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Human vs Statistical Learning

UK EPSRC Priority 2016-2021 - Human-like Computing

Characteristic | Human Statistical

Examples Few (=~ 1) Many (> 10K)

per concept [Tenenbaum, 2011]
Concepts Many (> 10K) Few (=~ 1)
[Brown et al, 2008]
Background Large Small
knowledge [Brown, 2000]
Structure Modular, re-useable | Monolithic
[Omrod et al, 2004]




Example 1. Dance Routine

Observe Perform

Visual perception Motor program

A girl watches a dance routine on television.

Afterwards she reproduces the routine.

The new dance moves are incorporated into her repertoire.

Subsequent improvisation allows re-use of parts of routines.




Example 2: Learning words in a language

< g

Observe Perform

Reading Talking

Average undergraduate knows 20K words.

Learning rate = 522%09- = 2.7 new words per day since birth.

Presentations new word before assimilation ~ 1 [Zipf's Law].

Word assimilation involves visual, auditory, sense and context
recognition of associated concept.
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Meta-Interpretive Learning [IJCAI 2013]

Prolog Meta-Interpreter implements Learning as Interpretation.

Input to Meta-Interpreter: 1) Observations, 2) Meta-Rules, 3)
Background Knowledge assignments (substitutions).

Output from Meta-Interpreter: Hypothesised assignments.

Metagol supports Problem decomposition by Predicate Invention
and Learning recursion [MLJ 2015], Single example multi-task
learning [ECAI 2014], Program Induction with resource and
time-complexity optimisation [IJCAI 2015].




Generalised Meta-Interpreter

prove(|], BK, BK).
prove(|Atom|As|, BK, BK_H) : —
metarule(Name, MetaSub, (Atom :- Body), Order),

Order,
save_subst(metasub(Name, MetaSub), BK, BK C),

prove(Body, BK_C, BK Cs),
prove(As, BK Cs, BK_H).




Name

Meta-Rule

Instance

Base

Chalin

TallRec




Expressivity of H3

Given an infinite signature H2 has Universal Turing Machine
expressivity [Tarnlund, 1977].

utm(s,S) — halt(S).
utm(S,T) — execute(S,S1), utm(S1,T).
execute(S,T) <« instruction(S,F), F(S,T).

Q: How can we limit HZ to avoid the halting problem?




Experimental applications
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Vision Staircase [ILP 2013], Geometric Shape Learner [ILP 2015].

Robotics Building stable walls [IJCAI 2013], Robot delivery and
sorting [IJCAI 2013].

Language Formal grammars [MLJ 2014], String transformations
[ECAI 2014], Learning semantics [ILP 2015].




What next for Meta-Interpretive Learning?
Problem decomposition How can problem decomposition be
efficient?

Object invention How can learning populate world with new named
objects? Object composition/decomposition?

Large-scale background knowledge How can learners scope
relevance of background concepts?

Probabilistic reasoning How can probabilistic reasoning use
single examples?
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