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Background

Learning and Classification:
• Training examples

i.i.d. from an underlying joint distribution 

• Classifier:

• Generalization Error:
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The Boosting algorithm
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Background

Empirical observation:
• AdaBoost + Decision trees + Calibration = 

the best classification algorithm (Caruana, 
2006, Breiman, 1998).

• AdaBoost often resists to overfitting: 
The test error of the combined classifier usually 
keeps decreasing as its size becomes very large, 
and even after the training error is zero, which seems 
contradicts the Occam’s razor!
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Background

We need a theoretical explanation of the 
Boosting algorithm:

• Understanding the “mysteries”.

• Develop more efficient algorithms.



Background

A complete theoretical explanation should 
answer two questions:

• Why AdaBoost often has good performance?

• Why AdaBoost is often (though not always) 
immune to overfitting?



Outline

The Margin Explanation

The Convex Loss Explanation

Margin vs. Convex Loss

Open Problems
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The Margin Explanation
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The Concept of Margin

Margins in Boosting:
• The combined (voting) classifier produced by 

the ensemble learning algorithms could be 
written as:
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The Concept of Margin

• For binary classification,                  . The 
quantity           is called the margin of the 
example           with respect to the classifier    .

• Margin is a confidence measure (like in SVM).

• The minimum margin is the smallest margin 
over the set of training examples.
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• Margin distribution:
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Margin Theory

Margin theory is essentially upper bounds 
on the generalization error of the voting 
classifier, in terms of various margin
notions.
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The Margin Distribution Bound

Theorem 1 (Schapire et al. 1998):
• For any         , with probability at least         over 

the random choice of the training set     of   
examples, every voting classifier satisfies the 
following bound:

where        is the set which the base classifiers 
are chosen from. 13
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Margin Explanation

Schapire et al. also demonstrated 
theoretically and empirically that AdaBoost 
can generate good margin distribution.

The margin distribution keeps improving 
even after the training error is zero. This 
accounts for AdaBoost’s resistance to 
overfitting.
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Breiman’s doubt and the Arc-gv algorithm:
• Arc-gv provably generate the largest possible 

minimum margin among all boosting type 
algorithms.
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Breiman’s Doubt

The minimum margin bound (Breiman1999):

where 

and     is the minimum margin.
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Breiman’s Doubt

Breiman’s argument:
• The minimum margin bound is sharper than the 

margin distribution bound. 

If the bound of Schapire et al. implies that the 
margin distribution is the key to the 
generalization error, his bound implies more 
stronly that the minimum margin governs the 
generalization error. 17
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Breiman’s Doubt

Breiman conducted experiments, and found 
that arc-gv performs consistently worse
than AdaBoost although it always generates 
larger minimum margins!
Arc-gv even generates uniformly better 
margin distribution than AdaBoost.
Breiman concluded that neither the margin 
distribution nor the minimum margin is the 
right explanation! 18



Recent Discovery

An important discovery (Reyzin and 
Schapire 2006):
• In the margin bounds, the generalization error 

depends not only on the margin, but also the 
complexity of the set of base classifiers.

• To study how margin affects the generalization, 
one has to keep other factors fixed.
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Recent Discovery

• Breiman’s experiment:
Base classifiers: Using decision trees of a fixed 
number of leaves.

• Reyzin and Schapire’s discovery:
Trees generated by arc-gv are much deeper than 
those generated by AdaBoost!
Deeper trees are more complex even though the 
number of leaves are the same!
Breiman’s experiment is not a fair comparison.
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Recent Discovery

A fair comparison:
• Base classifier: decision stump.
• Results:

AdaBoost has better performance than arc-gv.
Arc-gv has larger minimum margins than AdaBoost.
The margin distribution generated by AdaBoost is 
“better” than arc-gv.
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Two Problems Left

Has Breiman’s doubt been fully answered?
• Arc-gv generates larger minimum margin yet 

has worse performance. Contradict to the 
(sharper) minimum margin bound!

• What does it mean a “better” margin 
distribution?
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The EMargin Explanation

Main results of EMargin :
• A bound for the generalization error of voting 

classifiers in terms of a new margin notion——
Equilibrium Margin (Emargin).  This bound is 
uniformly sharper than the minimum margin 
bound.

• We show that a large Emargin implies a smaller 
generalization error.
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Bernoulli Relative Entropy:

• For fixed    ,     is a monotone increasing function of     
for                 .

Inverse Relative Entropy Function:
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The Emargin Bound Theorem:

where

Let      and      be the optimal    ,     in the Emargin bound

is referred to as Emargin.
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Explanation of Emargin bound:
• The Emargin bound has a similar flavor to the margin 

distribution bound. The Emargin and Emargin error 
depend, in a complicated way on the whole margin 
distribution. 

• The minimum margin is only a special case when the 
optimal      is zero. 
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Theorem:
• The Emargin bound is uniformly sharper than the 

minimum margin bound.

Minimum margin is not crucial for the 
generalization error. Arc-gv does not necessarily 
have better performance than AdaBoost.

The Emargin bound implies that it is the Emargin
and the Emargin error affect the performance of 
the classifier.
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How do Emargin and Emargin error affect the 
generalization error?

The Comparison Theorem: 
• For two voting classifiers         , if     has a larger 

Emargin and a smaller Emargin error than    , then the 
Emargin bound of     is smaller than    .
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Further explanation of the Emargin bound:
• By using simple upper bounds of the inverse relative 

entropy function             , we can recover previous 
bounds and obtain new bound in simpler forms.
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Experiments

Setting:
• UCI and USPS datasets.
• Five-fold CV.
• Binary classification.
• Finite base classifiers.
• Comparison of AdaBoost and Arc-gv on their 

EMargin, EMargin error, test error and minimum 
margin.
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Experiments

Conclusion from the experiments:
• Usually AdaBoost has a larger EMargin and a 

smaller EMargin error than arc-gv. This 
accounts for AdaBoost’s superior performances.
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Convex Loss Minimization



Convex Loss Minimization

Breiman discovered that AdaBoost was a 
down-the-gradient method for minimizing 
the exponential loss.
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Convex Loss Minimization

A natural question:

• To what extent solving the approximated 
convex surrogate minimization is equivalent to 
minimizing the generalization error?



Convex Loss Minimization

The statistical consequences of minimizing 
a surrogate:
• Bayes Consistency:

Minimizing the convex loss (boosting) is NOT 
consistent.
With regularization, boosting is consistent:

• Early stopping
• L1 regularization

• Rate of Convergence (dimension independent):
1/ 4 1/ 2~n n− −



Convex Loss Minimization

Large margin vs. convex loss minimization:
• They are complementary explanations.
• Convex loss minimization:

Asymptotic results, compare to the Bayes risk.
Depends on precise algorithms

• Margin:
Nonasymptotic uniform bounds, gives confidence 
interval of the generalization error.
Algorithm independent.



Convex Loss Minimization

Limitation of the convex loss minimization:
• All based on an important assumption:

The linear span of the base classifiers is dense in the 
space of all measurable functions. Or at least the 
global minimizer of the convex loss is contained in 
the linear span.

• If the base classifiers are decision stumps or 
other simple models, this assumption does not 
hold.



Convex Loss Minimization

What is the consequence of boosting in the 
misspecified setting:
• Bayes consistent is impossible.

• Consistency to the best classifier in the model?

• Empirically, boosting decision stumps often 
yields good performance.



Convex Loss Minimization

• A surprising result (Long & Servedio 2008):

There are learning problems such that

Bayes error is slightly larger than zero.
The Bayes classifier is within the model class.
Minimizing the convex loss returns in a classifier 
whose performance is the same as random guess, 
even if there are infinitely many training examples!
Early stopping and L1 regularization do not help!



Convex Loss Minimization

Convex loss minimization can not explain 
these results.

Margin theory can predict the performance 
by giving the upper bound of the 
generalization error.



Summary and Future Work
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Summary and Future Work

The EMargin bound is an answer to 
Breiman’s doubt of the margin explanation.

Margin and convex loss minimization are 
complementary explanations of boosting.

Is it possible to optimize the margin 
distribution (Emargin)?



Thanks
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