Machine Learning Approaches for Natural Language Processing

WANG Haifeng (王海峰) Toshiba (China) R&D Center MLA, Nov. 7, 2009

Outline

Overview of Natural Language Processing (NLP)

Machine Learning Approaches for NLP

Overview of Machine Translation (MT)

Semi-Supervised Boosting for Statistical Word Alignment and SMT

CL vs. NLP

Computational Linguistics, CL	Natural Language Processing, NLP		
ACL: Association for Computational Linguistics	EMNLP: Empirical Methods in Natural Language Processing		
COLING: International Conference on Computational Linguistics	IJCNLP: International Joint Conference on Natural Language Processing		
ICCL: International Committee on Computational Linguistics	AFNLP: Asian Federation of Natural Language Processing		
CNCCL: Chinese National Conference on Computational Linguistics	YSSNLP: Young Scholar Symposium on Natural Language Processing		
ICL: Institute of Computational Linguistics	**NLPLAB: **Natural Language Processing LAB		
Impact?			
History Theory Methodology			

NLP Areas

ACL-IJCNLP 2009

Area	#Submission	#Accepted	Rate
Machine Translation	82	23	28.0%
Semantics	67	14	20.9%
Syntax and Parsing	49	14	28.6%
Information Extraction	49	10	20.4%
Discourse, Dialogue and Pragmatics	43	9	20.9%
Summarization and Generation	44	8	18.2%
Phonology, Morphology, Segmentation, POS, Chunking	31	8	25.8%
Sentiment Analysis, Opinion Mining, Classification	45	7	15.6%
Statistical and Machine Learning Methods	40	6	15.0%
Spoken Language Processing	19	6	31.6%
Information Retrieval	28	4	14.3%
Language Resource	26	4	15.4%
Text Mining and NLP Applications	21	4	19.0%
Question Answering	25	3	12.0%
Total	569	120	21.1%

NLP Areas

App Application

ACL-IJCNLP 2009

Area	#Submission	#Accepted	Rate	
Machine Translation	82	23	28.0%	
Semantics	67	14	20.9%	
Syntax and Parsing	49	14	28.6%	
Information Extraction	49	10	20.4%	
Discourse, Dialogue and Pragmatics	43	9	20.9%	
Summarization and Generation	44	8	18.2%	
Phonology, Morphology, Segmentation, POS, Chunking	31	8	25.8%	
Sentiment Analysis, Opinion Mining, Classification	45	7	15.6%	
Statistical and Machine Learning Methods	40	6	15.0%	
Spoken Language Processing	19	6	31.6%	
Information Retrieval	28	4	14.3%	
Language Resource	26	4	15.4%	
Text Mining and NLP Applications	21	4	19.0%	
Question Answering	25	3	12.0%	
Total	569	120	21.1%	

NLP Taxonomy

- Sub-task
 - Analysis & understanding, generation
- Level
 - Morphology, syntax, semantics, pragmatics
- Grammar
 - PS, DS, LFG, HPSG, CCG ...
- Unit
 - Character, word, phrase, sentence, paragraph ...
- Style
 - Spoken language, written language
- Application
 - Translation, information retrieval and extraction, sentiment, QA, summarization, grammar check ...
- Approach
 - Rationalist and empiricist approaches
- Data
 - Lexicon, rules, corpus (labeled and unlabeled)

Difficulties

Complex structure

Mapping between string and structure

Ambiguities

Disambiguation

Examples

- 打: 打酱油、打毛衣、打人、打针
- pretty little girls' school
 - Does the school look little?
 - Do the girls look little?
 - Do the girls look pretty?
 - Does the school look pretty?

Approaches

Rationalist approaches

- Linguistic theory
- Grammar system
- Rules
 - Usually manually compiled
- Popular in NLP application (e.g. RBMT)

Noam Chomsky

It must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

Empiricist approaches

- Corpus
 - Labeled, unlabeled
 - Description Monolingual, multilingual
- Statistical and Machine Learning Approaches

Frederick Jelinek

Dominant approach in NLP research

Whenever I fire a linguist our system performance improves.

Data vs. Algorithm

Outline

Overview of Natural Language Processing (NLP)

Machine Learning Approaches for NLP

Overview of Machine Translation (MT)

Semi-Supervised Boosting for Statistical Word Alignment and SMT

Why ML in NLP

- Practical concerns
 - Data
 - More and more unlabeled language data available on the web and elsewhere
 - Labeled data are easier to create than rules
 - Method
 - It is hard for knowledge engineering methods to cope with the growing flood of data
 - Machine learning can be used to automate knowledge acquisition and inference
 - Computing resource
 - More and more powerful (Moore's law)
- Theoretical contribution
 - Reasonably solid foundations (theory and algorithms)

ML gives elegant, well-founded solutions to NLP problems

NLP comes with data and gives meaning to ML's math

Designing ML for NLP

Data

- How to access and use data
- Target function
 - Concept to be learnt
- Representation
 - Representation of hypotheses
 - Representation of data
- Learning algorithm
 - Conditioned to the representation
 - Inductive learning assumption

ML applications in NLP

NLP Areas

- Machine Translation
- Semantics
- Syntax and Parsing
- Information Extraction
- Information Retrieval
- Summarization and Generation
- Question Answering
- **....**
- ML methods have been used in most NLP areas

ML Methods

- HMM, ME, CRF, SVM, Boosting, Co-training
- Many ML methods have been or will be used in NLP

ML at Leading NLP Conferences

ACL-IJCNLP 2009

2 sessions on "Statistical and Machine Learning Methods" (1 best paper)

- Improving learning method
- Mapping Instructions to Actions (one of the best papers)
- Semantic
- Word Segmentation
- POS
- Much more ML related papers in other sessions
 - Invited talk
 - Heterogeneous Transfer Learning with Real-world Applications (Qiang Yang)
 - Machine translation
 - Parsing
 - Semantics
 - Question Answering
 - Information Extraction

· · · · · · ·

Outline

Overview of Natural Language Processing (NLP)

Machine Learning Approaches for NLP

Overview of Machine Translation (MT)

Semi-Supervised Boosting for Statistical Word Alignment and SMT

Machine Translation

Applications

Purpose

- Information distribution
- Information gathering
- Communication
- CLIR

Translation Mode

- Automatic MT
- Computer Aided Translation
- Speech Translation

Product Form

Unit

Word

Phrase

Sentence

Paragraph

- Software package
- MT engine license
- Translation service
- Hardware preinstall

How

Methods

Combination

Wu, Chiang, Groves, Liu

RBMT

- Hierarchical
- Fine grained
- Scalable

EBMT

Example-based machine translation (EBMT)

 Machine translation by example-guided inference, or machine translation by the analogy principle (Nagao, 1984)

□ Three main components

- Match fragments against a database of real examples
- Identify the corresponding translation fragments
- Combine these to give the final translation
- Performance
 - Good performance in domain specific application

Tree Based EBMT

Overview of SMT

- Word-based SMT (Brown et al., 1990 & 1993)
- Phrase-based SMT (Koehn et al., 2003)
- Syntax-based SMT (Wu, 1997; Chiang, 2005)

Method

Statistical theory

$$\hat{e}_{1}^{I} = \arg \max_{e_{1}^{I}} \{ \Pr(e_{1}^{I} | f_{1}^{J}) \}$$

- Generative method
 - Translation process is broken down into steps
 - Each step is modeled by a probability distribution
 - Each probability distribution is estimated by maximum likelihood
- Discriminative method
 - Model consists of a number of features
 - Each feature has a weight
 - Feature weights are optimized on development set

Model

Source-channel model

$$\hat{e}_{1}^{I} = \arg\max_{e_{1}^{I}} \{\Pr(e_{1}^{I}) \cdot \Pr(f_{1}^{J} | e_{1}^{I})\}$$

Word-based SMT – IBM Model 1

- Only uses lexical translation
- Lexical translation probabilities is estimated from a parallel corpus
- Chicken and egg problem
 - if we had the alignments,
 - we could estimate the parameters of our generative model
 - if we had the parameters,

we could estimate the alignments

- EM algorithm
 - Initialize model parameters (e.g. uniform)
 - Assign probabilities to the missing data
 - Estimate model parameters from completed data
 - Iterate

Word-based SMT – Higher IBM Models

IBM Model 1	Lexical translation
IBM Model 2	Adds absolute reordering model
IBM Model 3	Adds fertility model
IBM Model 4	Relative reordering model
IBM Model 5	Fixes deficiency

Training of a higher IBM model builds on previous model

Word-based SMT – IBM Model 3

From (Knight and Koehn)

Phrase-based SMT

- Foreign input is segmented in phrases
 - Not necessarily linguistically motivated
- Each foreign phrase is translated into native phrase
 - Search a phrase table
- Phrases are reordered

Syntax-based SMT

Why syntax in SMT

- More grammatical output
- Syntax aware re-ordering
- Accurate insertion of function words
- Grammars
 - Synchronous Context Free Grammars (SCFG)
 - Linguistically informed grammars
- Models
 - Tree-to-String
 - String-to-Tree
 - Tree-to-Tree
- Disadvantage

More Data, Better Translations

From (Koehn, 2003: Europarl Corpus)

Outline

Overview of Natural Language Processing (NLP)

Machine Learning Approaches for NLP

Overview of Machine Translation (MT)

Semi-Supervised Boosting for Statistical Word Alignment and SMT

Motivation

Using both labeled and unlabeled data

Unlabeled data

- Aligned automatically
- IBM models
- Large, easy
- Labeled data
 - Aligned by human
 - Following a given alignment standard
 - Small, hard
- Adjust automatic alignment results by using manually aligned data

Boosting

Semi-Supervised Boosting

Three main problems

- Semi-supervised learner
 - Combine labeled data and unlabeled data
- Reference set
 - Automatically construct a reference set for unlabeled data
- Error rate calculation
 - How to calculate the error rate with both labeled data and unlabeled data

Semi-Supervised Boosting Word Alignment

Word Alignment Model

Supervised alignment model

- Calculate the probabilities for IBM Model based on the labeled data
- Unsupervised alignment model
 EM training for IBM Model
- Perform model interpolation

 $\Pr(\mathbf{a, f} \mid \mathbf{e})$

 $= \lambda \cdot \Pr_{S}(\mathbf{a}, \mathbf{f} \mid \mathbf{e}) + (1 - \lambda) \cdot \Pr_{U}(\mathbf{a}, \mathbf{f} \mid \mathbf{e})$

Pseudo Reference Set Construction

- Obtain bi-directional word alignment sets S₁ and S₂ on the training data
- Obtain the intersection set of these two alignment sets $I = S_1 \cap S_2$
- □ Filter the union set of the two alignment sets

$$C = \{(s,t) \mid p(t \mid s) > \delta_1 \& count(s,t) > \delta_2 \}$$

where
$$p(t | s) = \frac{count(s, t)}{\sum_{t} count(s, t)}$$

Build the pseudo reference set

$$R = I \cup C$$

For a sentence pair

$$AER(i) = 1 - \frac{2^* |S_G \cap R_S|}{|S_G| + |R_S|}$$

- Calculate the error rate of a aligner
 - Based on the labeled data instead of the whole data

$$\varepsilon_l = \sum_{i \in D} w_l(i) * AER(i)$$

where

 $w_l(i)$ is the normalized weight of the ith sentence pair at the Ith round

Re-weight the Training Data

- Reweight each sentence pair in the training set
 - For each sentence pair, there may exists correct links and incorrect links as compared with the pseudo reference set
 - Calculate the weight of each sentence pair according to the correct and incorrect links

$$w_{l+1}(i) = w_l(i) * (k + (n-k) * \beta_l) / n$$

where $\beta_l = \varepsilon_l / (1 - \varepsilon_l)$

K is the number of the error links

n is the total number of the links in the reference

 $\log \frac{1}{\beta_1}$

Obtain the final ensemble according to the trained word aligners on each round

$$h_f(s) = \arg\max_t \sum_{l=1}^L (\log\frac{1}{\beta_l}) * WT_l(s,t) * \delta(h_l(s) = t)$$

where
$$WT_l(s,t) = \frac{2*count(s,t)}{\sum_{t'} count(s,t') + \sum_{s'} count(s',t)}$$

- $WT_l(s,t)$ is the weight of each alignment pair (s,t) produced by the word aligner h_l
- h_f is the final ensemble for word alignment
 - is the weight of the word aligner h_l

Evaluation

Training set

- Unlabeled data: 320,000 English-Chinese pairs
- Labeled data: 30,000 English-Chinese pairs

Held-out set

- 1,500 sentence pairs
- Testing set
 - 1,000 bilingual English-Chinese sentence pairs
 - Totally 8,651 alignment links
 - 866 multi-word alignment links

Evaluation Metric

Word alignment

- Precision and Recall
- Alignment Error Rate (AER)

Phrase-based machine translation
 BLEU, NIST

Word Alignment Results

Method	Precsion	Recall	AER
Interpolation	0.7555	0.7084	0.2688
Supervised Boosting	0.7771	0.6757	0.2771
Unsupervised Boosting	0.8056	0.7070	0.2469
Semi-supervised Boosting	0.8175	0.7858	0.1987

Weights in Ensembles

Two kinds of weights

- Weights for the individual aligners
- Weights for the individual alignment links

Method	Precision	Recall	AER
Baseline	0.7946	0.7775	0.2140
Our method	0.8175	0.7858	0.1987

Baseline: only use the first kind of weights

Our method: use the two kinds of weights

Method	NIST	BLEU
Interpolation	4.7929	0.1350
Supervised Boosting	4.4296	0.1151
Unsupervised Boosting	4.9045	0.1459
Semi-supervised Boosting	5.1729	0.1525

