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A Major Assumption w/ Machine
Learning

= Training and future (test) data
= follow the same distribution, and
= are In same feature space
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When distributions are different
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= Part-of-Speech tagging
= Named-Entity Recognition
= Classification
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When distributions are different

s Wireless sensor networks

= Different time periods,
devices or space

' N

wavmw«o s.qn m\qvnmumrﬂ

=sRelabeling data can be expensive

> Device,
: : : Space, or
Night time Day time Time
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When Features are different

= Heterogeneous: different feature spaces

Training: Text Future: Images

The apple is the pomaceous fruit

Apples of the apple tree, species Malus
domestica in the rose family

Rosaceae ...

Banana is the common name for a
type of fruit and also the
herbaceous plants of the genus
Musa which produce this
commonly eaten fruit ...

Bananas
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Transfer Learning?

= People often transfer knowledge to
novel situations

= Chess = Checkers
« C++ 2 Java
= Physics - Computer Science

Transfer Learning:

The ability of a system to recognize and apply
knowledge and skills learned in previous tasks to
novel tasks (or new domains)
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Transfer Learning. Source
Domains

Input

: Output
1  Learning >

1

Source
Domains

Training Data Labeled/Unlabeled Labeled/Unlabeled

Test Data Unlabeled
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Outline

= Transfer Learning Basics

= Homogeneous Transfer Learning
= Heterogeneous Transfer Learning
= Future Works
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Outline

= Transfer Learning Basics

= Homogeneous Transfer Learning
= Heterogeneous Transfer Learning
= Future Works

Transfer Learning Survey

S. Pan and Q. Yang, A Survey on Transfer Learning [EEE
TKDE 20089.
htto.//www.cse.ust.hk/—sinnopan/SurveyiL.htm
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http://www.cse.ust.hk/~sinnopan/SurveyTL.htm

Reinforcement Learning

L. Torrey, J. Shavlik, S. Natarajan, P. Kuppili & T.
Walker (2008).

Transfer in Reinforcement Learning via Markov
Logic Networks. AAAI'0O8 Workshop on Transfer
Learning for Complex Tasks, Chicago, IL.

2-on-1 BreakAway 3-on-2 BreakAway

(Y (5 r
— .
&
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http://ftp.cs.wisc.edu/machine-learning/shavlik-group/torrey.aaai08.pdf
http://ftp.cs.wisc.edu/machine-learning/shavlik-group/torrey.aaai08.pdf

Deep Transfer w/ Markov Logic
Network [Davis and Domingos, ICML 2009]

Source Domain Target Domain
. (-
Prof. Domingos Grad Student
Parag cytoplasm cytoplasm
Students: Parag,..!
o Advisor: \ \
projes SR bomings
Research: SRL YOR167c ] YBLO26w
Class: CSE 546 | ' | l
| ribosomal  RNA professing
CSE 546: SRL Rwgearch proteins
Data Mining Project

T Complex(z, y) A Interacts(x, z)= Complex(Xx, y)
Ho and

Location(z, y) /A Interacts(X, z) = Location(X, y)
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Different Learning Problems

Multiple
Domain Data

Feature
Spaces

Heterogeneous Homogeneous

Instance Data

Alignment ?
Yes No

Distribution?

Different l Same

Multi-view Heterogeneous Transfer Learning Traditional
Learning Transfer across Different Machine
Learning Distributions Learning
Apple i Banana i
Source dopleisa || sonanas ‘ A“\Q
Domain can be common
found ... name for... z
Target
Domain E

el
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Domain Adaptation in NLP

Applications Selected Methods
_ = Domain adaptation for
= Automatic Content statistical classifiers [Hal
Extraction Daume Ill & Daniel Marcu,

= Sentiment Classification JAIR 2006], [Jiang and

= Part-Of-Speech Tagging  Zhai, ACL 2007]
= NER = Structural Correspondence

_ : : Learning [John Blitzer et
Question Answering al. ACL 2007] [Ando and

= Classification Zhang, JMLR 2005]

= Clustering = Latent subspace [Sinno
Jialin Pan et al. AAAI 08]
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Instance-transfer A

[Wu and Dietterich ICML-04]
[J.Jiang and C. Zhai, ACL 2007
[Dal, Yang et al. ICML-07]

Uniform weights

- Cross-domain POS tagging,
- entity type classification
- Personalized spam filtering

Correct the decision boundary by re-weighting

L_oss functiortion
- the target '
- domain data

......................................

: Loss function :
: on the source :

: domain data

+ +
+
+ + + + ‘\_b/
+ + tkj /
-
+ o+ L +
+ / -
\/ _
Regularization
term

> Differentrate.the cost for mlsclassmcatlon of the target and source data

.......
.........

I
-
.
.®
.o
ee® .
--------------------
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TrAdaBoost

[Dal, Yang et al. ICML-07]

 Misclassified

{HE N\ L N\

F1 Evaluation with 20NG: 22%->8%

- Todect] NEEP: //people csall.mit.edu/jrennie/20Newsgroups/

!ff.trfrf:”:“:".”:‘ ___________ rreeree UT UTE TITISCIASSITIEU
target data
Source domain Jll target domain trnvi\;]thIdeata et — decrease the WEightS
SEEET labeled data of the misclassified

source data

Classifiers trained on
re-weighted labeled dat

Target domain
unlabeled data
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Feature-based Transfer Learning

[Dai, Xue, Yang et al. KDD 2007]

o Targ et: CoCC=Co-clustering based

Classification

= All unlabeled P

Instances ( Feature )
= Distributions

= Feature spaces can
be different, but
have overlap

= Same classes
= P(X,Y): different!

Auxiliary
Data

MLA'09

< bridge

Target Data
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Document-word co-occurrence
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Figure 2: Document-word co-occurrence distribu-

tion on the auto vs aviation data set
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Co-Clustering based transfer
[Dai, Xue, Yang et al. KDD 2007]

= Co-clustering is applied between

= features (words) and target-domain
documents

= constrained by the labels of source
domain documents

= word clusters in both domains: a bridge

1. Word clustering 2. Co-clustering

Documents
in D,

Documents
in D;

—

1. Label Propagation 2. Label Propagation
MLA'09 18



Structural Correspondence
Learning [Blitzer et al. ACL 2007]

= SCL: [Ando and Zhang, JMLR 2005]

= Method
= Define pivot features: common in two domains
= Find non-pivot features in each domain
= Build classifiers through the non-pivot Features

(1) The book is so repetitive
that 1 found myself.yelling ....

I will definitel @

another.

Bamer .... Trigger
mechanism is defective.

Book Domain “ Kitchen Domain
19
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Different Learning Problems

Multiple
Domain Data

Feature
Spaces

Heterogeneous Homogeneous

Instance Data

Alignment ?

Distribution?
No l

Yes

Different Same

Transfer Learning
across Different
Distributions

Traditional
Machine
Learning

Heterogeneous
Transfer
Learning

Multi-view
Learning

Appleis a Banana is

Sou rcg fr-uit that the : .
Domain can be common

found ... name for... d
Target
Domain ; ;

- /
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Outline

= Transfer Learning Basics
= Homogeneous Transfer Learning

= Heterogeneous Transfer Learning

= With Correspondence
» Translated Learning (English = Chinese)
« Text-to-Image Clustering/Classification

= Without Correspondence
= Future Works

MLA'09
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Correspondence In Transfer

Learning
= Mapping between entities or relations

s Probabilistic in nature

Computer




Cross-language Classification

Classifier
learn / w‘ﬂ fy
Labeled Unlabeled
English Chinese Web
Web pages pages

N

—~,

Cross-language Classification
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Heterogeneous Transfer Learning

with a Dictionary

Bel, etal. ECDL 2003]
Zhu and Wang, ACL 2006]
Gliozzo and Strapparava ACL 2006]

— T
— R

Labeled documents
in English (abundant)

- -
— Ty
— I

Labeled documents

DICTIONARY

Translation Error
Topic Drift

in Chinese (scarce)
\ //

TASK: Classifying documents
in Chinese

MLA'09
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Topic Drift in Direct Translation

e Translation Error
e Topic Drift

News
in
EﬂglISh Games
g
£
= News
N
Chinese
Games

0 1 ] 1 . : | Yl ,
0 2000 4000 6000 8000 ‘M 0RO~ 2000 14000 16000
Featur ?‘B‘ Oé 25



Improv

Unlabeled
Chinese Web
Pages

Translhtorn

o v
ST oAs
CiFSCHL (EEERED

Unlabeled
Chinese Web
Pages in
English

>

Labeled
English Web
Pages

llsasic
Cl3ssifier

émeﬁts: | over '15%

8]

Domain Adaptation

function and give new labels

Optmize the objective

for Chinese Web Pages

l

.:'4‘“!!

New Labels for N times
Chinese Web

pages
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Text-aided Image Clustering

= Objective: Image clustering

)

-
Apple

Apple

l Search images ‘

Fil
12
up

St
40
bijl

Apple
600 x 637 - 19k - jpg
synergyblog wordpress_com

Credit: Apple Computer, Inc.

320 x 384 - 66k - jpg
idsa.org

Earlier today, Apple
2400 x 2400 - 344k - jpeg
operationgadget.com

Apple Computer has been
402 x 480 - 22k - gif
blorge_.com
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Apple's retail stores
530 x 630 - 36k - jpg
letsgodigital org

Apple computer made out of
1115 % 871 - 529k - jpg
home_earthlink_net

g

Apple

500 x 555 - 18k - png
cnymultimedia.com

=

Apple - Fixing-their-shit -
400 x 349 - 14k - jpg
plusvsminus_com
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Adding Auxiliary Text Data
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Annotated PLSA Model for Clustering Z

Caltech 256 Data Heterogeneo.:|s Transfer
Learning -

Average Entropy
Improvement

From Flickr.com

5.7%

OIF 1 reautulco

— i P

A u—l_

Image
instances in

: .
target data LAGS ElickrBigCats |,



http://www.flickr.com/photos/drewmendoza/tags/lion/
http://www.flickr.com/photos/drewmendoza/tags/animal/
http://www.flickr.com/photos/drewmendoza/tags/simba/
http://www.flickr.com/photos/drewmendoza/tags/hakuna/
http://www.flickr.com/photos/drewmendoza/tags/matata/
http://www.flickr.com/photos/drewmendoza/tags/flickrbigcats/

Text to Image Classification
[Dal, Chen, Yang et al. NIPS 2008]

‘A
m

Asian ...

Ap

Cor

is..

Appleis a
fruit. Apple
pie is...

Input

Text

- ﬁ Input

Classifier

Output

translating learning models

N
Image

Classifier
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Heterogeneous Transfer
Learning with Correspondence

Text Classification Model
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Log-likelihood: 'raic(v) = arg maxlogPr(c[D) + Alog Pr(c[V)
+ Zt log Pr(fle. D]+ A Y logPr(fle.V).

feT few
P(f|c,D) = \
mmmmmmmmmm — difficult
- Pr( | = - ) to estimate!
o O',. =, &
1496 error reductlon

On Caltech 256 data
- Ay -

feature mapping

Pr(viw,c) = « Pr( &

~—
co-occurence data




Outline

= Homogeneous
= INnstance Based Transfer
= Feature Based Transfer

= Heterogeneous (w/ Correspondence)

= Heterogeneous Transfer w/out
Correspondence

« Transfer Learning in Collaborative Filtering
» Structure-based Transfer

s Future Works
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Product Recommendation
(Amazon.com)
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Collaborative Filtering: Data Sparseness
(1: don'’t like; 3: like)

Products

Users

Dense (75%)
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Transfer Learning for
Collaborative Filtering?

I M D B D atab ase RECOmmendahons

. Ifyou enjoyed this title, our database also recommends:

KING LEAR

GONG LI

RAISE

King Lear Big Fish Shi mian mai fu
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Amazon.com
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Transfer Learning for Collaborative
Filtering [B. Li, Yang, Xue, ICML 2009]

s Users are related in Interests: Items are related in Genre

= How to “Relate” users and items?
= ALIGN user/item-groups across domains

PR
P 0.

MOVIES' BOOKS User/Item Group-Matching
(e.g. IMDB) (e.g. Amazon)
- s b s Lo
13311 13322 C1-r'1 IVIOV1CS/ bOOKS
3 311 1 3 312 2 I & 11 Girls on IMDB/Amazon
g2 23 3 1183 II < I Boyson IMDB/Amazon
2 2/3 3 1 13 3
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Codebook based Transfer

a b c¢c d e
111,331 1/1,0/(0
2/3/3(2/2]|3 2/0/11]0 A B C a b cde
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4[1]1]3]3[1] = 4100 K wu(2[3[3] A [1/1]0 0]1
511331 5/1/01]0 I | 3|2 |1 0/|0/0|0]|O0
61313121219 610110 Codebook Item-cluster Indicators
70212|3/3|2 7001

Reconstructed User-cluster Indicators

Dat min HX — U,BV, ] o W’HE 2thods
ret ‘tet tet F -

oEa Uirc{0,1}P% ation Coefficients

eBo Viwre{0,1}7%
r-pased Smoothin
st. Ugl=1Vyl=1 |

*Codebook Transfer (CBT)

Result: 5-10% improvement
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Heterogeneous Transfer Learning without
Correspondence [H. Wang and Yang 2009]

Goal:
= Learn a correspondence structure between domains

= Use the correspondence to transfer knowledge

father

English Chinese (X&)

MLA'09
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Heterogeneous Transfer Learning without

correspondence
[Dekang Lin, ‘An Information-theoretic Dfn of Similarity’,
ICML 1998]
English Chinese (DLiE) STEP 1:
« Compare each
mother Q son entity with all others

iNn the same domain.

aughter  Encode each entity
by distribution

MLA'09 40



Heterogeneous Transfer Learning without

correspondence
STEP 2:
English Chinese (&) « Compare two
distributions in
s @ =" order to
d;ghter : measure their
% relatedness
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Heterogeneous Transfer Learning without

Correspondence

English Chinese (DLiE)

MLA'09

STEP 3:

Build a bipartite
graph across the
domains,

42




Heterogeneous Transfer Learning without
correspondence

STEP 4:

English Chinese (i) Align the two
domains in a
common latent
space by
spectral analysis
methods.

mother @ SON
o
o

daughter

father

® MLA'09 43



Heterogeneous Transfer Learning without

correspondence
D STEP 5
English Chinese (IiE) Finally the
“‘common parts”
mother @ S€X is used for
@ «— )L,
daughter L —¢ knOWIedge
P O transfer...
LT
®
father
S
) ®
e
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Heterogeneous Transfer Learning without
correspondence

.
0.5
0.6+ e

p4d
o

0.2 TG
okt

2t 1—"_'.‘!_"_" D
0.8

(b) The Swiss roll (d) The S curve
(a) Ground truth geodesic
structure and color coding

_ppwane

r
Related to: Chang Wang and Sridhar 5/
Mahadevan o 47

Manifold Alignment without Y R
Correspondence. 1JCAI 20009. ‘ X 5




Conclusions and Future Work

= Homogeneous Transfer Learning
= Heterogeneous Transfer Learning

= Feature spaces and distributions are different

= Methods

= Known correspondence: Text-based Image
Classification/Clustering,

= Unknown correspondence: Alignment, global structural
correspondence

s Future

= Negative Transfer
= Multiple source domains [Gao, Fan, Jiang, Han KDDO08] [Luo
et al. CIKM 08]
= Scaling up
MLA'09 46



Future: Negative Transfer
Credit: Dai, Wenyuan

il

" 1 Ba) W
iy, Y
S
R
N
/':a
|
!
q |
: 2
» LY
]
N ‘

Helpful:
5 A > pOS|t|Ve
. transfer

f

Harmful:

negative transfer

Neutral:

zero transfer
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Future: Negative Transfer

s “To Transfer or Not to Transfer”

= Rosenstein, Marx, Kaelbling and Dietterich

= Inductive Transfer Workshop, NIPS 2005. (Task:
meeting invitation and acceptance)

FiLt

= i,
il
E transfer, similar people
E 55 ‘,‘—_'_/'-T/
[#]
..E
= i
el B-onl
Q &0 4 -'.’}I//’d
2 X
(L
E
5E 4
=]
T
& transfer, dissimilar people
m 5o
=
=
I—
45 T r r
1] B 16 24 ¥l

Amount of Task B Training (# instances)
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