Efficient Learning on Large Data Sets

James Kwok

Department of Computer Science and Engineering Hong Kong University of Science and Technology Hong Kong

Joint work with Mu Li, Chonghai Hu, Weike Pan, Bao-liang Lu

Chinese Workshop on Machine Learning and Applications Nov 7, 2010

Outline

- 2 Nyström Approximation
- 3 Supervised learning: Accelerated gradient

u		

Unsupervised Learning

Unsupervised feature extraction / clustering / novelty detection

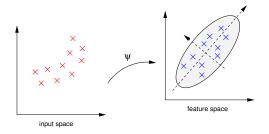
- e.g., feature extraction for optical character recognition
- e.g., network intrusion detection

Outline	Unsupervised learning ○●○○○○○	Nyström Approximation	Supervised learning	Conclusion
р				

•
$$\mathbf{S}\mathbf{v} = \lambda \mathbf{v}$$

• $\mathbf{S} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_j \mathbf{x}'_j$ (scatter matrix)

Perform PCA in the feature space $(\mathbf{x} \mapsto \varphi(\mathbf{x}))$



- when mapped back to the input space, eigenvectors becomes nonlinear
- eigen-decompose the kernel matrix K

$$\mathbf{K} \boldsymbol{\alpha} = n \lambda \boldsymbol{\alpha}$$

Image Segmentation: Normalized Cut

Normalized cut

• normalized fraction of total costs of edges between A and B to the total edge connections to all the nodes

Optimization

$$(\mathsf{D} - \mathsf{W})\mathsf{y} = \lambda \mathsf{D}\mathsf{y}$$

• W: weight matrix; D: degree matrix;

Eigen-decomposition

$$\mathbf{D}^{-\frac{1}{2}}\mathbf{L}\mathbf{D}^{-\frac{1}{2}}\mathbf{z} = \lambda\mathbf{z}$$

• L = D - W: Laplacian matrix

Outline	Unsupervised learning 0000●00	Nyström Approximation	Supervised learning	Conclusion
Large I	Data Sets			

Problem

Eigenvalue decomposition of the $n \times n$ matrix takes $O(n^3)$ time

- PCA, KPCA: n = number of samples
- normalized cut: n = number of pixels in the image

Outline	Unsupervised learning	Nyström Approximation Supervised learning •000000000000000000000000000000000000	Conclusion
NI . **	A 1 1 1		

 $\int k(x,y)\phi(x)dx = \lambda\phi(y)$

• $k(\cdot, \cdot)$: kernel function; λ : eigenvalue; $\phi(\cdot)$: eigenfunction

Approximation using a set $\mathcal{Z} = \{z_1, \dots, z_m\}$ of landmark points

$$\int k(x,y)\phi(x)dx \simeq rac{1}{m}\sum_{j=1}^m k(z_j,y)\phi(z_j) = \lambda\phi(y)$$

Take
$$y = z_i$$

$$\frac{1}{m} \sum_{j=1}^m k(z_i, z_j) \phi(z_j) = \lambda \phi(z_i), \quad i = 1, 2, \dots, m$$

• small eigen-system
$$\tilde{\mathbf{K}} \boldsymbol{\phi} = m \lambda \boldsymbol{\phi}$$

Extrapolate this "small" eigenvector to the "large" eigenvector

$$\phi(\mathbf{y}) = \frac{1}{m\lambda} \sum_{j=1}^{m} k(z_i, \mathbf{y}) \phi(z_i)$$

Uutline			

 Conclusion

Low-Rank Approximation

Sample *m* landmark points \Rightarrow sample *m* columns from input matrix *G*

•
$$C = \begin{bmatrix} W \\ S \end{bmatrix}$$
 $G = \begin{bmatrix} W & S^T \\ S & B \end{bmatrix}$

Rank-k Nyström approximation: $\tilde{G}_k = CW_k^+C^T$

•

Time complexity: $O(nmk + m^3)$

m ≪ *n* ⇒ much lower than the *O*(*n*³) complexity required by a direct SVD on *G*

How to Choose the Landmark Points?

- **1** random sampling (used in standard Nyström)
- **2** probabilistic [Drineas & Mahoney, JMLR-2005]
 - chooses the columns based on a data-dependent probability
- **§** greedy approach [Ouimet & Bengio, AISTATS-2005]
 - much more time-consuming
- Instering-based
 - inexpensive; with interesting theoretical properties
 - (K. Zhang, I.W. Tsang, J.T. Kwok. *Improved Nyström low* rank approximation and error analysis. ICML-2008)

Dutline				
		tI	n	ρ

 Conclusion

Tradeoff between Accuracy and Efficiency

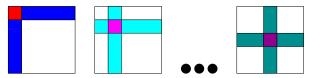
- more columns sampled, more accurate is the approximation
- on very large data sets, the SVD step on *W* will dominate the computations and become prohibitive

Example

Data set with several millions samples

- sampling only 1% of the columns
- W larger than $10,000\times10,000$

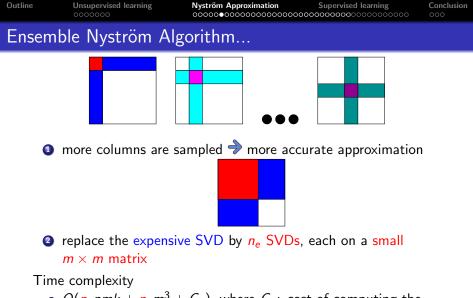
Use an ensemble of Nyström approximators



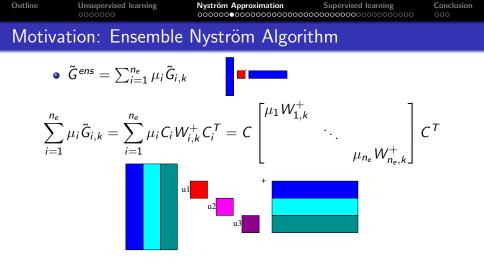
- *n_e* experts, each sample *m* columns; sample a total of *mn_e* columns
- each expert performs a standard Nyström approximation
 - single expert = standard Nyström
 - obtain rank-k approximations $\tilde{G}_{1,k}, \tilde{G}_{2,k}, \dots, \tilde{G}_{n_e,k}$
- resultant approximations are linearly combined

$$\tilde{G}^{ens} = \sum_{i=1}^{n_e} \mu_i \tilde{G}_{i,k}$$

• μ_i 's: mixture weights: uniform / heuristics / trained



- O(n_enmk + n_em³ + C_μ), where C_μ: cost of computing the mixture weights
- (roughly) n_e times that of standard Nyström



- approximate $W^+ \in \mathbb{R}^{n_e m \times n_e m}$ by a block diagonal matrix
- inverse of block diagonal matrix is block diagonal
- no matter how sophisticated the mixture weights μ_i's are estimated, this block diagonal approximation is rarely valid

Outline	Unsupervised learning	Nyström Approximation	Supervised learning	Conclusion
Idea				

- In high efficiency of the Nyström algorithm
- **2** sample more columns (like the ensemble Nyström algorithm)
- produce a SVD approximation that is more accurate but still efficient randomized algorithm [Halko et al., TR 2009]

Outline	Unsupervised learning	Nyström Approximation	Supervised learning	Conclusion

Randomized Algorithm [Halko et al., 2009]

- $W: n \times n$ symmetric matrix; k: rank
- p: over-sampling parameter (typically, p = 5)
- *q*: parameter of the power method (accelerate decay of eigenvalues, typically, *q* = 1 or 2)
- 1: $\Omega \leftarrow a \ n \times (k + p)$ standard Gaussian random matrix.

2:
$$Z \leftarrow W\Omega$$
, $Y \leftarrow W^{q-1}Z$.

- 3: Find an orthonormal matrix Q (e.g., by QR decomposition) such that $Y = QQ^T Y$. \triangleright an approximate, low-dimensional basis for the range of W
- 4: Solve $B(Q^T \Omega) = Q^T Z$.
- 5: Perform SVD on B to obtain $V\Lambda V^T = B$.
- 6: $U \leftarrow QV$.
 - only needs to perform SVD on B: small $k \times k$ matrix

• time complexity:
$$O(n^2k + k^3)$$

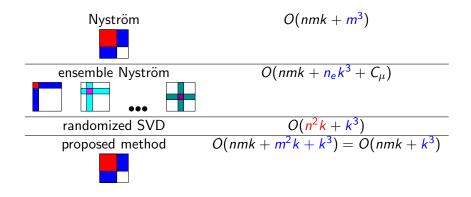
Conclusion

Proposed Algorithm

- 1: $C \leftarrow m$ columns of G sampled uniformly at random without replacement. $\triangleright m$ can be large
- 2: $W \leftarrow m \times m$ matrix
- 3: $[\tilde{U}, \Lambda] \leftarrow \text{randsvd}(W, k, p, q)$
- 4: $U \leftarrow C\tilde{U}\Lambda^+$. \triangleright standard Nyström extension
- 5: $\hat{G} \leftarrow U \wedge U^T$.

Outline	Unsupervised learning	Nyström Approximation	Supervised learning	Conclusion
ls it Ef	ficient?			

Recall that $n \gg m \gg k$



Outline	Unsupervised learning	Nyström Approximation Supervised learning 000000000000000000000000000000000000	Conclusion
	2		

Is it Accurate?

Rank-k standard Nyström approximation \hat{G}

• *m* randomly sampled columns

$$\mathbb{E} \| \boldsymbol{G} - \hat{\boldsymbol{G}} \|_2 \leq \| \boldsymbol{G} - \boldsymbol{G}_k \|_2 + \frac{2n}{\sqrt{m}} (\max_i \boldsymbol{G}_{ii})$$

• G_k: best rank-k approximation

Proposed method

 $\mathbb{E}\|G - \hat{G}\|_{2} \leq \zeta^{1/q}\|G - G_{k}\|_{2} + (1 + \zeta^{1/q})\frac{n}{\sqrt{m}}(\max_{i} G_{ii})$

- ζ : constant depending on k, p, m
- $\zeta^{1/q}$ close to $1 \Rightarrow$ becomes $||G G_k||_2 + \frac{2n}{\sqrt{m}}(\max_i G_{ii})$, same as that for standard Nyström using *m* columns

Proposed method is as accurate as standard Nyström

Jutline				

More Error Analysis Results

Spectral norm

 sample columns probabilistically [Drineas & Mahoney, JMLR-2005]

$$\mathbb{E} \|G - \hat{G}\|_2 \leq \zeta^{1/q} \|G - G_k\|_2 + (1 + \zeta^{1/q}) \frac{1}{\sqrt{m}} \operatorname{tr}(G)$$

Frobenius norm

• sample columns uniformly at random without replacement

$$\mathbb{E}\|G - \hat{G}\|_{F} \leq 2\zeta_{F}\|G - G_{k}\|_{F} + \left(1 + \frac{4\zeta_{F}}{\sqrt{m}}\right)n(\max_{i} G_{ii})$$

• sample columns probabilistically

$$\mathbb{E} \| G - \hat{G} \|_{F} \leq 2\zeta_{F} \| G - G_{k} \|_{F} + \left(1 + \frac{4\zeta_{F}}{\sqrt{m}} \right) \operatorname{tr}(G)$$

Outline	Unsupervised learning	Nyström Approx
		0000000000

Conclusion

Different Numbers of Columns

• data sets: rcv1, mnist, covtype

DATA	#SAMPLES	DIM
$\mathrm{RCV1}$	$23,\!149$	$47,\!236$
MNIST	60,000	784
Covtype	$581,\!012$	54

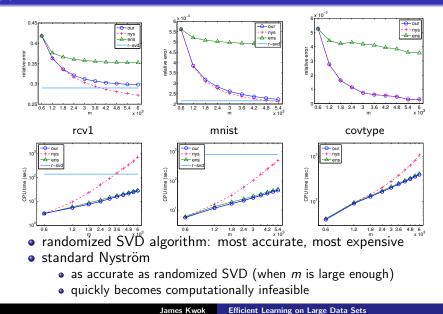
- k = 600, and gradually increase the number of sampled columns (m)
- all Nyström-based methods have access to the same number of *m* columns
 - for the ensemble Nyström, $n_e=m/k$
- randomized algorithm: p = 5, q = 2

Outline

Unsupervised learning

 Conclusion

Approximation Error and CPU Time



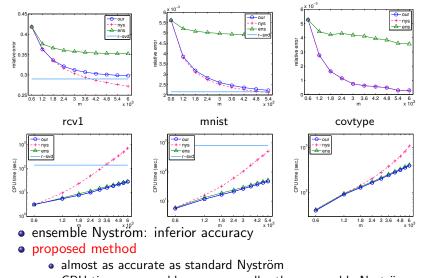
Outline

Unsupervised learning

Nyström Approximation Supervised learning

Conclusion

Approximation Error and CPU Time



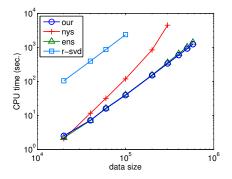
• CPU time comparable or even smaller than ensemble Nyström

Outline	Unsupervised	learning
	0000000	

Conclusion

Scaling Behavior (Time)

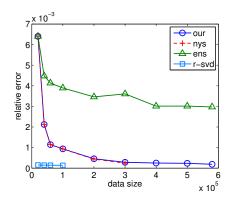
- "covtype"; rank k = 600; #columns m = 0.03n
- log-log plot



- standard Nyström method scales cubically with n
- others (including ours) scale quadratically (note: *m* also scales linearly with *n*)

 Conclusion

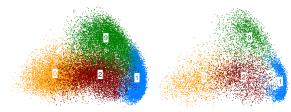
Scaling Behavior (Accuracy)



 proposed method is as accurate as the standard Nyström that performs a large SVD

Outline	Unsupervised learning	Nyström Approximation	Supervised learning	Conclusion
Spectra	I Embedding			

- Laplacian eigenmap
- digits 0, 1, 2 and 9 of MNIST: about 3.3M samples
 - neither standard SVD nor Nyström can be run on the whole set
 - for comparison, standard SVD on a random subset of 8,000 samples
- data projected onto the 2d space



 embedding of the proposed method is obtained within an hour on a PC

Outline				

Spectral Clustering

- eigen-decompose $D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$
- MNIST data
- compare with
 - **1** standard spectral clustering [Fowlkes *et al.*, PAMI-2004]
 - 2 parallel spectral clustering (PSC) [Chen et al., PAMI-2010]
 - single machine
 - In the second sector of the sector of the

KDD-2009] (implemented in R)

size	method	accuracy (%)	time (sec)
35,735	standard	81.37 ± 0.15	289.4
	PSC	80.47 ± 0.13	41.2
	KASP	59.08 ± 6.25	40 min
	ours	82.55 ± 1.97	5.4
4,130,460	standard	-	-
	PSC (using 10 ⁶ samples)	78.68 ± 0.18	391.8
	KASP	-	-
	ours	77.91 ± 0.78	407.0
	James Kwok Effici	ent Learning on Large Da	ata Sets

Dutline			

 Conclusion

Image Segmentation Example

- 989 × 742 (733,838 pixels)
- 4 sec (excluding the time for generating the affinity matrix)
- Xeon 5440 2.83Ghz CPU, matlab 2009b, 16GB memory

Outline

Unsupervised learning

 Conclusion

Image Segmentation Example...

• 1600 × 1122 (1,795,200 pixels)

• 8 sec

Uutline	

 Conclusion

Image Segmentation Example...

- 4752 × 3168 (15,054,336 pixels)
- 30 sec

Outline	Unsupervised learning	Nyström Approximation	Supervised learning	Conclusion
~	 6			

Graphics Processors (GPU)

- popularly used in entertainment, high-performance computing, etc
- many-core high-performance parallel computing

NVIDIA Tesla C1060:

- 240 streaming processor cores
- peak single-precision (SP) performance: 933 GFLOPS
- peak double-precision (DP) performance: 78 GFLOPS

Intel Core i7-980X CPU

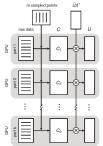
- 6 cores
- peak SP: 158.4 GFLOPS
- peak DP: 79.2 GFLOPS

Outline	Unsupervised learning	Nyström Approximation	Supervised learning	Conclusion
		00000000000000000000000	000000000000000000000000000000000000000	

Proposed Algorithm on GPU

- 1: $C \leftarrow m$ columns of G sampled uniformly at random without replacement. $\triangleright m$ can be large
- 2: $W \leftarrow m \times m$ matrix
- 3: $[\tilde{U}, \Lambda] \leftarrow \text{randsvd}(W, k, p, q)$
- 4: $U \leftarrow C\tilde{U}\Lambda^+$. \triangleright standard Nyström extension

• matrix-matrix multiplication



Jutline

GPU Experiments

Machine

- two Intel Xeon X5560 2.8GHz CPUs, 32G RAM
- four NVIDIA Tesla C1060 GPU cards

MNIST-8M data

• fixed number of sampling columns (m = 6000)

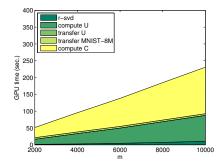
140	п	CPU (sec)	GPU (sec)	speedup
120+-nys (GPU) - 	$8 imes 10^4$	19	4.9	4x
	$4 imes 10^5$	71	6.8	10×
	$8 imes 10^4$	137	9.0	15×
G 40	$2 imes 10^6$	332	15.9	20×
20 0 0	$4 imes 10^{6}$	657	27.2	24x
0 2 4 6 8 data size x 10 ⁶	$8.1 imes10^{6}$	1310	50.0	26x

Jutline) 1	

Nyström Approximation Supervised learning

Conclusion

Breakdown of Time

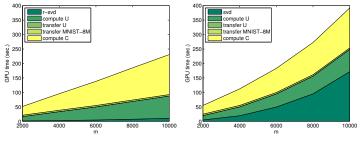


- minimal data transfer
- time spent on data transfer: about 1.5 seconds

Outline	Unsupervised learning	Nyström Approximation Supervised learning	Conclusion
D		Crewdend M. staller	

Proposed Method vs Standard Nyström

- standard Nyström can also benefit by running on the GPU
- k = 600
- number of sampled columns *m* varied from 2K to 10K

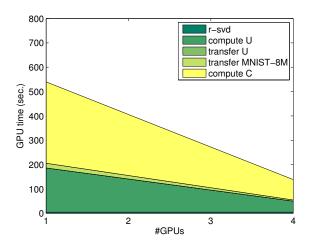


- ۲
- standard Nyström: time is dominated by the SVD decomposition step

Jutline				

 Conclusion

Varying the Number of GPU Cards



• speedup linear in number of GPU cards

$\min_{w} \mathbb{E}_{XY}[\ell(w; X, Y)] + \lambda \Omega(w)$

Replace the expectation by its empirical average on a training sample $\{(x_1, y_1), \ldots, (x_m, y_m)\}$

$$\min_{w} \frac{1}{m} \sum_{i=1}^{m} \ell(w; x_i, y_i) + \lambda \Omega(w)$$

Typically, both $\ell(\cdot, \cdot)$ and $\Omega(\cdot)$ are convex \Rightarrow convex optimization

Outline	Unsupervised learning	Nyström A

 Conclusion

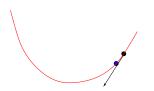
Limitations with Existing Solvers

Example (SVM)

- need to solve a large quadratic program (QP)
- very large data set 🔶 very large QP

Outline	Unsupervised learning	Nyström Approximation	Supervised learning	Conclusion
Back to	o Basics			

Gradient descent
$$\min_{w} \frac{1}{m} \sum_{i=1}^{m} \ell(w; x_i, y_i) + \lambda \Omega(w)$$



LOOP

- find descent direction
- Ochoose stepsize
- descent

Jutline				

Nyström Approximation Supervised learning

Conclusion

Subgradient

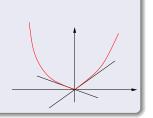
$$\frac{1}{m}\sum_{i=1}^{m}\ell(w;x_i,y_i)+\lambda\Omega(w)$$

Problem

 ℓ and/or Ω may be non-smooth (e.g., hinge loss, ℓ_1 regularizer)

Subgradient

- extend gradient to non-smooth functions
- g is a subgradient of f at x iff $f(y) \ge f(x) + g'(y x)$



Jutline				

 Conclusion

Computing the Gradient

$$\nabla_w(\frac{1}{m}\sum_{i=1}^m \ell(w; x_i, y_i) + \lambda \Omega(w))$$

Another Problem

Computing the gradient using all the training samples may still be costly

Estimates the gradient from a small data subset (mini-batch)

Stochastic Gradient Descent (SGD)

Example

- Pegasos [Shalev-Shwartz et al, ICML-2007]
- FOBOS [Duchi and Singer, NIPS-2009]
- SGD-QN [Bordes et al, JMLR-2009]

Advantages

- easy to implement
- low per-iteration complexity + good scalability

Disadvantage

- uses first-order information
- slow convergence rate
 may require a large number of iterations

 Conclusion

Accelerated Gradient Methods

First developed by Nesterov in 1983

• deterministic algorithm for smooth optimization

Extension to composite optimization [Nesterov MP-2007]

objective has both smooth and non-smooth components

Extension to stochastic composite optimization [Lan, TR 2009]

- setting of learning parameters relies on quantities (such as number of iterations, variance of the stochastic subgradient) that are difficult to estimate in practice
- does not consider strong convexity
- cannot produce sparse solutions

Outline	Unsupervised learning	Nyström Approximation Supervi	sed learning Conclusion
		000000000000000000000000000000000000000	0000000000 000

Accelerated Gradient Method for Stochastic Learning

$$\min_{x} \phi(x) \equiv \mathbb{E}[F(x,\xi)] + \psi(x)$$

- ξ : random component
- $f(x) \equiv \mathbb{E}[F(x,\xi)]$: convex and differentiable
 - $G(x_t, \xi_t)$: stochastic gradient of $F(x, \xi_t)$
- $\psi(x)$: convex but possibly non-smooth

Stochastic Accelerated GradiEnt (SAGE)

Input: Sequences $\{L_t\}$ and $\{\alpha_t\}$. for t = 0 to N do $x_t = (1 - \alpha_t)y_{t-1} + \alpha_t z_{t-1}$. $y_t = \arg \min_x \{\langle G(x_t, \xi_t), x - x_t \rangle + \frac{L_t}{2} ||x - x_t||^2 + \psi(x)\}.$ $z_t = z_{t-1} - (L_t \alpha_t + \mu)^{-1} [L_t(x_t - y_t) + \mu(z_{t-1} - x_t)].$ end for Output y_N .

Outline	Unsupervised learning	Nyströ

Special Case: $\alpha_t \equiv 0$

$$x_{t} = y_{t-1} y_{t} = \arg \min_{x} \left\{ \langle G(x_{t}, \xi_{t}), x - x_{t} \rangle + \frac{L_{t}}{2} \|x - x_{t}\|^{2} + \psi(x) \right\}$$

Generalized gradient update

$$\begin{aligned} x_{t+1} &= \arg\min_{x} \left(f(x_t) + \langle \nabla f(x), x - x_t \rangle + \frac{1}{2\lambda} \|x - x_t\|^2 + \psi(x) \right) \\ \bullet f: \text{ smooth; } \psi: \text{ nonsmooth} \end{aligned}$$

 $\psi(x) \equiv 0$

$$\arg\min_x \left(f(x_t) + \langle
abla f(x), x - x_t
angle + rac{1}{2\lambda} \|x - x_t\|^2
ight) = x_t - \lambda
abla f(x_t)$$

• standard gradient descent

In general, $\alpha_t \neq 0$

$$\begin{aligned} \mathbf{x}_{t} &= (1 - \alpha_{t})\mathbf{y}_{t-1} + \alpha_{t}\mathbf{z}_{t-1} \\ \mathbf{y}_{t} &= \arg\min_{\mathbf{x}} \left\{ \langle G(\mathbf{x}_{t}, \xi_{t}), \mathbf{x} - \mathbf{x}_{t} \rangle + \frac{L_{t}}{2} \|\mathbf{x} - \mathbf{x}_{t}\|^{2} + \psi(\mathbf{x}) \right\}. \\ \mathbf{z}_{t} &= \mathbf{z}_{t-1} - (\mathcal{L}_{t}\alpha_{t} + \mu)^{-1} [\mathcal{L}_{t}(\mathbf{x}_{t} - \mathbf{y}_{t}) + \mu(\mathbf{z}_{t-1} - \mathbf{x}_{t})] \text{ (history)} \end{aligned}$$

Outline	Unsupervised learning	Nyström Approximation	Supervised learning	Conclusion
Efficien	t Computation	of v _t		

Can often be efficiently computed with various smooth and non-smooth regularizers

• $\ell_1,\ell_2,\ell_2^2,\ell_\infty$, and matrix norms [Duchi and Singer 2009]

Example $(\psi(x) = ||x||_1)$

W

$$\arg\min_{x} \left(\langle \nabla f(x), x - x_t \rangle + \frac{1}{2\lambda} \|x - x_t\|_2^2 + \|x\|_1 \right)$$

= $S_t(x_t - \lambda \nabla f(x_t))$
here
 $[S_t(y)]_k = \begin{cases} y_k - \lambda & y_k \ge \lambda \\ 0 & -\lambda \le y_k \le \lambda \\ y_k + \lambda & y_k \le -\lambda \end{cases}$ (soft thresholding)

Dutline		

Nyström Approximation Supervised learning

Conclusion

Convergence Analysis

$$\min_{x} \phi(x) \equiv \mathbb{E}[F(x,\xi)] + \psi(x)$$

$\phi(x)$ is convex

Set
$$L_t = b(t+1)^{\frac{3}{2}} + L$$
, $\alpha_t = \frac{2}{t+2}$, where $b > 0$ is a constant.

$$\mathbb{E}[\phi(y_N)] - \phi(x^*) \le \frac{3D^2L}{N^2} + \left(3D^2b + \frac{5\sigma^2}{3b}\right)\frac{1}{\sqrt{N}}.$$

• gradient of f(x): L-Lipschitz

$\phi(x)$ is μ -strongly convex

Set
$$\lambda_0 = 1$$
. For $t \ge 1$, set $L_t = L + \mu \lambda_{t-1}^{-1}$ and
 $\alpha_t = \sqrt{\lambda_{t-1} + \frac{\lambda_{t-1}^2}{4}} - \frac{\lambda_{t-1}}{2}$, where $\lambda_t \equiv \prod_{k=1}^t (1 - \alpha_t)$.
 $\mathbb{E}[\phi(y_N)] - \phi(x^*) \le \frac{2(L+\mu)D^2}{N^2} + \frac{6\sigma^2}{N\mu}$.

James Kwok

Efficient Learning on Large Data Sets

Outline	Unsupervised learning	Nyström Approximation	Supervised learning	Conclusion

Error Bounds

The error bounds consist of two terms

$$\mathbb{E}[\phi(y_N)] - \phi(x^*) \leq \frac{3D^2L}{N^2} + \left(3D^2b + \frac{5\sigma^2}{3b}\right)\frac{1}{\sqrt{N}}$$
$$\mathbb{E}[\phi(y_N)] - \phi(x^*) \leq \frac{2(L+\mu)D^2}{N^2} + \frac{6\sigma^2}{N\mu}$$

- faster term: related to the smooth component
 - $\mathcal{O}(\frac{1}{N^2})$: optimal convergence rate for smooth optimization
- slower term: related to the stochastic / non-smooth component
 - $\mathcal{O}(\frac{1}{\sqrt{N}}):$ optimal convergence rate for (stochastic) non-smooth optimization

SAGE uses the structure of the problem and accelerates the convergence of the smooth component

- Unlike previous algorithms, setting of L_t and α_t does not require knowledge of σ and the number of iterations
- 3 With a sparsity-promoting $\psi(x)$, SAGE can produce a sparse solution
 - y_t reduces to a soft thresholding step
 - some other algorithms: output is a combination of two variables
 adding two vectors is unlikely to produce a sparse vector

Outline	Unsupervised learning	Nyström Approximation	Supervised learning	Conclusion
			0000 0000000000000000 000	

Accelerated Gradient Method for Online Learning

$$\min_{x} \sum_{t=1}^{N} \phi_t(x) \equiv \sum_{t=1}^{N} \left(f_t(x) + \psi(x) \right)$$

SAGE-based Online Learning Algorithm

Inputs: Sequences $\{L_t\}$ and $\{\alpha_t\}$, where $L_t > L$ and $0 < \alpha_t < 1$. Initialize: $z_1 = y_1$. **loop** $x_t = (1 - \alpha_t)y_{t-1} + \alpha_t z_{t-1}$. Output

$$y_t = \arg \min_x \left\{ \langle \nabla f_{t-1}(x_t), x - x_t \rangle + \frac{L_t}{2} \| x - x_t \|^2 + \psi(x) \right\}.$$

$$z_t = z_{t-1} - \alpha_t (L_t + \mu \alpha_t)^{-1} [L_t(x_t - y_t) + \mu(z_{t-1} - x_t)].$$

nd loop

• Regret bounds can be obtained

e

Outline	Unsupervised learning	Nyström Approximation	Supervised learning	Conclusion

Experiments

Stochastic optimization of min_w $\mathbb{E}_{XY}[\ell(w; X, Y)] + \lambda \Omega(w)$

- ℓ : square loss; Ω : ℓ_1 regularizer
 - generalized gradient update can be efficiently computed by soft thresholding

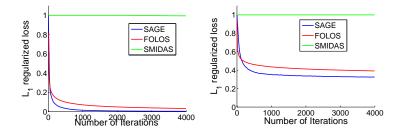
data set	#features	#instances
pcmac	7,511	1,946
RCV1	47,236	193,844

- pcmac: subset of the 20-newsgroup data set
- RCV1: Reuters RCV1
- Compare with
 - FOBOS [Duchi and Singer, NIPS-2009]
 - SMIDAS [Shalev-Shwartz and Tewari, ICML-2009]
 - SCD [Shalev-Shwartz and Tewari, ICML-2009]
- Subgradient is computed from mini-batch

Outline	Unsupervised learning	Nyström Approximation	Supervised learning

Conclusion

Convergence (Number of Iterations)



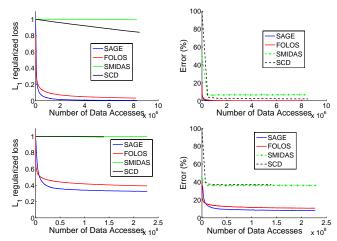
SAGE requires much fewer iterations for convergence than the others

Jutline			

Nyström Approximation Supervised learning

Conclusion

Convergence (Number of Data Access Operations)



- SAGE is still the fastest
 - the most expensive step is the generalized gradient update
 - per-iteration complexity is comparable with others

Conclusion: Approximation of Large Eigen-systems

Nyström method with randomized SVD

- samples a large column subset from the input matrix
- performs approximate SVD on the inner submatrix by using randomized low-rank matrix approximation algorithm
- as accurate as standard Nyström method that directly performs a large SVD on the inner submatrix
- time complexity is only as low as the ensemble Nyström method
- can be used for spectral clustering on very large images
- further speed up with GPU possible

(*Making large-scale Nyström approximation possible.* M. Li, J.T. Kwok, B. Lu. *ICML 2010*)

Conclusion: Accelerated Gradient Algorithm (SAGE)

Scalable stochastic convex composite optimization solver

- enjoys the computational simplicity and scalability of traditional subgradient methods
- convergence rate: utilizes the problem structure and accelerates the convergence of the smooth component
- per-iteration cost: same as standard subgradient methods
- empirically, SAGE outperforms recent subgradient methods

(Accelerated gradient methods for stochastic optimization and online learning. C. Hu, J.T. Kwok, W. Pan. *NIPS 2009*)

