be expensive

Question

Can we have a simpler algorithm without using any numerical
solver?
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Enclosing Ball (EB) Problem

CVM ↔ minimum enclosing ball

Minimum Enclosing Ball (MEB) Problem

Find the smallest ball B(c, r) that encloses all the points in S

some optimization appears inevitable

Enclosing Ball (EB) Problem

Given the radius r ≥ R∗, find a ball B(c, r) that encloses all the
points in S

‖c− ϕ(zi )‖2 ≤ r2 for all ϕ(zi )’s in S
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Ball Vector Machine (BVM)

(1+ ε)-approximation algorithm for EB(S, r)

1: Initialize c0 = ϕ(z0)
2: Terminate if no ϕ(z) falls outside B(ct , (1 + ε)r). Otherwise,

let ϕ(zt) be such a point
3: Find the smallest update to the center such that B(ct+1, r)

touches ϕ(zt)
4: Increment t by 1 and go back to step 2

CVM algorithm

1: Initialize c0 = ϕ(z0), R0 = 0 and S0 = {ϕ(z0)}.
2: Terminate if no ϕ(z) falls outside B(ct , (1 + ε)Rt). Otherwise,

let ϕ(zt) be such a point. Set St+1 = St ∪ {ϕ(zt)}
3: Find MEB(St+1)
4: Increment t by 1 and go back to step 2

BVM is similar to CVM

except that the update of the ball’s center is different
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Example
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Efficient Update of the Ball’s Center

At the tth iteration, the ball’s center is updated such that the new
ball just touches ϕ(zt)

minc ‖c− ct‖2 : r2 ≥ ‖c− ϕ(zt)‖2

The new center can be obtained analytically as

ct+1 = ϕ(zt) + βt(ct − ϕ(zt))

βt = r/‖ct − ϕ(zt)‖
no numerical optimization solver is needed!

ct+1 is a convex combination of ct and ϕ(zt)

for any t > 0, ct is always a linear combination of c0 and
St = {ϕ(zi )}ti=1

distance between ct+1 and any pattern ϕ(z) can be computed
efficiently
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Quality of Prediction

Let B(ĉ, (1 + ε)r) be any (1 + ε)-approximation of EB(S, r), then

‖ĉ−c∗‖
R∗ ≤

√
(1+ε)2r2

R∗2 − 1

Recall that for the L2-SVM:

minw,b,ξi ,ρ ‖w‖2 + b2 − 2ρ + C
n∑

i=1

ξ2
i

s.t. yi (w
′ϕ(xi ) + b) ≥ ρ− ξi , i = 1, . . . , n,

c = [w′, b,
√

Cξ1, . . . ,
√

Cξn]
′

For any input x,

optimal prediction function f ∗(x) = w∗′ϕ(x) + b∗

approximated prediction function f̂ (x) = ŵ′ϕ(x) + b̂

|f̂ (x)− f ∗(x)| =
∣∣∣(ŵ −w∗)′ϕ(x) + (b̂ − b∗)

∣∣∣ ≤ √
‖ĉ− c∗‖2

√
kii + 1

ε small ⇒ ‖ĉ− c∗‖2 small ⇒ f̂ (x) close to f ∗(x)
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Time Complexity

Theorem 1 in [Panigraphy, 2004]
When a point falling outside B(ct , (1 + ε)r) is picked

BVM algorithm obtains an (1 + ε)-approximation of EB(S, r)

in O(1/ε2) iterations

overall time complexity: O(1/ε4)

When the furthest point is picked

BVM algorithm obtains an (1 + ε)-approximation of EB(S, r)

in O(1/ε) iterations

computing such a point takes O(m|St |)

overall time complexity: O(m/ε2)
⇒ computationally expensive for large m
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Multi-Scale (1 + ε)-Approximation Algorithm for EB(S, r)

Idea

Instead of using a small ε from the very beginning, start with
a much larger ε′ = 2−1

After an (1 + ε′)-approximation of EB(S, r) has been
obtained, reduce ε′ by half and repeated until ε′ = ε

Assume that 2−1 ≥ ε = 2−M for some positive integer M

1: Initialize cEB0
= ϕ(z0).

2: For m = 1 to M do
3: Set εm = 2−m. Find (1 + εm)-approximation of EB(S, r) using

BVM Algorithm, with cEBm−1
as warm start

In finding the EB, only requires ϕ(zt) to be outside B(ct , (1 + ε)r)

⇒ avoid expensive distance computations
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Multi-Scale Approximation Algorithm...

Converges in at most 3 log2
1
ε +

(
1− R∗2

r2

)
1
ε2 + 6

ε iterations

r = R∗

number of iteration is O(1/ε)

time complexity O(1/ε2)

space complexity O(1/ε)

r → R∗

the 1/ε2 term becomes negligible

number of iteration is close to O(1/ε)

cf. CVM takes O(1/ε8) time and O(1/ε2) space



Outline Introduction Core Vector Machine Ball Vector Machine Experiments Conclusion

How to Set r in the SVM Setting?

primal
min ‖w‖2 + b2 − 2ρ + C

∑m
i=1 ξi

2

s.t. yi (w
′ϕ(xi ) + b) ≥ ρ− ξi

dual
max −α′ (K� yy′ + yy′ + 1

C I
)
α

s.t. α ≥ 0, α′1 = 1

k̃ij = yiyjk(xi , xj) + yiyj +
δij

C

k̃ii = kii + 1
C ≡ κ̃. Set r =

√
κ̃

√
κ ≥ R∗, where R∗ is the radius of the MEB

Often, r =
√

κ̃ ' R∗

ε is small and r ' R∗, center of this EB problem is close to
the center of MEB
ball’s center ↔ SVM’s weight and bias
the obtained BVM is also close to the desired SVM solution
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Varying ε (“letter”, “usps”)
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BVM and CVM have high accuracies for ε ∈ [10−8 : 10−3]
performance deteriorates when ε is further increased
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training time and number of support vectors are stable for
ε ≤ 10−4

BVM training is faster than CVM
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Varying C (“reuters”, “usps”)
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BVM has almost the same accuracies as LIBSVM
training time and number of support vectors obtained by
BVM (with ε ≥ 10−4) are comparable with those of LIBSVM
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Varying the Training Set Size (“web”)
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Both BVM and CVM have comparable accuracies as the other
implementations
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Different Kernels (“usps”)

normalized polynomial kernel Gaussian Laplacian
d = 2 d = 3 d = 4 kernel kernel

BVM 99.39 99.54 99.63 99.51 99.36
accur. CVM 99.48 99.54 99.64 99.46 99.46
(%) LIBSVM 99.42 99.60 99.64 99.53 99.52

LASVM 99.43 99.62 99.64 99.54 99.53

BVM 51.26 52.67 66.16 124.57 224.74
CPU CVM 47.12 94.42 214.40 26.47 143.61
time LIBSVM 1,808.28 2,506.49 3,642.42 2,404.75 4,964.87

LASVM 1,424.28 1,156.23 1,770.63 1,167.86 2,473.22

BVM 665 691 793 1,105 1,538
#SV CVM 453 783 1,353 560 1,522

LIBSVM 1,428 2,326 3,544 2,050 4,462
LASVM 933 1,899 3,187 1,624 4,059

Both BVM and CVM are fast and have good performance
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Data Sets

data sets #class dim #train patns. #test patns

optdigits 10 64 3,823 1,797
satimage 6 36 4,435 2,000

w3a 2 300 4,912 44,837
pendigits 10 16 7,494 3,498
reuters 2 8,315 7,770 3,299
letter 26 16 15,000 5,000
web 2 300 49,749 14,951

ijcnn1 2 22 49,990 91,701
extended usps 2 676 266,079 75,383

intrusion 2 127 4,898,431 311,029
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Testing Accuracies (in %)

data BVM CVM LIBSVM LASVM SimpleSVM
optdigits 96.38 96.38 96.77 N/A 96.88
satimage 89.35 89.55 89.55 N/A 89.65

w3a 97.89 97.80 97.70 97.72 97.42
pendigits 97.97 97.85 97.91 N/A 97.97
reuters 96.75 96.96 97.15 97.09 –
letter 94.47 94.12 94.25 N/A 94.23
web 99.13 99.09 99.01 98.93 –

ijcnn1 97.58 98.67 98.19 98.42 94.10
usps 99.42 99.52 99.53 99.53 –

intrusion 91.97 92.44 – – –

BVM and CVM have accuracies comparable with the other
SVM implementations

Only BVM and CVM (but neither LIBSVM nor LASVM) can
work on “intrusion” (with around 5 million training examples)
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CPU Time (in sec) used in SVM Training

data BVM CVM LIBSVM LASVM SimpleSVM
optdigits 1.65 24.86 1.79 N/A 81.15
satimage 1.82 14.81 1.06 N/A 221.01

w3a 0.85 13.82 1.46 1.54 1384.34
pendigits 1.31 12.10 0.82 N/A 41.22
reuters 6.32 63.51 9.76 13.81 –
letter 19.87 215.73 10.85 N/A 1290.55
web 32.59 54.46 168.84 178.73 –

ijcnn1 99.95 62.78 57.96 140.25 2201.35
usps 150.46 288.96 1578.27 753.09 –

intrusion 0.73 0.70 – – –

BVM is usually faster than CVM, and is faster/comparable
with the other implementations
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Number of Support Vectors

data BVM CVM LIBSVM LASVM
optdigits 1583 2154 1306 N/A
satimage 1956 2333 1433 N/A

w3a 694 1402 1072 979
pendigits 1990 2827 1206 N/A
reuters 925 1496 1356 1359
letter 10536 12440 8436 N/A
web 2522 2960 4674 5718

ijcnn1 4006 3637 5700 5525
usps 1524 2576 2178 1803

intrusion 99 51 – –

All obtain comparable numbers of support vectors

On the large data sets (“reuters”, “web”, “ijcnn1”, “usps”
and “intrusion”), CVM and, even better, BVM can have fewer
support vectors
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MNIST Digits Database

An extended MNIST digit database

the original training set contains 60,000 patterns with 784
features
Loosli, Canu & Bottou [2007] extended the training set to 8.1
million patterns by incorporating 135 transformations

Using all 8.1M patterns

BVM LASVM

accuracy (%) 98.66 99.33
CPU time (s) 8 hours (8 days)

Using 1/3 of the training patterns

BVM LIBSVM LASVM

#misclassified patterns 2 3 2
accuracy (in %) 99.91 99.86 99.91
CPU time (s) 238.33 7981.48 1797.43

#support vectors 1,605 2,183 1,618
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Conclusion

Enclosing Ball (EB) problem is simpler than Minimum Enclosing
Ball (MEB) problem

update of ct does not require any numerical solver

multi-scale (1 + ε)-approximation algorithm for faster
convergence

⇒ easy to implement

⇒ BVM is faster than CVM

Experimentally,

BVM’s accuracy is comparable with the other SVM
implementations

usually faster than CVM, and is faster/comparable with others

can handle very large data sets

can have fewer support vectors


