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Unsupervised Learning

Unsupervised feature extraction / clustering / novelty detection

e.g., feature extraction for optical character recognition

e.g., network intrusion detection

James Kwok Efficient Learning on Large Data Sets
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Principal Component Analysis (PCA)

Sv = λv

S = 1
n

∑n
j=1 xjx

′
j (scatter matrix)

James Kwok Efficient Learning on Large Data Sets
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Kernel PCA (KPCA)

Perform PCA in the feature space (x 7→ ϕ(x))

input space

feature space

ψ

when mapped back to the input space, eigenvectors becomes
nonlinear

eigen-decompose the kernel matrix K

Kα = nλα

James Kwok Efficient Learning on Large Data Sets
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Image Segmentation: Normalized Cut

Normalized cut

normalized fraction of total costs of edges between A and B
to the total edge connections to all the nodes

Optimization

(D−W)y = λDy

W: weight matrix; D: degree matrix;

Eigen-decomposition

D− 1
2 LD− 1

2 z = λz

L = D−W: Laplacian matrix

James Kwok Efficient Learning on Large Data Sets
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Large Data Sets

Problem

Eigenvalue decomposition of the n × n matrix takes O(n3) time

PCA, KPCA: n = number of samples

normalized cut: n = number of pixels in the image

James Kwok Efficient Learning on Large Data Sets
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Nyström Algorithm

∫
k(x , y)φ(x)dx = λφ(y)

k(·, ·): kernel function; λ: eigenvalue; φ(·): eigenfunction

Approximation using a set Z = {z1, . . . , zm} of landmark points∫
k(x ,y)φ(x)dx ' 1

m

∑m
j=1 k(zj , y)φ(zj) = λφ(y)

Take y = zi

1
m

∑m
j=1 k(zi , zj)φ(zj) = λφ(zi ), i = 1, 2, . . . ,m

small eigen-system K̃φ = mλφ

K̃ = [k(zi , zj)], m ×m matrix

φ = [φ(z1), . . . , φ(zm)]′, m-vector

Extrapolate this “small” eigenvector to the “large” eigenvector

φ(y) = 1
mλ

∑m
j=1 k(zi , y)φ(zi )

James Kwok Efficient Learning on Large Data Sets
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Low-Rank Approximation

Sample m landmark points sample m
columns from input matrix G

C =

[
W
S

]
G =

[
W ST

S B

]

Rank-k Nyström approximation:
G̃k = CW +

k CT
+

Time complexity: O(nmk + m3)

m� n much lower than the O(n3) complexity required by
a direct SVD on G

James Kwok Efficient Learning on Large Data Sets
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How to Choose the Landmark Points?

1 random sampling (used in standard Nyström)
2 probabilistic [Drineas & Mahoney, JMLR-2005]

chooses the columns based on a data-dependent probability

3 greedy approach [Ouimet & Bengio, AISTATS-2005]

much more time-consuming

4 clustering-based

inexpensive; with interesting theoretical properties
(K. Zhang, I.W. Tsang, J.T. Kwok. Improved Nyström low
rank approximation and error analysis. ICML-2008)

James Kwok Efficient Learning on Large Data Sets
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Tradeoff between Accuracy and Efficiency

more columns sampled, more accurate is the approximation

on very large data sets, the SVD step on W will dominate the
computations and become prohibitive

Example

Data set with several millions samples

sampling only 1% of the columns

W larger than 10, 000× 10, 000

James Kwok Efficient Learning on Large Data Sets
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Ensemble Nyström Algorithm [Kumar et al., NIPS-2009]

Use an ensemble of Nyström approximators

ne experts, each sample m columns; sample a total of mne

columns
each expert performs a standard Nyström approximation

single expert = standard Nyström
obtain rank-k approximations G̃1,k , G̃2,k , . . . , G̃ne ,k

resultant approximations are linearly combined

G̃ ens =
ne∑
i=1

µi G̃i ,k

µi ’s: mixture weights: uniform / heuristics / trained

James Kwok Efficient Learning on Large Data Sets
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Ensemble Nyström Algorithm...

1 more columns are sampled more accurate approximation

2 replace the expensive SVD by ne SVDs, each on a small
m ×m matrix

Time complexity

O(nenmk + nem
3 + Cµ), where Cµ: cost of computing the

mixture weights
(roughly) ne times that of standard Nyström

James Kwok Efficient Learning on Large Data Sets
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Motivation: Ensemble Nyström Algorithm

G̃ ens =
∑ne

i=1 µi G̃i ,k
+

ne∑
i=1

µi G̃i ,k =
ne∑
i=1

µiCiW
+
i ,kCT

i = C

µ1W
+
1,k

. . .

µneW
+
ne ,k

CT

+

u1

u2

u3

approximate W + ∈ Rnem×nem by a block diagonal matrix

inverse of block diagonal matrix is block diagonal

no matter how sophisticated the mixture weights µi ’s are
estimated, this block diagonal approximation is rarely valid

James Kwok Efficient Learning on Large Data Sets
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Idea

1 high efficiency of the Nyström algorithm

2 sample more columns (like the ensemble Nyström algorithm)

3 produce a SVD approximation that is more accurate but still
efficient randomized algorithm [Halko et al., TR 2009]

James Kwok Efficient Learning on Large Data Sets



Outline Unsupervised learning Nyström Approximation Supervised learning Conclusion

Randomized Algorithm [Halko et al., 2009]

W : n × n symmetric matrix; k: rank
p: over-sampling parameter (typically, p = 5)
q: parameter of the power method (accelerate decay of
eigenvalues, typically, q = 1 or 2)

1: Ω← a n × (k + p) standard Gaussian random matrix.
2: Z ←WΩ, Y ←W q−1Z .
3: Find an orthonormal matrix Q (e.g., by QR decomposition)

such that Y = QQTY . . an approximate, low-dimensional
basis for the range of W

4: Solve B(QTΩ) = QTZ .
5: Perform SVD on B to obtain VΛV T = B.
6: U ← QV .

only needs to perform SVD on B: small k × k matrix
time complexity: O(n2k + k3)

James Kwok Efficient Learning on Large Data Sets
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Proposed Algorithm

1: C ← m columns of G sampled uniformly at random without
replacement. . m can be large

2: W ← m ×m matrix
3: [Ũ,Λ]← randsvd(W , k, p, q)
4: U ← CŨΛ+. . standard Nyström extension
5: Ĝ ← UΛUT .

James Kwok Efficient Learning on Large Data Sets
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Is it Efficient?

Recall that n� m� k

Nyström O(nmk + m3)

ensemble Nyström O(nmk + nek
3 + Cµ)

randomized SVD O(n2k + k3)

proposed method O(nmk + m2k + k3) = O(nmk + k3)

James Kwok Efficient Learning on Large Data Sets
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Is it Accurate?

Rank-k standard Nyström approximation Ĝ

m randomly sampled columns

E‖G − Ĝ‖2 ≤ ‖G − Gk‖2 + 2n√
m

(maxi Gii )

Gk : best rank-k approximation

Proposed method

E‖G − Ĝ‖2 ≤ ζ1/q‖G − Gk‖2 + (1 + ζ1/q) n√
m

(maxi Gii )

ζ: constant depending on k, p,m

ζ1/q close to 1 becomes ‖G − Gk‖2 + 2n√
m

(maxi Gii ), same

as that for standard Nyström using m columns

Proposed method is as accurate as standard Nyström

James Kwok Efficient Learning on Large Data Sets
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More Error Analysis Results

Spectral norm

sample columns probabilistically [Drineas & Mahoney,
JMLR-2005]

E‖G − Ĝ‖2 ≤ ζ1/q‖G − Gk‖2 + (1 + ζ1/q)
1√
m

tr(G )

Frobenius norm

sample columns uniformly at random without replacement

E‖G − Ĝ‖F ≤ 2ζF‖G − Gk‖F +

(
1 +

4ζF√
m

)
n(max

i
Gii )

sample columns probabilistically

E‖G − Ĝ‖F ≤ 2ζF‖G − Gk‖F +

(
1 +

4ζF√
m

)
tr(G )

James Kwok Efficient Learning on Large Data Sets
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Different Numbers of Columns

data sets: rcv1, mnist, covtype

data #samples dim
RCV1 23,149 47,236
MNIST 60,000 784
Covtype 581,012 54

k = 600, and gradually increase the number of sampled
columns (m)

all Nyström-based methods have access to the same number
of m columns

for the ensemble Nyström, ne = m/k

randomized algorithm: p = 5, q = 2

James Kwok Efficient Learning on Large Data Sets
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Approximation Error and CPU Time
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randomized SVD algorithm: most accurate, most expensive
standard Nyström

as accurate as randomized SVD (when m is large enough)
quickly becomes computationally infeasible
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Approximation Error and CPU Time
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ensemble Nyström: inferior accuracy
proposed method

almost as accurate as standard Nyström
CPU time comparable or even smaller than ensemble Nyström

James Kwok Efficient Learning on Large Data Sets



Outline Unsupervised learning Nyström Approximation Supervised learning Conclusion

Scaling Behavior (Time)

“covtype”; rank k = 600; #columns m = 0.03n
log-log plot
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standard Nyström method scales cubically with n
others (including ours) scale quadratically (note: m also scales
linearly with n)
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Scaling Behavior (Accuracy)
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proposed method is as accurate as the standard Nyström that
performs a large SVD
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Spectral Embedding

Laplacian eigenmap

digits 0, 1, 2 and 9 of MNIST: about 3.3M samples

neither standard SVD nor Nyström can be run on the whole set
for comparison, standard SVD on a random subset of 8,000
samples

data projected onto the 2d space

embedding of the proposed method is obtained within an hour
on a PC

James Kwok Efficient Learning on Large Data Sets
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Spectral Clustering

eigen-decompose D− 1
2 WD− 1

2

MNIST data
compare with

1 standard spectral clustering [Fowlkes et al. , PAMI-2004]
2 parallel spectral clustering (PSC) [Chen et al. , PAMI-2010]

single machine
3 k-means-based spectral clustering (KASP) [Yan et al. ,

KDD-2009] (implemented in R)

size method accuracy (%) time (sec)
35,735 standard 81.37± 0.15 289.4

PSC 80.47± 0.13 41.2
KASP 59.08± 6.25 40 min
ours 82.55± 1.97 5.4

4,130,460 standard - -
PSC (using 106 samples) 78.68± 0.18 391.8

KASP - -
ours 77.91± 0.78 407.0
James Kwok Efficient Learning on Large Data Sets
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Image Segmentation Example

989× 742 (733,838 pixels)

4 sec (excluding the time for generating the affinity matrix)

Xeon 5440 2.83Ghz CPU, matlab 2009b, 16GB memory

James Kwok Efficient Learning on Large Data Sets
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Image Segmentation Example...

1600× 1122 (1,795,200 pixels)

8 sec

James Kwok Efficient Learning on Large Data Sets
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Image Segmentation Example...

4752× 3168 (15,054,336 pixels)

30 sec

James Kwok Efficient Learning on Large Data Sets
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Graphics Processors (GPU)

popularly used in entertainment, high-performance computing,
etc

many-core high-performance parallel computing

NVIDIA Tesla C1060:

240 streaming processor cores

peak single-precision (SP) performance: 933 GFLOPS

peak double-precision (DP) performance: 78 GFLOPS

Intel Core i7-980X CPU

6 cores

peak SP: 158.4 GFLOPS

peak DP: 79.2 GFLOPS

James Kwok Efficient Learning on Large Data Sets
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Proposed Algorithm on GPU

1: C ← m columns of G sampled uniformly at random without
replacement. . m can be large

2: W ← m ×m matrix
3: [Ũ,Λ]← randsvd(W , k, p, q)
4: U ← CŨΛ+. . standard Nyström extension

matrix-matrix multiplication

James Kwok Efficient Learning on Large Data Sets
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GPU Experiments

Machine

two Intel Xeon X5560 2.8GHz CPUs, 32G RAM

four NVIDIA Tesla C1060 GPU cards

MNIST-8M data

fixed number of sampling columns (m = 6000)
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n CPU (sec) GPU (sec) speedup

8× 104 19 4.9 4x
4× 105 71 6.8 10x
8× 104 137 9.0 15x
2× 106 332 15.9 20x
4× 106 657 27.2 24x

8.1× 106 1310 50.0 26x
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Breakdown of Time
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r−svd

compute U

transfer U

transfer MNIST−8M

compute C

minimal data transfer

time spent on data transfer: about 1.5 seconds

James Kwok Efficient Learning on Large Data Sets
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Proposed Method vs Standard Nyström

standard Nyström can also benefit by running on the GPU

k = 600

number of sampled columns m varied from 2K to 10K
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standard Nyström: time is dominated by the SVD
decomposition step
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Varying the Number of GPU Cards
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speedup linear in number of GPU cards
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Supervised Learning: Regularized Risk Minimization

minimize loss + regularizer

Example

hinge loss +‖w‖22 SVM

square loss+‖w‖22 ridge regression

square loss +‖w‖1 lasso

minw EXY [`(w ;X ,Y )] + λΩ(w)

Replace the expectation by its empirical average on a training
sample {(x1, y1), . . . , (xm, ym)}

minw
1
m

∑m
i=1 `(w ; xi , yi ) + λΩ(w)

Typically, both `(·, ·) and Ω(·) are convex convex optimization
James Kwok Efficient Learning on Large Data Sets
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Limitations with Existing Solvers

Example (SVM)

need to solve a large quadratic program (QP)

very large data set very large QP

James Kwok Efficient Learning on Large Data Sets
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Back to Basics

Gradient descentminw
1
m

∑m
i=1 `(w ; xi , yi ) + λΩ(w)

LOOP

1 find descent direction

2 choose stepsize

3 descent

James Kwok Efficient Learning on Large Data Sets
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Subgradient

1
m

∑m
i=1 `(w ; xi , yi ) + λΩ(w)

Problem

` and/or Ω may be non-smooth (e.g., hinge loss, `1 regularizer)

Subgradient

extend gradient to non-smooth
functions

g is a subgradient of f at x iff
f (y) ≥ f (x) + g ′(y − x)

James Kwok Efficient Learning on Large Data Sets



Outline Unsupervised learning Nyström Approximation Supervised learning Conclusion

Computing the Gradient

∇w ( 1
m

∑m
i=1`(w ; xi , yi ) + λΩ(w))

Another Problem

Computing the gradient using all the training samples may still be
costly

Estimates the gradient from a small data subset (mini-batch)

James Kwok Efficient Learning on Large Data Sets
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Stochastic Gradient Descent (SGD)

Example

Pegasos [Shalev-Shwartz et al, ICML-2007]

FOBOS [Duchi and Singer, NIPS-2009]

SGD-QN [Bordes et al, JMLR-2009]

Advantages

easy to implement

low per-iteration complexity good scalability

Disadvantage

uses first-order information

slow convergence rate may require a large number of
iterations

James Kwok Efficient Learning on Large Data Sets
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Accelerated Gradient Methods

First developed by Nesterov in 1983

deterministic algorithm for smooth
optimization

Extension to composite optimization [Nesterov
MP-2007]

objective has both smooth and non-smooth
components

Extension to stochastic composite optimization [Lan, TR 2009]

setting of learning parameters relies on quantities (such as
number of iterations, variance of the stochastic subgradient)
that are difficult to estimate in practice

does not consider strong convexity

cannot produce sparse solutions

James Kwok Efficient Learning on Large Data Sets
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Accelerated Gradient Method for Stochastic Learning

minx φ(x) ≡ E[F (x , ξ)] + ψ(x)

ξ: random component
f (x) ≡ E[F (x , ξ)]: convex and differentiable

G (xt , ξt): stochastic gradient of F (x , ξt)

ψ(x): convex but possibly non-smooth

Stochastic Accelerated GradiEnt (SAGE)

Input: Sequences {Lt} and {αt}.
for t = 0 to N do

xt = (1− αt)yt−1 + αtzt−1.
yt = arg minx

{
〈G (xt , ξt), x − xt〉+ Lt

2 ‖x − xt‖2 + ψ(x)
}
.

zt = zt−1 − (Ltαt + µ)−1[Lt(xt − yt) + µ(zt−1 − xt)].
end for
Output yN .

James Kwok Efficient Learning on Large Data Sets
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Special Case: αt ≡ 0

xt = yt−1

yt = arg minx

{
〈G (xt , ξt), x − xt〉+ Lt

2 ‖x − xt‖2 + ψ(x)
}

Generalized gradient update

xt+1 = arg minx

(
f (xt) + 〈∇f (x), x − xt〉+ 1

2λ‖x − xt‖2 + ψ(x)
)

f : smooth; ψ: nonsmooth

ψ(x) ≡ 0

arg minx

(
f (xt) + 〈∇f (x), x − xt〉+ 1

2λ‖x − xt‖2
)

= xt − λ∇f (xt)

standard gradient descent

In general, αt 6= 0

xt = (1− αt)yt−1 + αtzt−1

yt = arg minx

{
〈G (xt , ξt), x − xt〉+ Lt

2 ‖x − xt‖2 + ψ(x)
}
.

zt = zt−1 − (Ltαt + µ)−1[Lt(xt − yt) + µ(zt−1 − xt)] (history)

James Kwok Efficient Learning on Large Data Sets
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Efficient Computation of yt

Can often be efficiently computed with various smooth and
non-smooth regularizers

`1, `2, `
2
2, `∞, and matrix norms [Duchi and Singer 2009]

Example (ψ(x) = ‖x‖1)

arg min
x

(
〈∇f (x), x − xt〉+

1

2λ
‖x − xt‖22 + ‖x‖1

)
= St(xt − λ∇f (xt))

where
[St(y)]k =


yk − λ yk ≥ λ
0 −λ ≤ yk ≤ λ
yk + λ yk ≤ −λ

(soft thresholding)

James Kwok Efficient Learning on Large Data Sets
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Convergence Analysis

minx φ(x) ≡ E[F (x , ξ)] + ψ(x)

φ(x) is convex

Set Lt = b(t + 1)
3
2 + L, αt = 2

t+2 , where b > 0 is a constant.

E[φ(yN)]− φ(x∗) ≤ 3D2L

N2
+

(
3D2b +

5σ2

3b

)
1√
N
.

gradient of f (x): L-Lipschitz

φ(x) is µ-strongly convex

Set λ0 = 1. For t ≥ 1, set Lt = L + µλ−1
t−1 and

αt =

√
λt−1 +

λ2
t−1

4 −
λt−1

2 , where λt ≡ Πt
k=1(1− αt).

E[φ(yN)]− φ(x∗) ≤ 2(L + µ)D2

N2
+

6σ2

Nµ
.
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Error Bounds

The error bounds consist of two terms

E[φ(yN)]− φ(x∗) ≤ 3D2L

N2
+

(
3D2b +

5σ2

3b

)
1√
N

E[φ(yN)]− φ(x∗) ≤ 2(L + µ)D2

N2
+

6σ2

Nµ

faster term: related to the smooth component
O( 1

N2 ): optimal convergence rate for smooth optimization

slower term: related to the stochastic / non-smooth
component

O( 1√
N

): optimal convergence rate for (stochastic) non-smooth

optimization

SAGE uses the structure of the problem and accelerates the
convergence of the smooth component
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Remarks

1 Unlike previous algorithms, setting of Lt and αt does not
require knowledge of σ and the number of iterations

2 With a sparsity-promoting ψ(x), SAGE can produce a sparse
solution

yt reduces to a soft thresholding step
some other algorithms: output is a combination of two
variables adding two vectors is unlikely to produce a sparse
vector
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Accelerated Gradient Method for Online Learning

minx
∑N

t=1 φt(x) ≡
∑N

t=1 (ft(x) + ψ(x))

SAGE-based Online Learning Algorithm

Inputs: Sequences {Lt} and {αt}, where Lt > L and 0 < αt < 1.
Initialize: z1 = y1.
loop

xt = (1− αt)yt−1 + αtzt−1.
Output
yt = arg minx

{
〈∇ft−1(xt), x − xt〉+ Lt

2 ‖x − xt‖2 + ψ(x)
}
.

zt = zt−1 − αt(Lt + µαt)
−1[Lt(xt − yt) + µ(zt−1 − xt)].

end loop

Regret bounds can be obtained
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Experiments

Stochastic optimization of minw EXY [`(w ;X ,Y )] + λΩ(w)

`: square loss; Ω: `1 regularizer

generalized gradient update can be efficiently computed by
soft thresholding

data set #features #instances

pcmac 7,511 1,946

RCV1 47,236 193,844

pcmac: subset of the 20-newsgroup data set
RCV1: Reuters RCV1

Compare with
1 FOBOS [Duchi and Singer, NIPS-2009]
2 SMIDAS [Shalev-Shwartz and Tewari, ICML-2009]
3 SCD [Shalev-Shwartz and Tewari, ICML-2009]

Subgradient is computed from mini-batch

James Kwok Efficient Learning on Large Data Sets
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Convergence (Number of Iterations)
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SAGE requires much fewer iterations for convergence than the
others
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Convergence (Number of Data Access Operations)
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SAGE is still the fastest
the most expensive step is the generalized gradient update
per-iteration complexity is comparable with others
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Conclusion: Approximation of Large Eigen-systems

Nyström method with randomized SVD

samples a large column subset from the input matrix

performs approximate SVD on the inner submatrix by using
randomized low-rank matrix approximation algorithm

as accurate as standard Nyström method that directly
performs a large SVD on the inner submatrix

time complexity is only as low as the ensemble Nyström
method

can be used for spectral clustering on very large images

further speed up with GPU possible

(Making large-scale Nyström approximation possible. M. Li, J.T.
Kwok, B. Lu. ICML 2010)
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Conclusion: Accelerated Gradient Algorithm (SAGE)

Scalable stochastic convex composite optimization solver

enjoys the computational simplicity and scalability of
traditional subgradient methods

convergence rate: utilizes the problem structure and
accelerates the convergence of the smooth component

per-iteration cost: same as standard subgradient methods

empirically, SAGE outperforms recent subgradient methods

(Accelerated gradient methods for stochastic optimization and
online learning. C. Hu, J.T. Kwok, W. Pan. NIPS 2009)
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