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A Major Assumption w/ Machine 
Learning



 
Training and future (test) data 


 

follow the same distribution, and


 

are in same feature space



 
Training and future (test) data 


 

follow the same distribution, and


 

are in same feature space
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When distributions are different



 
Part-of-Speech tagging



 
Named-Entity Recognition



 
Classification
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Wireless sensor networks


 

Different time periods, 
devices or space

Device,
Space, or
TimeNight time Day time

Device 1 Device 2

When distributions are different
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Relabeling data can be expensive



When Features are different



 
Heterogeneous: different feature spaces
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The apple is the pomaceous fruit 
of the apple tree, species Malus 
domestica in the rose family 
Rosaceae ...

Banana is the common name for a 
type of fruit and also the 
herbaceous plants of the genus 
Musa which produce this 
commonly eaten fruit ...

Training: Text Future: Images

Apples

Bananas
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Transfer Learning? 



 
People often transfer knowledge to 
novel situations


 

Chess  Checkers


 

C++  Java


 

Physics  Computer Science
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Transfer Learning:
The ability of a system to recognize and apply 
knowledge and skills learned in previous tasks to 
novel tasks (or new domains)
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Transfer Learning: Source 
Domains

Learning
Input Output

Source 
Domains
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Source Domain Target Domain

Training Data Labeled/Unlabeled Labeled/Unlabeled

Test Data Unlabeled
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Outline


 

Transfer Learning Basics


 
Homogeneous Transfer Learning


 

Heterogeneous Transfer Learning


 
Future Works
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Outline
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Transfer Learning Survey
S. Pan and Q. Yang, A Survey on Transfer Learning IEEE 
TKDE 2009. 
http://www.cse.ust.hk/~sinnopan/SurveyTL.htm


 

Transfer Learning Basics


 
Homogeneous Transfer Learning


 

Heterogeneous Transfer Learning


 
Future Works
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Reinforcement Learning
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L. Torrey, J. Shavlik, S. Natarajan, P. Kuppili & T. 
Walker (2008). 
Transfer in Reinforcement Learning via Markov 
Logic Networks. AAAI'08 Workshop on Transfer 
Learning for Complex Tasks, Chicago, IL.
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Deep Transfer w/ Markov Logic 
Network [Davis and Domingos, ICML 2009]
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Prof. Domingos

Students: Parag,…

Projects: SRL, 
Data mining

Class: CSE 546

CSE 546:
Data Mining

Topics:…

Homework: …

SRL Research 
Project

Publications:…

Grad Student
Parag

Advisor:
Domingos

Research: SRL 

Source Domain Target Domain

cytoplasm

Splicing

YBL026wYOR167c

cytoplasm

RNA processingribosomal 
proteins

Complex(z, y) ∧ Interacts(x, z)⇒ Complex(x, y) 
and
Location(z, y) ∧ Interacts(x, z) ⇒ Location(x, y)
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Different Learning Problems
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Apple

 

is a 

 

fr‐uit

 

that 

 

can be 

 

found …

Banana

 

is 

 

the 

 

common 

 

name for…

Source
Domain

Target
Domain

Heterogeneous Homogeneous

Yes No
Different Same

Multiple 
Domain Data

Domain AdaptationMLA'09



Domain Adaptation in NLP
Applications



 

Automatic Content 
Extraction



 

Sentiment Classification


 

Part-Of-Speech Tagging


 

NER


 

Question Answering


 

Classification


 

Clustering

Selected Methods


 

Domain adaptation for 
statistical classifiers  [Hal 
Daume III & Daniel Marcu, 
JAIR 2006], [Jiang and 
Zhai, ACL 2007]



 

Structural Correspondence 
Learning  [John Blitzer et 
al. ACL 2007]  [Ando and 
Zhang, JMLR 2005]



 

Latent subspace [Sinno 
Jialin Pan et al. AAAI 08]
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InstanceInstance--transfer Approachestransfer Approaches 
[Wu and Dietterich ICML-04] 
[J.Jiang and C. Zhai, ACL 2007] 
[Dai, Yang et al. ICML-07]



 

Differentiate the cost for misclassification of the target and source data
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Uniform weights Correct the decision boundary by re-weighting

Loss function on 
the target 
domain data

Loss function 
on the source 
domain data

Regularization 
term

– Cross-domain POS tagging,
– entity type classification
– Personalized spam filtering
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TrAdaBoostTrAdaBoost 
[Dai, Yang et al. ICML[Dai, Yang et al. ICML--07]07]
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Source domain 
labeled data

target domain 
labeled data

AdaBoost
[Freund et al. 1997]

Hedge (   )
[Freund et al. 1997]



The whole 
training data set

To decrease the weights 
of the misclassified data

To increase the weights 
of the misclassified data

Classifiers trained on Classifiers trained on 
rere--weighted labeled dataweighted labeled data

Target domain 
unlabeled data

• Misclassified 
examples:
– increase the weights 

of the misclassified 
target data

– decrease the weights 
of the misclassified 
source data

Evaluation with 20NG: 22%8% 
http://people.csail.mit.edu/jrennie/20Newsgroups/
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Feature-based Transfer Learning 
[Dai, Xue, Yang et al. KDD 2007]

bridge


 

Target:


 
All unlabeled 
instances



 
Distributions


 

Feature spaces can 
be different, but 
have overlap



 

Same classes


 

P(X,Y): different!

CoCC=Co-clustering based 
Classification 
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Document-word co-occurrence

D_S

D_T

K
now

ledge
transfer

Source

Target
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Co-clustering is applied between


 

features (words) and target-domain 
documents



 

constrained by the labels of source 
domain documents



 

word clusters in both domains: a bridge

Co-Clustering based transfer 
[Dai, Xue, Yang et al. KDD 2007]
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Structural Correspondence 
Learning [Blitzer et al. ACL 2007]



 
SCL: [Ando and Zhang, JMLR 2005]



 
Method


 

Define pivot features: common in two domains


 

Find non-pivot features in each domain 


 

Build classifiers through the non-pivot Features
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(2) Do not buy the Shark 
portable steamer …. Trigger 
mechanism is defective. 

(1) The book is so repetitive 
that I found myself yelling …. 
I will definitely not buy 
another.

Book Domain Kitchen Domain
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Different Learning Problems
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Apple

 

is a 

 

fr‐uit

 

that 

 

can be 

 

found …

Banana

 

is 

 

the 

 

common 

 

name for…

Source
Domain

Target
Domain

Heterogeneous Homogeneous

Yes No
Different Same

Multiple 
Domain Data
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Outline


 
Transfer Learning Basics



 
Homogeneous Transfer Learning



 
Heterogeneous Transfer Learning


 

With Correspondence


 

Translated Learning (English  Chinese)


 

Text-to-Image Clustering/Classification


 

Without Correspondence


 
Future Works
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Mapping between entities or relations



 
Probabilistic in nature
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Correspondence in Transfer 
Learning

MLA'09



Cross-language Classification

Labeled 
 English
 Web pages

Unlabeled 
 Chinese

 
Web 

 pages

Classifier

learn classify

Cross‐language
 

Classification
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Heterogeneous Transfer Learning 
with a Dictionary
[Bel, et al. ECDL 2003]
[Zhu and Wang, ACL 2006]
[Gliozzo and Strapparava ACL 2006]

Labeled documents 
in English (abundant)

Labeled documents 
in Chinese (scarce)

TASK: Classifying documents 
in Chinese

DICTIONARY
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Translation Error 
Topic Drift 
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Topic Drift in Direct Translation

in 
English

in 
Chinese

News

News

Games

Games
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Word Features

• Translation Error 
• Topic Drift 
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Information Bottleneck 
[Ling, Xue, Yang et al. WWW2008]
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Improvements: over 15%

Domain Adaptation
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Objective: Image clustering
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Apple =

OR

Text-aided Image Clustering
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Adding Auxiliary Text Data
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Annotated PLSA Model for Clustering Z
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Words from Source Data

Image features

Image 
instances in 
target data

Topics

From Flickr.com

… Tags
Lion
Animal
Simba
Hakuna
Matata
FlickrBigCats
…

SIFT Features

Caltech 256 Data
Heterogeneous Transfer 

 Learning

Average Entropy 
 Improvement

5.7%

MLA'09

http://www.flickr.com/photos/drewmendoza/tags/lion/
http://www.flickr.com/photos/drewmendoza/tags/animal/
http://www.flickr.com/photos/drewmendoza/tags/simba/
http://www.flickr.com/photos/drewmendoza/tags/hakuna/
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‘Apple’

 
the 

 movie is an 

 Asian …

Apple 

 computer 

 is…

Text to Image Classification 
[Dai, Chen, Yang et al. NIPS 2008]

Text 
Classifier 

Text 
Classifier

Input Output
Apple is a 

 fruit.  Apple 

 pie is…

translating learning modelstranslating learning models
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Image
Classifier

Image
Classifier

Input Output
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Heterogeneous Transfer 
Learning with Correspondence

31
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Pr(         |                ,           ) 

• Pr(         |            ,            ) 

• Pr(        |            ,           ) 




mapping feature

),|Pr( wcf

),|( DcfP




data occurence-co

),|Pr( cwv

Social Web

Log-likelihood:

difficult
to estimate!

32

14% error reduction
On Caltech 256 data
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Outline



 
Homogeneous


 

Instance Based Transfer


 

Feature Based Transfer 


 
Heterogeneous (w/ Correspondence)



 
Heterogeneous Transfer w/out 
Correspondence


 

Transfer Learning in Collaborative Filtering


 

Structure-based Transfer


 
Future Works
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Product Recommendation 
(Amazon.com)

34
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Collaborative Filtering: Data Sparseness 
(1: don’t like; 3: like)

a b c d e f
1
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4
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Overlaps: 
MORE

Similarity:
RELIABLE

Overlaps: 
FEWER

Similarity:
UNRELIABLE

35

Nearest
neighbor

Users
Products 
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Transfer Learning for 
Collaborative Filtering?

36

IMDB Database

Amazon.com

MLA'09



Transfer Learning for Collaborative 
Filtering [B. Li, Yang, Xue, ICML 2009]



 

Users are related in Interests; Items are related in Genre


 

How to “Relate” users and items?


 

ALIGN user/item-groups across domains
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Data Sets
•EachMovie(Source)
•Book-Crossing (Target)

Compared Methods
•Pearson Correlation  Coefficients 
(PCC)
•Scalable Cluster-based Smoothing 
(CBS)
•Codebook Transfer (CBT)

Result: 5-10% improvement

Codebook based Transfer
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Goal: 


 

Learn a correspondence structure between domains


 

Use the correspondence to transfer knowledge

English Chinese (汉语）

father

mother son

daughter 父亲

母亲

儿子

女儿

Heterogeneous Transfer Learning without 
Correspondence [H. Wang and Yang 2009]
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[Dekang Lin, ‘An Information-theoretic Dfn of Similarity’, 
ICML 1998] 

STEP 1: 
• Compare each 
entity with all others 
in the same domain. 

• Encode each entity 
by distribution

English Chinese (汉语）

father

mother son

daughter
父亲

母亲

儿子

女儿

Heterogeneous Transfer Learning without 
correspondence
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STEP 2: 

• Compare two 
distributions in 
order to 
measure their 
relatedness

English Chinese (汉语）

father

mother son

daughter 父亲

母亲

儿子

女儿

41

Heterogeneous Transfer Learning without 
correspondence

MLA'09



Heterogeneous Transfer Learning without 
Correspondence

STEP 3: 

Build a bipartite 
graph across the 
domains, 

English Chinese (汉语）

father

mother son

daughter 父亲

母亲

儿子

女儿

42MLA'09



STEP 4: 

Align the two 
domains in a 
common latent 
space by 
spectral analysis 
methods.

English Chinese (汉语）

father

mother son

daughter 父亲

母亲

儿子

女儿

43

Heterogeneous Transfer Learning without 
correspondence

MLA'09



STEP 5 

Finally the 
“common parts” 
is used for 
knowledge 
transfer…

English Chinese (汉语）

father

mother son

daughter 父亲

母亲

儿子

女儿
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Heterogeneous Transfer Learning without 
correspondence

MLA'09
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Heterogeneous Transfer Learning without 
correspondence

Related to: Chang Wang and Sridhar 
Mahadevan 
Manifold Alignment without 
Correspondence. IJCAI 2009.
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Conclusions and Future Work



 
Homogeneous Transfer Learning



 
Heterogeneous Transfer Learning


 

Feature spaces and distributions are different


 

Methods


 

Known correspondence: Text-based Image 
Classification/Clustering, 



 

Unknown correspondence: Alignment, global structural 
correspondence



 
Future


 

Negative Transfer


 

Multiple source domains [Gao, Fan, Jiang, Han KDD08] [Luo 
et al. CIKM 08]



 

Scaling up
46MLA'09
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Future: Negative Transfer 
Credit: Dai, Wenyuan

Helpful: 
positive 
transfer

Harmful:

Neutral:

negative transfer

zero transfer

MLA'09



Future: Negative Transfer


 
“To Transfer or Not to Transfer”


 

Rosenstein, Marx, Kaelbling and Dietterich


 

Inductive Transfer Workshop, NIPS 2005.  (Task: 
meeting invitation and acceptance)
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