Learning with Local Consistency

Deng Cai (蔡登)

College of Computer Science Zhejiang University

dengcai@gmail.com

What is Local Consistency?

- Nearby points (neighbors) share similar properties.
- Traditional machine learning algorithms:
 - k-nearest neighbor classifier

Local Consistency Assumption

- A lot of unlabeled data
- Local consistency
 - k-nearest neighbors
 - ε-neighbors
 - ...

Local Consistency Assumption

- Put edges between neighbors (nearby data points)
- Two nodes in the graph connected by an edge share similar properties.

Local Consistency Assumption

- Similar properties
 - Labels
 - Representations
 - x: f(x)
- ▶ $W \in \mathbb{R}^{n \times n}$: weight matrix of the graph

$$\min \frac{1}{2} \sum_{i,j} W_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2 \qquad \mathbf{y}_i = f(\mathbf{x}_i)$$
$$\mathbf{y} = [y_1, \dots, y_n]^T$$
$$\min \mathbf{y}^T (D - W) \mathbf{y} \qquad L \equiv D - W$$

$$\min y^T L y$$

$$s.t. \quad y^T D y = 1$$

Local Consistency and Manifold Learning

- Manifold learning
- We only need local consistency

$$\min \sum_{i,j} W_{ij} \left(f(\boldsymbol{x}_i) - f(\boldsymbol{x}_j) \right)^2$$

How to use the local consistency idea?

Local Consistency in Semi-Supervised Learning

Supervised learning

$$f^* = \underset{f}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} l(\mathbf{x}_i, y_i, f) + \lambda ||f||^2$$

- Squared loss: ridge regression (regularized least squares)
- Hinge loss: SVM
- Semi-Supervised learning (with local consistency)

$$f^* = \underset{f}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} l(\mathbf{x}_i, y_i, f) + \lambda_1 ||f||^2 + \lambda_2 \sum_{i,j=1}^{n} W_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2$$

Laplacian least squares and Laplacian SVM.

Manifold Regularization

Semi-Supervised learning (with local consistency)

$$f^* = \underset{f}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} l(\mathbf{x}_i, y_i, f) + \lambda_1 ||f||^2 + \lambda_2 \sum_{i,j=1}^{n} W_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2$$

Laplacian least squares

$$a^* = (XX^T + \lambda_1 I + \lambda_2 X L X^T)^{-1} X y$$

Ridge regression (regularized least squares)

$$a^* = (XX^T + \lambda I)^{-1}Xy$$

How to use the local consistency idea?

- Matrix factorization
 - Non-negative matrix factorization

- Topic modeling
 - Probabilistic latent semantic analysis

- Clustering
 - Gaussian mixture model

Matrix Factorization (Decomposition)

 $X = [x_1, \cdots, x_n] \in \mathcal{R}^{p \times n} \to X \approx UV^T$

Matrix Factorization (Decomposition)

 $\left| \mathbf{x}_{i} \right| \approx v_{1i} \cdot \left| \mathbf{u}_{1} \right| + v_{2i} \cdot \left| \mathbf{u}_{2} \right| + \cdots + v_{ki} \cdot \left| \mathbf{u}_{k} \right|$

Singular Value Decomposition

► Recall: $f^* = \underset{f}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} l(\mathbf{x}_i, y_i, f) + \lambda_1 \mathbf{f}^T L \mathbf{f} + \lambda_2 ||f||^2$

$$X = U \Sigma V^T \in \mathcal{R}^{n \times m}$$

When $\lambda_1=0$, $\lambda_2>0$: standard regularization (RLS and SVM) $U\in\mathcal{R}^{n\times k}$ $\Sigma\in\mathcal{R}^{k\times k}$ $V\in\mathcal{R}^{m\times k}$

$$\mathbf{U}'\mathbf{U} = \mathbf{I}$$
 $\mathbf{V}'\mathbf{V} = \mathbf{I}$ Orthonormal

When there is no labeled data, manifold regularization turns to be regularized spectral clustering (which has a close reading $(\sigma_1, \dots, \sigma_k)$, $\sigma_i \geq \sigma_{i+1}$ by values (ordered)

$$\mathbf{w}^* = \underset{k}{\operatorname{argmin}} \lambda_1 \mathbf{w}^T X L X^T \mathbf{w} + \lambda_2 ||\mathbf{w}||^2$$

Latent Semantic Analysis (Indexing)

The LSA via SVD can be summarized as follows:

- Document similarity
- Folding-in queries

$$\hat{\mathbf{q}} = \mathbf{\Sigma}_k^{-1} \mathbf{V}_k \mathbf{q}$$

Non-negative Matrix Factorization

$$X pprox \tilde{X} = UV^T, \min ||X - UV^T||^2$$
 $u_{ij} \geq 0, v_{ij} \geq 0$

▶ The Euclidean distance $||X - UV^T||^2$ is nonincreasing under the update rules

$$u_{ik} \leftarrow \frac{(XV)_{ik}}{(UV^TV)_{ik}} u_{ik} \qquad v_{jk} \leftarrow \frac{(X^TU)_{jk}}{(VU^TU)_{jk}} v_{jk}$$

Can we incorporate the local consistency idea?

Locally Consistent NMF

$$X \approx UV^T$$

If x_i and x_j are neighbors

$$\begin{bmatrix} \mathbf{x}_{i} \\ \mathbf{x}_{i} \end{bmatrix} = v_{1i} \cdot \begin{bmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{1} \end{bmatrix} + v_{2i} \cdot \begin{bmatrix} \mathbf{u}_{2} \\ \mathbf{u}_{2} \end{bmatrix} + \cdots + v_{ki} \begin{bmatrix} \mathbf{u}_{k} \\ \mathbf{u}_{k} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{x}_{j} \\ \mathbf{v}_{2j} \cdot \begin{bmatrix} \mathbf{u}_{1} \\ \mathbf{v}_{2j} \cdot \begin{bmatrix} \mathbf{u}_{2} \\ \mathbf{v}_{2j} \cdot \begin{bmatrix} \mathbf{u}_{2j} \cdot \begin{bmatrix} \mathbf{u}_{2} \\ \mathbf{v}_{2j} \cdot \begin{bmatrix} \mathbf{u}_{2} \\ \mathbf{v}_{2j} \cdot \begin{bmatrix} \mathbf{u}_{2j} \cdot \begin{bmatrix} \mathbf{u}_{2} \\ \mathbf{v}_{2j} \cdot \begin{bmatrix} \mathbf{u}_{2} \\ \mathbf{v}_{2j} \cdot \begin{bmatrix} \mathbf{u}_{$$

Neighbor: prior knowledge, label information, p-nearest neighbors ...

Locally Consistent NMF

$$\begin{bmatrix} \mathbf{x}_{i} \\ = v_{1i} \cdot \begin{bmatrix} \mathbf{u}_{1} \\ \end{bmatrix} + v_{2i} \cdot \begin{bmatrix} \mathbf{u}_{2} \\ \end{bmatrix} + \cdots + v_{ki} \cdot \begin{bmatrix} \mathbf{u}_{k} \\ \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{x}_{j} \\ = v_{1j} \end{bmatrix} = v_{1j} \begin{bmatrix} \mathbf{u}_{1} \\ \end{bmatrix} + v_{2j} \cdot \begin{bmatrix} \mathbf{u}_{2} \\ \end{bmatrix} + \cdots + v_{kj} \cdot \begin{bmatrix} \mathbf{u}_{k} \\ \end{bmatrix}$$

$$\min \sum_{i,j} W_{ij} (f(\mathbf{x}_{i}) - f(\mathbf{x}_{j}))^{2} \qquad \min \sum_{k} \sum_{i,j} W_{ij} (v_{ki} - v_{kj})^{2}$$

$$\min \operatorname{Tr}(V^{T}LV)$$

D. Cai, X. He, J. Han, and T. Huang, Graph regularized Non-negative Matrix Factorization for Data Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, to appear.

Objective Function

NMF: $\min ||X - UV^T||^2$

$$u_{ik} \leftarrow \frac{(XV)_{ik}}{(UV^TV)_{ik}} u_{ik} \qquad v_{jk} \leftarrow \frac{(X^TU)_{jk}}{(VU^TU)_{jk}} v_{jk}$$

GNMF: $\min ||X - UV^T||^2 + \lambda \text{Tr}(V^T L V)$

Graph regularized NMF

$$u_{ik} \leftarrow \frac{(XV)_{ik}}{(UV^TV)_{ik}} u_{ik} \quad v_{jk} \leftarrow \frac{(X^TU + \lambda WV)_{jk}}{(VU^TU + \lambda DV)_{jk}} v_{jk}$$

Clustering Results

K		
11	NMF	GNMF
4	81.0 ± 14.2	93.5 ± 10.1
6	74.3 ± 10.1	$92.4{\pm}6.1$
8	69.3 ± 8.6	$84.0 {\pm} 9.6$
10	69.4 ± 7.6	$84.4 {\pm} 4.9$
12	69.0 ± 6.3	81.0 ± 8.3
14	67.6 ± 5.6	79.2 ± 5.2
16	66.0 ± 6.0	$76.8 {\pm} 4.1$
18	62.8 ± 3.7	76.0 ± 3.0
20	60.5	75.3
Avg.	68.9	82.5

K		
	NMF	GNMF
5	95.5 ± 10.2	98.5±2.8
10	83.6 ± 12.2	91.4 ± 7.6
15	79.9 ± 11.7	$93.4{\pm}2.7$
20	76.3±5.6	91.2 ± 2.6
25	75.0 ± 4.5	88.6 ± 2.1
30	71.9	88.6
Avg.	80.4	92.0

TDT2

COIL₂₀

- Please check our papers for more details.
- http://www.zjucadcg.cn/dengcai/GNMF/index.html

How to use the local consistency idea?

- Matrix factorization
 - Non-negative matrix factorization

- Topic modeling
 - Probabilistic latent semantic analysis

- Clustering
 - Gaussian mixture model

What is Topic Modeling

- Topic discovery,
 - Summarization,
 - Opinion mining,
 - Many more ...

Language Model Paradigm in IR

- Probabilistic relevance model
 - Random variables

 $R_d \in \{0,1\}$: relevance of document d

 $q \subseteq \Sigma$: query, set of words

Bayes' rule

probability of generating a prior probability of relevance for query q to ask for relevant d document d (e.g. quality, popularity)

$$P(R_d = 1|q) = \frac{P(q|R_d = 1) \cdot P(R_d = 1)}{P(q)}$$

probability that document d is relevant for query q

Language Model Paradigm

$$P(R_d = 1|q) \propto P(q|R_d = 1) P(R_d = 1)$$
(1)

First contribution: prior probability of relevance

simplest case: uniform (drops out for ranking)

 popularity: document usage statistics (e.g. library circulation records, download or access statistics, hyperlink structure)

- Second contribution: query likelihood
- query terms q are treated as a sample drawn from an (unknown) relevant document

Query Likelihood

$$+\lambda_2 \sum_{i,j=1}^n W_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2$$

Naive Approach

Documents Terms

Maximum Likelihood Estimation

number of occurrences of term w in document d $\hat{P}_{\text{ML}}(w|d) = \frac{n(d,w)}{\sum_{w'} n(d,w')}$

Zero frequency problem: terms not occurring in a document get zero probability

Estimation Problem

Crucial question: In which way can the document collection be utilized to improve probability estimates?

Probabilistic Latent Semantic Analysis

$$\hat{P}_{LSA}(w|d) = \sum_{z} P(w|z;\theta)P(z|d;\pi)$$

pLSA via Likelihood Maximization

Log-Likelihood

$$l(\theta, \pi; \mathbf{N}) = \sum_{d, w} n(d, w) \log(\sum_{z} P(w|z; \theta) P(z|d; \pi))$$

► Goal: Find model parameters that maximize the log-likelihood, i.e. maximize the average predictive probability for observed word occurrences (non-convex optimization problem)

Expectation Maximization Algorithm

E step: posterior probability of latent variables ("concepts")

$$P(z|d,w) = \frac{P(z|d;\pi)P(w|z;\theta)}{\sum_{z'} P(z'|d;\pi)P(w|z';\theta)}$$

Probability that the occurence of term w in document d can be "explained" by concept z

M step: parameter estimation based on "completed" statistics

$$P(w|z;\theta) \propto \sum_{d} n(d,w) P(z|d,w), \quad P(z|d;\pi) \propto \sum_{w} n(d,w) P(z|d,w)$$

$$P(z|d;\pi) \propto \sum_{w} n(d,w) P(z|d,w)$$

Local Consistency?

- Put edges between neighbors (nearby data points);
- Two nodes in the graph connected by an edge share similar properties.
- Network data
 - Co-author network, facebook, webpage

Text Collections with Network Structure

Blog articles + friend network

News + geographic network

Web page + hyperlink structure

- Literature + coauthor/citation network
- Email + sender/receiver network
- • • •

Importance of Topic Modeling on Network

Intuitions

- People working on the same topic belong to the same "topical community"
- Good community: coherent topic + well connected
- A topic is semantically coherent if people working on this topic also collaborate a lot

Social Network Context for Topic Modeling

- Context = author
- Coauthor = similar contexts
- Intuition: I work on similar topics to my neighbors

Objective Function

$$l(\theta, \pi; \mathbf{N}) = \sum_{d, w} n(d, w) \log(\sum_{z} P(w|z; \theta) P(z|d; \pi)) + \lambda R$$

$$\min \sum_{i,j} W_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2 \qquad f(\mathbf{x}_i) = f(d_i) \equiv P(z|d_i)$$

$$D\left(P(z|d_i)||P(z|d_j)\right) = \sum_{z} P(z|d_i) \log \frac{P(z|d_i)}{P(z|d_j)}$$

$$\mathbf{R} = -\frac{1}{2} \sum_{i,j} W_{ij} \left(D\left(P(z|d_i) || P(z|d_j) \right) + D\left(P(z|d_j) || P(z|d_i) \right) \right)^2$$

Parameter Estimation via EM

E step: posterior probability of latent variables ("concepts")

$$P(z_k|d_i, w_j) = \frac{P(w_j|z_k)P(z_k|d_i)}{\sum_{l=1}^{K} P(w_j|z_l)P(z_l|d_i)}$$

Same as PLSA

M step: parameter estimation based on "completed" statistics

$$P(w_{j}|z_{k}) = \frac{\sum_{i=1}^{N} n(d_{i}, w_{j}) P(z_{k}|d_{i}, w_{j})}{\sum_{m=1}^{M} \sum_{i=1}^{N} n(d_{i}, w_{m}) P(z_{k}|d_{i}, w_{m})} \quad \text{Same as PLSA}$$

$$P(z_k \mid d_i) = ?$$

Parameter Estimation via EM

M step: parameter estimation based on "completed" statistics

$$\begin{bmatrix} P(z_{k} | d_{1}) \\ P(z_{k} | d_{2}) \\ \vdots \\ P(z_{k} | d_{N}) \end{bmatrix} = (\Omega + \lambda L)^{-1} \begin{bmatrix} \sum_{j=1}^{M} n(d_{1}, w_{j}) P(z_{k} | d_{1}, w_{j}) \\ \sum_{j=1}^{M} n(d_{2}, w_{j}) P(z_{k} | d_{2}, w_{j}) \\ \vdots \\ \sum_{j=1}^{M} n(d_{N}, w_{j}) P(z_{k} | d_{N}, w_{j}) \end{bmatrix}$$

$$\Omega = \begin{bmatrix} n(d_1) & & \\ & \ddots & \\ & & n(d_N) \end{bmatrix}$$
 $L = D - W$, Graph Laplacian

If $\lambda = 0$

$$P(z_k \mid d_i) = \sum_{i=1}^{M} n(d_i, w_j) P(z_k \mid d_i, w_j) / n(d_i)$$
 Same as PLSA

Experiments

Bibliography data and coauthor

networks

- DBLP: text = titles; network = coauthors
- Four conferences (expect 4 topics): SIGIR, KDD, NIPS, WWW

Topical Communities with PLSA

Topic 1		Topic 2		Topic 3		Topic 4	
term	0.02	peer 0.0	2	visual	0.02	interface	0.02
question	0.02	patterns 0.0)1	analog	0.02	towards	0.02
protein	0.01	mining 0.0)1	neurons	0.02	browsing	0.02
training	0.01	clusters 0.0)1	vlsi	0.01	xml	0.01
weighting	0.01	stream 0.0	01	motion	0.01	generation	1 0.01
multiple	0.01	frequent 0.0)1	chip	0.01	design	0.01
recognition	1 0.01	e 0.0	01	natural	0.01	engine	0.01
relations	0.01	page 0.0)1	cortex	0.01	service	0.01
library	0.01	gene 0.0)1	spike	0.01	social	0.01

Topical Communities with NetPLSA

Topic 1	Topic 2	Topic 3	Topic 4
retrieval 0.13	mining 0.11	neural 0.06	web 0.05
information 0.05	data 0.06	learning 0.02	services 0.03
document 0.03	discovery 0.03	networks 0.02	semantic 0.03
query 0.03	databases 0.02	recognition 0.02	services 0.03
text 0.03	rules 0.02	analog 0.01	peer 0.02
search 0.03	association 0.02	vlsi 0.01	ontologies 0.02
evaluation 0.02	patterns 0.02	neurons 0.01	rdf 0.02
user 0.02	frequent 0.01	gaussian 0.01	management 0.01
relevance 0.02	streams 0.01	network 0.01	ontology 0.01

Information Retrieval Data mining

Machine learning

NetPLSA

0.06

0.02

0.01

0.01

0.01

neural

learning

analog

vlsi

neurons

gaussian

network

recognition 0.02

Coherent Topical Communities

discovery 0.03

NetPLSA

0.11

0.06

mining

data

For More Detials

Please check our papers

http://www.zjucadcg.cn/dengcai/LapPLSA/index.html

How to use the local consistency idea?

- Matrix factorization
 - Non-negative matrix factorization

- Topic modeling
 - Probabilistic latent semantic analysis

- Clustering
 - Gaussian mixture model

► Gaussian Mixture Model (GMM) is one of the most popular clustering methods which can be viewed as a linear combination of different Gaussian components.

- Multivariate Gaussian
 - μ : mean of the distribution
 - Σ: covariance of the distribution

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{d}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Maximum likelihood estimation

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \widehat{\mu})(x_i - \widehat{\mu})^T$$

- ▶ The process of generating a data point
 - first pick one of the components with probability π_k
 - then draw a sample x_i from that component distribution
- Each data point is generated by one of k components

▶ The log-likelihood function:

$$\log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}; \mathbf{\Theta}) = \sum_{i=1}^{N} \log \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}^{(i)}; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right)$$

Using EM algorithm:

$$l(\boldsymbol{\theta}) = \sum_{i=1}^{M} \sum_{\mathbf{z}^{(i)}} Q^{i}(\mathbf{z}^{(i)}) \log \frac{p(\mathbf{x}^{(i)}, \mathbf{z}^{(i)}; \boldsymbol{\theta})}{Q^{i}(\mathbf{z}^{(i)})}$$

$$\equiv \sum_{i=1}^{M} \sum_{k=1}^{K} Q^{i} \left(\mathbf{z}_{k}^{(i)} \right) \log \pi_{k} \mathcal{N} \left(\mathbf{x}^{(i)}; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k} \right)$$

E-step:

$$\begin{aligned} Q^{i}\left(\boldsymbol{z}_{k}^{(i)}\right) &= p\left(\boldsymbol{z}_{k}^{(i)}|\boldsymbol{x}^{(i)};\boldsymbol{\Theta}\right) \\ &= \frac{\pi_{k}\mathcal{N}\left(\boldsymbol{x}^{(i)};\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}\right)}{\sum_{k=1}^{K}\pi_{k}\mathcal{N}(\boldsymbol{x}^{(i)};\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})} \end{aligned}$$

- M-step:
 - Take the derivative of the complete log likelihood to obtain estimates for π_k, μ_k, Σ_k directly

$$\pi_{k} = \frac{\sum_{i=1}^{M} Q^{i} \left(\mathbf{z}_{k}^{(i)}\right)}{M}$$

$$\mu_{k} = \frac{\sum_{i=1}^{M} \mathbf{x}^{(i)} Q^{i} \left(\mathbf{z}_{k}^{(i)}\right)}{\sum_{i=1}^{M} Q^{i} \left(\mathbf{z}_{k}^{(i)}\right)}$$

$$\Sigma_{k} = \frac{\sum_{i=1}^{M} \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}\right) \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}\right)^{T} Q^{i} \left(\mathbf{z}_{k}^{(i)}\right)}{\sum_{i=1}^{M} Q^{i} \left(\mathbf{z}_{k}^{(i)}\right)}$$

▶ Do the iterations until convergence, then $Q^i\left(\mathbf{z}_k^{(i)}\right)$ can be used for clustering

Objective Function

$$\min \sum_{i,j} W_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2 \qquad f(\mathbf{x}_i) \equiv P(z|\mathbf{x}_i)$$

$$D\left(P(z|\mathbf{x}_i)||P(z|\mathbf{x}_j)\right) = \sum_{z} P(z|\mathbf{x}_i) \log \frac{P(z|\mathbf{x}_i)}{P(z|\mathbf{x}_j)}$$

$$\mathbf{R} = -\frac{1}{2} \sum_{i,j} W_{ij} \left(D\left(P(z|\mathbf{x}_i) || P(z|\mathbf{x}_j) \right) + D\left(P(z|\mathbf{x}_j) || P(z|\mathbf{x}_i) \right) \right)^2$$

$$\sum_{i=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k \mathcal{N} (\boldsymbol{x}^{(i)}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right) + \lambda \boldsymbol{R}$$

EM Equations

E-step:
$$P(c_k \mid x_i) = \frac{\pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)}{\sum_{i=1}^K \pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}$$

M-step:

$$\pi_{k} = \frac{\sum_{i=1}^{N} P(c_{k} \mid x_{i})}{N}$$

$$\mu_{k} = \frac{\sum_{i=1}^{N} x_{i} P(c_{k} \mid x_{i})}{N_{k}}$$

$$\Sigma_{k} = \frac{\sum_{i=1}^{N} P(c_{k} \mid x_{i}) S_{i,k}}{N_{k}}$$

$$\lambda \sum_{i,j=1}^{N} \left(P(c_{k} \mid x_{i}) S_{i,k} - \frac{\lambda \sum_{i,$$

$$\Sigma_{i,k} = (x_{i} - \mu_{k})(x_{i} - \mu_{k})^{T}$$

$$\pi_{k} = \frac{\sum_{i=1}^{N} P(c_{k} \mid x_{i})}{N}$$

$$N_{k} = \sum_{i=1}^{N} P(c_{k} \mid x_{i})$$

$$\mu_{k} = \frac{\sum_{i=1}^{N} X_{i} P(c_{k} \mid x_{i})}{N_{k}}$$

$$\frac{\lambda \sum_{i,j=1}^{N} \left(P(c_{k} \mid x_{i}) - P(c_{k} \mid x_{j})\right)(x_{i} - x_{j}) W_{ij}}{2N_{k}}$$

$$\Sigma_{k} = \frac{\sum_{i=1}^{N} P(c_{k} \mid x_{i}) S_{i,k}}{N_{k}}$$

$$- \frac{\lambda \sum_{i,j=1}^{N} \left(P(c_{k} \mid x_{i}) - P(c_{k} \mid x_{j})\right)(S_{i,k} - S_{j,k}) W_{ij}}{2N_{k}}$$

$$\frac{2N_{k}}{2N_{k}}$$

Experiment

7 Real Data sets:

- The Yale face image database.
- The Waveform model described in "The Elements of Statistical Learning".
- The Vowels data set which has steady state vowels of British English.
- The Libras movement data set containing hand movement pictures.
- The Control Charts data set consisting control charts.
- The Cloud data set is a simple 2 classes problem.
- The Breast Cancer Wisconsin data set computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Clustering Results

Data set	LCGMM	GMM	K-means	Ncut	size	# of features	# of classes
Yale	54.3	29.1	51.5	54.6	165	4096	15
Libras	50.8	35.8	44.1	48.6	800	21	3
Chart	70.0	56.8	61.5	58.8	990	10	11
Cloud	100.0	96.2	74.4	61.5	360	90	15
Breast	95.5	94.7	85.4	88.9	600	60	6
Vowel	36.6	31.9	29.0	29.1	2048	10	2
Waveform	75.3	76.3	51.9	52.3	569	30	2

The Take-home Messages

- Local consistency is a very useful idea.
- It is very simple.
 - Nearby points (neighbors) share similar properties.

$$\min \sum_{i,j} W_{ij} \left(f(\boldsymbol{x}_i) - f(\boldsymbol{x}_j) \right)^2$$

- It can be put everywhere (with a lot of unlabeled data)
 - The key: how to optimize the regularized objective function.

Thanks!