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A Brief Review of AdaBoost and 
Margin Theory
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Brief Review of AdaBoost
Adaboost produces a linear combination (also called 
voting) of a number of base classifiers        .

Adaboost has demonstrated excellent experimental 
performance both on benchmark datasets and real 
applications.

Mystery of adaboost: the test error of the combined
classifier usually continuously decreases as its size 
becomes very large and even after the training error is 
zero. Not over-fitting? Contradict to Occam’s razor?
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Schapire et al (Ann. Stat. 1998) developed a margin theory to 
explain the empirical observation of adaboost.

We consider only binary classification problems. An example is 

Each base classifier only output -1 or 1, so the range of the 
output of the voting classifier is    [-1,1]:

If                   , the classification is correct, and makes an error 
otherwise.

The margin of an example           is               which represents the 
confidence of this classification result.
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The adaboost algorithm has the ability to make most of the 
training examples to have large margins.
The distribution of the margins of all training examples are called 
margin distribution. 

Adaboost tends to make the margin distribution “good”.
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Margin Theory
Schapire et al’s margin theory: 
• The (upper bound of) generalization error of a voting 

classifier depends on the margin distribution, when the 
number of training examples and the number (or VC 
dimension) of the base classifier are fixed.

• If most of the training examples have large margins, then the 
generalization error has a small upper bound.
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Breiman’s Doubt on the Margin 
Explanation
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Crisis: Breiman’s Doubt
Breiman’s margin bound:
• Using an improved argument of Schapire’s bound, 

Breiman gave a sharper upper bound of the 
generalization error of voting classifiers.

• It says: the (upper bound of) generalization error of a 
voting classifier depends on the minimum margin,
when the number of training examples and the 
number (or VC dimension) of the base classifier are 
fixed. 
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• Minimum margin is the maximum value of the margins at 
which the training error is zero.

• The bound: { } 2
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Breiman’s vs. Schapire’s bound:

• Breiman’s is better.
• Seems that minimum margin governs the generalization error.

Arc-gv algorithm:
• Arc-gv is also boosting type algorithm, but the voting 

classifier it generates provably maximizes the minimum 
margin.

• According to Breiman’s margin bound, arc-gv should have 
better performance than adaboost.
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Surprise: arc-gv is consistently worse than 
adaboost in all the experiments!

Breiman’s doubt:
• Margin theory does not explain why adaboost works 

so well, margin has noting to do with the 
generalization error. (Perhaps because the theory 
only gives upper bounds?)

Margin theory is in danger!
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Related Work and Improvements
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Reyzin and Schapire’s Analysis on 
Arc-gv (ICML06)

A closer look at the margin bounds:

• Generalization error also depends on the complexity
of the base classifiers.
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Are the base classifiers in arc-gv and adaboost 
have the same complexity?

How Breiman controlled the complexity of the 
base classifiers in his experiments for comparing 
arc-gv and adaboost?
• He used decision trees (CART) as the base classifiers;
• He controlled the complexity of the base classifiers 

by always choosing decision trees of a fixed size 
(number of nodes of the tree).
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But, Reyzin and Schapire found that trees 
produces by arg-gv are significantly deeper than 
those produces by adaboost!

Not only size, but depth are complexity 
measures of trees.

Breiman’s experiment was unfair! Arc-gv used 
more complex base classifiers.
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Controlling Classifier Complexity:

• Using decision stumps (simplest decision, depth=1) 
as the base classifier. They all have the same 
complexity for any measure.

• Observation:
Arc-gv is still worse than adaboost.
Although arc-gv produces larger minimum margin, the 
margin distribution is not as “good” as that adaboost 
generates.
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(Reyzin & Schapire ICML06)
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Improved Margin Bounds
Koltchinskii and Panchanko’s bound (Ann. Stat. 2005):
• There exists an absolute constant , such that for all 

• Comments on this bound:
O(log(n)/n) bound, the same as Breiman’s, but with 
unknown constants. Can not compared to other bound in 
finite example situation.
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Some Thoughts

If we can propose margin bound that is provebly
better than Breiman’s, and the generalization 
error depends on the “whole” margin 
distribution, but not the minimum margin, then 
we can answer to Breiman’s doubt!

This motivates of our work!
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Equilibrium Margin: Sharper 
Margin Bounds
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Our Results:

Sharper Margin Bound:

Equilibrium Margin:

• Note that equilibrium margin is always larger than minimum 
margin!
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Comparison to Breiman’s minimum margin 
bound:
• Breiman’s:

• Ours:

• Our bound based on equilibrium margin is better 
than Breiman’s (with some loss in constants).
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Further improvement:
• Using inverse function of Bernoulli relative entropy:

• It can be shown that this bound is consistently better 
than Breiman’s up to a log(n)/n term, which can be 
ignored.
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Summarize

We give sharper margin bound for adaboost (and 
all voting classifiers), in which the 
generalization error is characterized by a new 
margin measure called equilibrium margin.

The equilibrium margin bound is consistently 
better than Breiman’s minimum margin bound 
(only up to a log(n)/n term).
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What Does Our Bound Imply?

Minimum margin is not the characteristic of the 
generalization error for adaboost.

The fact that arc-gv produces larger minimum margin 
yet worse performance than adaboost can be explained 
by our equilibrium margin bound, because adaboost 
generates “better” margin distribution and larger 
equilibrium margin.
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