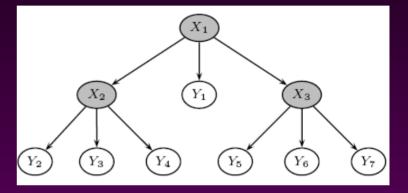
### Learning Latent Tree Models

### Nevin L. Zhang

Department of Computer Science & Engineering The Hong Kong University of Science & Technology

# Latent Tree Models (LTM)

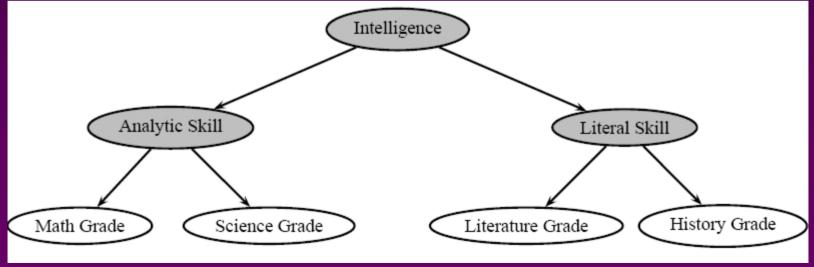
- Bayesian networks with
  - Rooted tree structure
  - Discrete random variables
  - Leaves observed (manifest variables)
  - Internal nodes latent (latent variables)
- Also known as hierarchical latent class (HLC) models, HLC models



| $P(X_2 X_1)$ |             |           |  |  |
|--------------|-------------|-----------|--|--|
|              | $X_{2} = 0$ | $X_2 = 1$ |  |  |
| $X_1 = 0$    | 0.9         | 0.1       |  |  |
| $X_1 = 1$    | 0.1         | 0.9       |  |  |

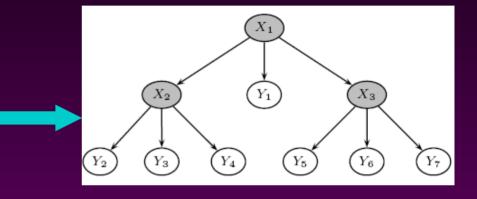


- Manifest variables
  - Math Grade, Science Grade, Literature Grade, History Grade
- Latent variables
  - Analytic Skill, Literal Skill, Intelligence



# Learning Latent Tree Models

| Y1 | Y2 | <br>Y6 | Y7 |
|----|----|--------|----|
| 1  | 0  | <br>1  | 1  |
| 1  | 1  | <br>0  | 0  |
| 0  | 1  | <br>0  | 1  |
|    |    | <br>   |    |



#### Determine

- Number of latent variables
- Cardinality of each latent variable
- Model Structure
- Conditional probability distributions

### Outline

- Problem Statement
- Why Interesting?
- Technical issues
  - Properties of Latent Tree Models
  - Model Selection
  - Model Optimization
- Conclusions

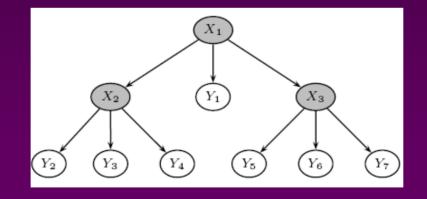
### Why Latent Tree Models Interesting?

- Probabilistic modeling
- Latent structure discovery
- Cluster Analysis
- Traditional Chinese Medicine

# LTM and Probabilistic Modeling

### • Pearl 1988: LTMs

- Are computationally very simple to work with.
- Can represent complex relationships among manifest variables.



## LTM and Probabilistic Modeling

New approximate inference algorithm for BN

- Dense BN with variables Y1, Y2, ..., Yn
- Sample from the BN a data set on Y1, Y2, ..., Yn
- Learn an LTM with manifest variables Y1, Y2, ..., Yn and some latent variables
- Use the LTM to make inference among Y1, Y2, ..., Yn
- Empirical comparison with Loopy Propagation
  - More accurate
  - Much lower online complexity

# LTM and Probabilistic Modeling

### • New approach for density estimation

Bayes rule:  $P(C|A_1, A_2, \ldots, A_m) \propto P(C)P(A_1, A_2, \ldots, A_m|C)$ 

Density estimation: 
$$P(A_1, A_2, \ldots, A_m | C)$$

A new method: Learn an LTM for  $P(A_1, A_2, \ldots, A_m | C)$ 

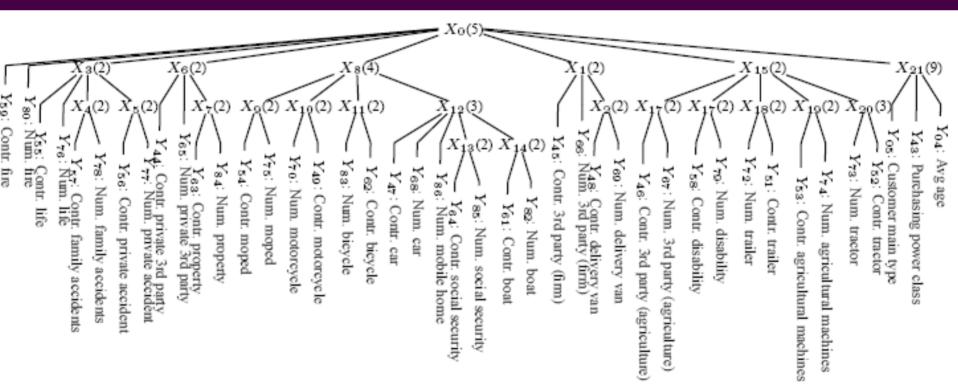
Intuition: attributes influenced by latent factors besides C.

### • Learning LTM is to discover latent structures

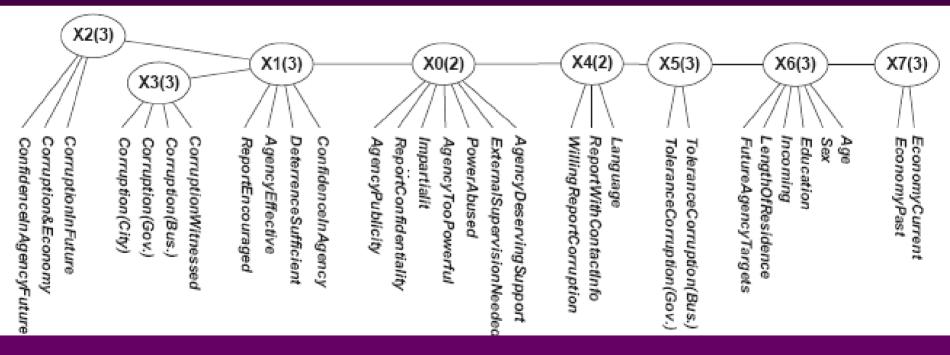
| Y1 | Y2 | <br>Y6 | Y7 | X1                                              |
|----|----|--------|----|-------------------------------------------------|
| 1  | 0  | <br>1  | 1  |                                                 |
| 1  | 1  | <br>0  | 0  | $X_2$ $Y_1$ $X_3$                               |
| 0  | 1  | <br>0  | 1  | $(Y_2)$ $(Y_3)$ $(Y_4)$ $(Y_5)$ $(Y_6)$ $(Y_7)$ |
|    |    | <br>   |    |                                                 |

• Can interesting latent structures be discovered?

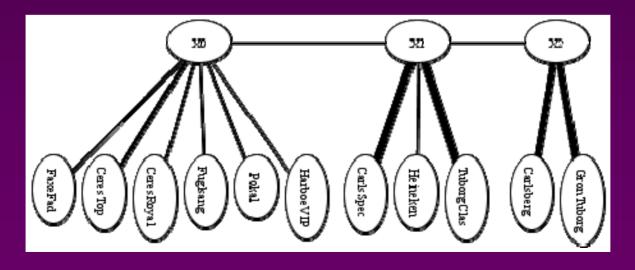
- Results on the CoiL Challenge 2000 data set
- Customer records of a Holland Insurance Company
- 42 manifest variables, 5822 records



- Hong Kong ICAC survey data
- 31 manifest variables, 12000 records

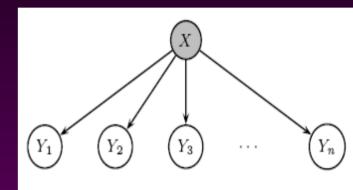


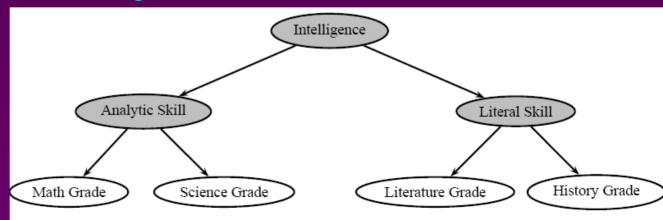
- Danish Beer data
- 783 samples
- States of Manifest variables
  - 1. Never heard of; 2. heard but not tasted;
  - 3. tasted but don't drink regularly; 4. drink regularly



## **Cluster Analysis**

- Latent class model (LCM) for cluster analysis:
  - Each state of X represents a cluster
- LTM generalizes LCM
  - Relaxes strong constraint of LCM
  - Multidimensional clustering





### Traditional Chinese Medicine (TCM)

#### • TCM statement:

- Yang deficiency (阳虚): intolerance to cold (畏寒), cold limbs (肢冷), cold lumbus and back (腰背冷), and so on ….
- Regarded by many as not scientific, even groundless.
- Two aspects to the meaning
  - Claim: There exists a class of patients, who characteristically have the cold symptoms. The cold symptoms co-occur in a group of people,
  - 2. Explanation offered: Due to deficiency of Yang. It fails to warm the body
- What to do?
  - Previous work focused on 2.
  - New idea: Do data analysis for 1

### Objectivity of the Claimed Pattern

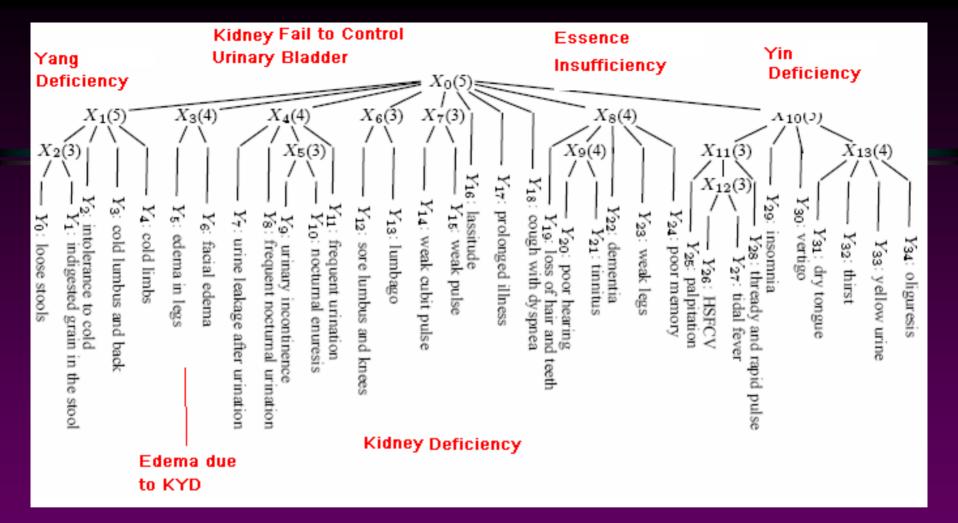
- TCM Claim: there exits a class of patients, in whom symptoms such as 'intolerance to cold', 'cold limbs', 'cold lumbus and back', and so on co-occur at the same time
- How to prove or disapprove that such claimed TCM classes exist in the world?
  - Systematically collect data about symptoms of patients.
  - Perform cluster analysis, obtain natural clusters of patients
  - If the natural clusters corresponds to the TCM classes, then YES.
    - 1. Existence of TCM classes validated
    - 2. Descriptions of TCM classes refined and systematically expanded
    - **3.** Establish a statistical foundation for TCM

# Why Latent Tree Models?

- TCM uses multiple interrelated latent concepts to explain co-occurrence of symptoms
  - Yang deficiency (肾阳虚), Yin deficiency (肾阴虚):, Essence insufficiency (肾 精亏虚),...
- Need latent structure models
  - With multiple interrelated latent variables..
- Latent Tree Models are the simplest such models

### **Empirical Results**

- Can we find the claimed TCM classes using latent tree models?
  - We collected a data set about kidney deficiency (肾虚)
  - 35 symptom variables, 2600 records



- Y0-Y34: manifest variables from data
- X0-X13: latent variables introduced by data analysis
- Structure interesting, supports TCM's theories about various symptoms.

### Latent Clusters

#### • X1:

- **5** states: s0, s1, s2, s3, s4
- Samples grouped into 5 clusters
- Cluster X1=s4

{sample | P(X1=s4|sample) > 0.95}  $\rightarrow$ 

Cold symptoms co-occur in samples

- Class implicitly claimed by TCM found!
- Description of class refined
  - By Math vs by words

| Xl=s4 | l – |    |           |
|-------|-----|----|-----------|
| Y2    | ¥3  | Y4 | # samples |
| 3     | 3   | 3  | 8         |
| 3     | 2   | 3  | 4         |
| 3     | 2   | 2  | 8         |
| 2     | 3   | 3  | 4         |
| 3     | 2   | 1  | 1         |
| 3     | 3   | 2  | 2         |
| 2     | 2   | 2  | 30        |
|       |     |    |           |

### Other TCM Data Sets

- From Beijing U of TCM, 973 project
  - Depression
  - Hepatitis B
  - Chronic Renal Failure
- China Academy of TCM
  - Subhealth
  - Type 2 Diabetes
- In all cases, distribution patterns implicitly claimed in TCM theory
  - Validated
  - Quantified and refined

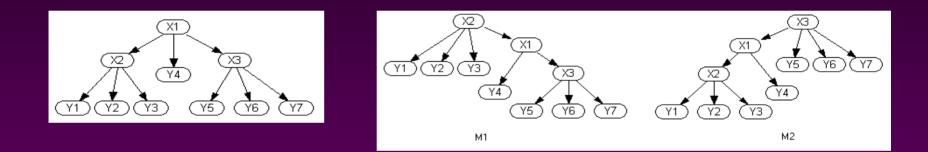
### Outline

- Problem Statement
- Why interesting
- <u>Technical issues</u>
  - Properties of Latent Tree Models
  - Model Selection
  - Model Optimization
- Conclusions

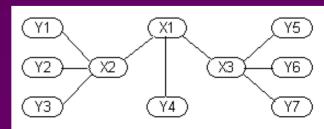
### Root Walking and Model Equivalence

• M1: root walks to X2;

### M2: root walks to X3



- Root walking leads to equivalent models
- Implications:
  - Cannot determine edge orientation from data
  - Can only learn unrooted models



# Regularity

Regular latent tree models: For any latent node Z with neighbors
 X1, X2, ..., Xk

$$|Z| \leq rac{\prod_{i=1}^{k} |X_i|}{\max_{i=1}^{k} |X_i|},$$

- Can focus on regular models only
  - Irregular models can be made regular
  - Regularized models better than irregular models
- The set of all such models is finite.

### Model Selection

- Bayesian score: posterior probability P(m|D)
  - $P(m|D) = P(m) \int P(D|m, \theta) d \theta / P(D)$
- BIC Score: large sample approximation
  BIC(m|D) = log P(D|m, θ\*) d logN/2
- BICe Score: BICe(m|D) = log P(D|m,  $\theta$  \*) - d<sub>e</sub> logN/2 effective dimension d<sub>e</sub>.
  - Effective dimensions are difficult to compute
  - BICe not realistic

### Model Selection

- Other Choices
  - Cheeseman-Stutz (CS): impact of approximation error in BIC reduced
  - AIC
  - Holdout likelihood
  - (Cross validation: too expensive)
- Simulation studies indicate that
  - BIC and CS result in good models
  - AIC and holdout likelihood do not
- Therefore, we chose work with BIC.

# Model Optimization

### Search-based algorithm

- Start with an initial model
- At each step:
  - Construct all possible candidate models
  - Evaluate them one by one
  - Pick the best one
- Difficult
  - Too many candidate models
  - Too expensive to run EM on all of them

# Model Optimization

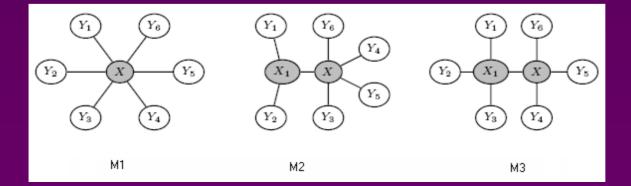
- Double hill climbing (DHC), 2002
  - 7 manifest variables.
- Single hill climbing (SHC), 2004
  - 12 manifest variables
- Heuristic SHC (HSHC), 2004
  - 50 manifest variables
- EAST, 2007
  - As efficient as HSHC, and more principled
  - 100+ manifest variables
- Heuristic Method (for approximate inference)

# The EAST Algorithm

- Search-based algorithm.
- EAST: Expansion, Adjustment, Simplification until Termination

## **5** Search Operators

- Expansion operators:
  - Node introduction (NI): M1 => M2; |X1| = |X|
    - Constraint: To mediate a latent node and only two of its neighbors
  - State introduction (SI): adds a new state to a latent variable
- Adjustment operator: node relocation (NR), M2 => M3
- Simplification operators: node deletion (ND), state deletion (SD)



### Naïve Search

- Start with an initial model
- At each step:
  - Construct all possible candidate models
  - Evaluate them one by one
  - Pick the best one
- Inefficient
  - Too many candidate models
  - Too expensive to run EM on all of them
    - Structural EM assumes fixed set of variables.
    - Does not work here

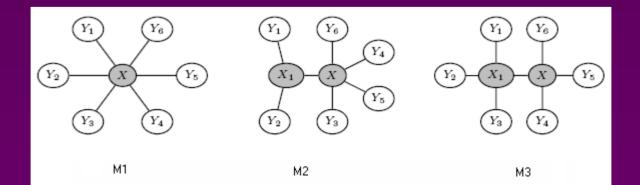
Latent variables in models by NI, SI, SD differ from those in current model

### Reducing Number of Candidate Models

- Not to use ALL the operators at once.
- How?
  - BIC: BIC(m|D) = log P(D|m,  $\theta^*$ ) d logN/2
  - Improve the two terms alternately
  - SD and ND reduce the penalty term.
  - Which operators to improve the likelihood term?

### Improve Likelihood Term

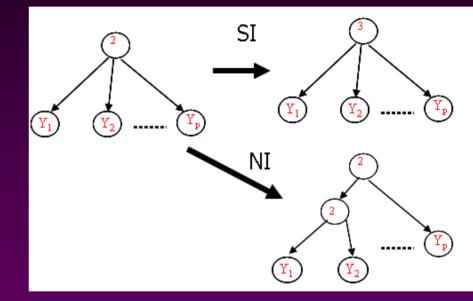
- Let be m' obtained from m using NI or SI
  log P(D|m', θ'\*) >= log P(D|m, θ\*)
  NI and SI improves the likelihood term
- Follow each NI operation with NR operations.
  - Overcome constraint by NI and allow transition from M1 to M3



Page 33

### Choosing between Models by SI and NI

- Operation Granularity
  - **p** = 100
  - SI: 101 additional parameters
  - NI: 2 additional parameters
  - Compare shovels with bulldozer
  - SI always preferred initially



- Cost-effectiveness principle
  - Select candidate model with highest improvement ratio

$$IR(m', m | \mathcal{D}) = \frac{BIC(m' | \mathcal{D}) - BIC(m | \mathcal{D})}{d(m') - d(m)}$$

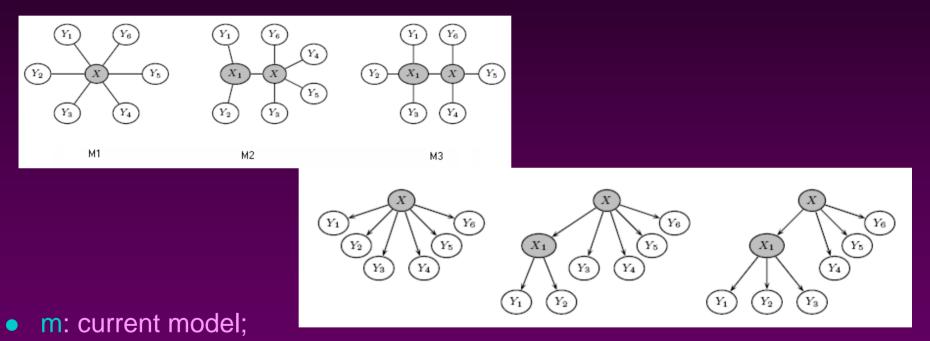
## The EAST Algorithm

- 1. Start with a simple initial model
- Repeat until model score ceases to improve EXPANSION: Search with NI, SI ADJUSTMENT: Follow each NI operation with NR operations. SIMPLIFICATION: Search with ND, SD

EAST: Expansion, Adjustment, Simplification until Termination

### Parameter Sharing

Internal representation of unrooted model: rooted model



- m': candidate model generated by applying a search operator on m.
- The two models share many parameters

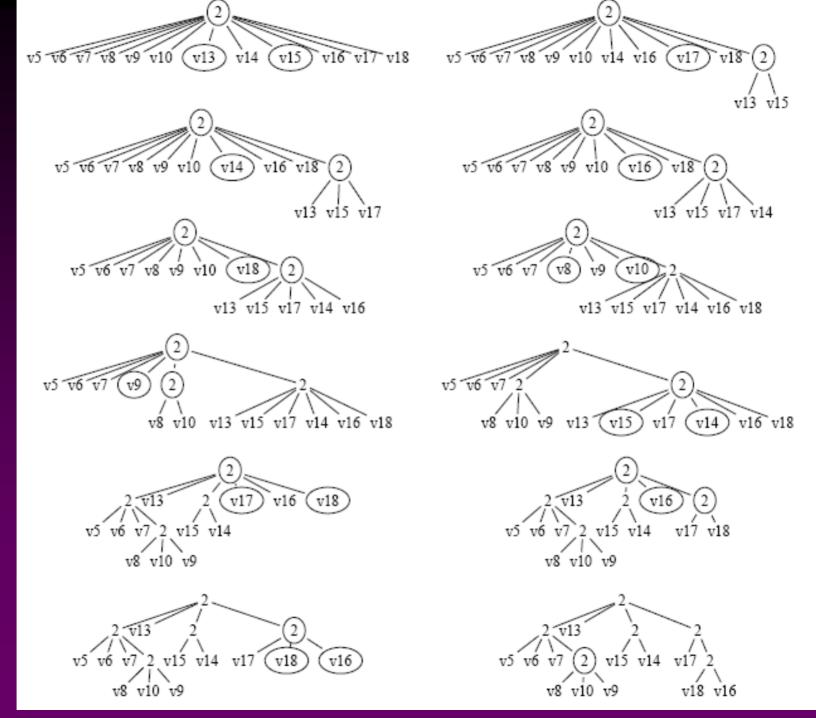
■ m: ( θ 1, θ 2); m': ( θ 1, λ 2);

# Avoiding EM

- Run EM to estimate parameters for current model m
  m: ( θ \*1, θ \*2);
- Estimate parameters for candidate model m' as follows
  m': ( θ \*1, λ \*2);
  - where  $\lambda *_2$  is the local MLE

 $\lambda$  \*2 = arg max  $\lambda$  2 log P(D|m',  $\theta$  \*1,  $\lambda$  2)

• Local MLE can be computed efficiently using local EM.



### Conclusions

- Latent tree models, and latent structure models in general, offer framework for
  - Probabilistic modeling
    - > Approximate reasoning, latent variable in classification
  - Latent structure discovery
  - Multidimensional clustering.
  - Can play a fundamental role in modernizing TCM
  - Can be useful in many other areas
    - such as marketing, survey studies, ....
- We have only scratched the surface. A lot of interesting research work yet to be done.

