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Latent Tree Models (LTM)

Bayesian networks with
Rooted tree structure 

Discrete random variables

Leaves observed (manifest variables)

Internal nodes latent (latent variables)

Also known as  hierarchical latent class 
(HLC) models, HLC models
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Example
Manifest variables

Math Grade, Science Grade, Literature Grade, History Grade

Latent variables
Analytic Skill, Literal Skill, Intelligence
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Learning Latent Tree Models

Y1 Y2 … Y6 Y7

1 0 … 1 1

1 1 … 0 0

0 1 … 0 1

… … … … …

Determine
Number of latent variables

Cardinality of each latent variable

Model Structure

Conditional probability distributions 
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Outline

Problem Statement

Why Interesting?

Technical issues
Properties of Latent Tree Models

Model Selection

Model Optimization

Conclusions
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Why Latent Tree Models Interesting?

Probabilistic modeling 

Latent structure discovery

Cluster Analysis

Traditional Chinese Medicine
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LTM and Probabilistic Modeling

Pearl 1988: LTMs
Are computationally very simple to work with.

Can represent complex relationships among manifest variables.
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LTM and Probabilistic Modeling

New approximate inference algorithm for BN
Dense BN with variables Y1, Y2, …, Yn

Sample from the BN a data set on Y1, Y2, …, Yn

Learn an LTM with manifest variables Y1, Y2, …, Yn and some 
latent variables 

Use the LTM to make inference among Y1, Y2, …, Yn

Empirical comparison with Loopy Propagation
More accurate 

Much lower online complexity



Page 9

LTM and Probabilistic Modeling

New approach for density estimation
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Latent Structure Discovery

Y1 Y2 … Y6 Y7

1 0 … 1 1

1 1 … 0 0

0 1 … 0 1

… … … … …

Learning LTM is to discover latent structures

Can interesting latent structures be discovered?
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Latent Structure Discovery

Results on the CoiL Challenge 2000 data set

Customer records of a Holland Insurance Company

42 manifest variables, 5822 records
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Latent Structure Discovery

Hong Kong ICAC survey data 

31 manifest variables, 12000 records
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Latent Structure Discovery

Danish Beer data
783 samples

States of Manifest variables
1. Never heard of; 2. heard but not tasted; 

3. tasted but don’t drink regularly; 4. drink regularly
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Cluster Analysis

Latent class model (LCM) for 
cluster analysis:

Each state of X represents a cluster

LTM generalizes LCM
Relaxes strong constraint of LCM

Multidimensional clustering
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Traditional Chinese Medicine (TCM)

TCM statement:
Yang deficiency (阳虚): intolerance to cold (畏寒), cold limbs (肢冷), cold 
lumbus and back (腰背冷), and so on ….
Regarded by many as not scientific, even groundless.

Two aspects to the meaning
1. Claim: There exists a class of patients,  who characteristically have the cold 

symptoms . The cold symptoms co-occur in a group of people,

2. Explanation offered: Due to deficiency of Yang. It fails to warm the body

What to do?
Previous work focused on 2.
New idea: Do data analysis for 1
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Objectivity of the Claimed Pattern

TCM Claim:  there exits a class of patients, in whom symptoms such 
as ‘intolerance to cold’, ‘cold limbs’, ‘cold lumbus and back’, and so on 
co-occur at the same time

How to prove or disapprove that such claimed TCM classes exist in the 
world?

Systematically collect data about symptoms of patients.
Perform cluster analysis, obtain natural clusters of patients
If the natural clusters corresponds to the TCM classes, then YES.

1. Existence of TCM classes validated
2. Descriptions of TCM classes refined and systematically expanded
3. Establish a statistical foundation for TCM
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Why Latent Tree Models?

TCM uses multiple interrelated latent concepts to explain co-occurrence 
of symptoms

Yang deficiency (肾阳虚) , Yin deficiency (肾阴虚): , Essence insufficiency (肾
精亏虚) , …

Need latent structure models
With multiple interrelated latent variables..

Latent Tree Models are the simplest such models
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Empirical Results

Can we find the claimed TCM classes using latent tree models?

We collected a data set about kidney deficiency (肾虚)

35 symptom variables, 2600 records
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Result of Data Analysis

Y0-Y34: manifest variables from data
X0-X13: latent variables introduced by data analysis
Structure interesting, supports TCM’s theories about various symptoms.
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Latent Clusters

X1: 
5 states: s0, s1, s2, s3, s4

Samples grouped into 5 clusters

Cluster X1=s4

{sample | P(X1=s4|sample) > 0.95}  

Cold symptoms  co-occur in samples

Class implicitly claimed by TCM found!

Description of class refined
By Math vs by words
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Other TCM Data Sets

From Beijing U of TCM, 973 project
Depression
Hepatitis B
Chronic Renal Failure

China Academy of TCM
Subhealth
Type 2 Diabetes

In all cases, distribution patterns implicitly claimed in TCM theory
Validated
Quantified and refined
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Outline

Problem Statement

Why interesting

Technical issues
Properties of Latent Tree Models

Model Selection

Model Optimization

Conclusions
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Root Walking and Model Equivalence

M1: root walks to X2;             M2: root walks to X3

Root walking leads to equivalent models

Implications: 
Cannot determine edge orientation from data

Can only learn unrooted models
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Regular latent tree models: For any latent node Z with neighbors 
X1, X2, …, Xk

Regularity

Can focus on regular models only
Irregular models can be made regular 

Regularized models better than irregular models

The set of all such models is finite.
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Model Selection
Bayesian score: posterior probability P(m|D)

P(m|D) = P(m)∫ P(D|m, θ) d θ/ P(D)

BIC Score:  large sample approximation 

BIC(m|D) = log P(D|m, θ*) – d logN/2

BICe Score:  

BICe(m|D) = log P(D|m, θ*) – de logN/2

effective dimension de. 

Effective dimensions are difficult to compute

BICe not realistic
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Model Selection

Other Choices
Cheeseman-Stutz (CS):  impact of approximation error in BIC reduced

AIC

Holdout likelihood

(Cross validation: too expensive) 

Simulation studies indicate that
BIC and CS result in good models

AIC and holdout likelihood do not

Therefore, we chose work with BIC.
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Model Optimization

Search-based algorithm
Start with an initial model

At each step:
Construct all possible candidate models 

Evaluate them one by one

Pick the best one

Difficult
Too many candidate models

Too expensive to run EM on all of them
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Model Optimization

Double hill climbing (DHC), 2002
7 manifest variables.

Single hill climbing (SHC), 2004
12 manifest variables

Heuristic SHC (HSHC), 2004
50 manifest variables

EAST, 2007
As efficient as HSHC, and more principled 
100+ manifest variables

Heuristic Method (for approximate inference)
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The EAST Algorithm
Search-based algorithm.

EAST: Expansion, Adjustment, Simplification until Termination
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5 Search Operators
Expansion operators: 

Node introduction (NI): M1 => M2; |X1| = |X|

Constraint: To mediate a latent node and only two of its neighbors

State introduction (SI): adds a new state to a latent variable

Adjustment operator:  node relocation (NR), M2 => M3

Simplification operators:  node deletion (ND), state deletion (SD)
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Naïve Search

Start with an initial model
At each step:

Construct all possible candidate models 
Evaluate them one by one
Pick the best one

Inefficient
Too many candidate models
Too expensive to run EM on all of them

Structural EM assumes fixed set of variables.
Does not work here 

Latent variables in models by NI, SI, SD differ from those in current model
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Reducing Number of Candidate Models

Not to use ALL the operators at once.

How?

BIC: BIC(m|D) = log P(D|m, θ*) – d logN/2

Improve the two terms alternately 

SD and ND reduce the penalty term.

Which operators to improve the likelihood term?
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Improve Likelihood Term

Let be m’ obtained from m using NI or SI 

log P(D|m’, θ’*) >= log P(D|m, θ*)

NI and SI improves the likelihood term

Follow each NI operation with NR operations.

Overcome constraint by NI and allow transition from M1 to M3
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Choosing between Models by SI and NI

Operation Granularity
p = 100

SI: 101 additional parameters

NI: 2 additional parameters

Compare shovels with bulldozer 

SI always preferred initially 

Cost-effectiveness principle
Select candidate model with highest improvement ratio
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The EAST Algorithm

1. Start with a simple initial model

2. Repeat until model score ceases to improve

EXPANSION: Search with  NI, SI

ADJUSTMENT: Follow each NI operation with NR operations.

SIMPLIFICATION: Search with ND, SD

EAST: Expansion, Adjustment, Simplification until Termination
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Parameter Sharing

Internal representation of unrooted model: rooted model

m: current model; 

m’: candidate model generated by applying a search operator on m.

The two models share many parameters

m: ( θ1, θ2);     m’: ( θ1, λ2); 



Page 37

Avoiding EM

Run EM to estimate parameters for current model m

m: ( θ*1, θ*2);

Estimate parameters for candidate model m’ as follows

m’: ( θ*1, λ*2 );

where λ*2 is the local MLE

λ*2 = arg max λ2 log P(D|m’, θ*1, λ2)

Local MLE can be computed efficiently using local EM.



Illustration of the search process
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Conclusions

Latent tree models, and latent structure models in general, offer 
framework for 

Probabilistic modeling 
Approximate reasoning, latent variable in classification 

Latent structure discovery
Multidimensional clustering. 
Can play a fundamental role in modernizing TCM 
Can be useful in many other areas 

such as marketing, survey studies, ….

We have only scratched the surface. A lot of interesting research work 
yet to be done. 
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