

Closed-Form Solutions in Low-Rank Subspace Recovery Models and Their Implications

Zhouchen Lin (林宙辰) 北京大学 Nov. 7, 2015

Outline

- Sparsity vs. Low-rankness
- Closed-Form Solutions of Low-rank Models
- Applications of Closed-Form Solutions
- Conclusions

> 10B+ dim?

Courtesy of Y. Ma.

Sparsity vs. Low-rankness

Sparse Models

• Sparse Representation

0

0

$$\min_{x \in Az} ||z||_0, \qquad (1)$$

Sparse Subspace Clustering

$$\min ||z_i||_0, \qquad (2)$$

$$s.t. \ x_i = X_{\hat{i}} z_i, \quad \forall i.$$

$$\text{where } X_{\hat{i}} = [x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n].$$

$$\prod_{i=1}^{n} \min ||Z||_0, \qquad (3)$$

$$\min ||Z||_0, \qquad (3)$$

$$\min ||Z||_1, \qquad (4)$$

Elhamifar and Vidal. Sparse Subspace Clustering. CVPR2009.

Low-rank Models

• Matrix Completion (MC)

 $\min \operatorname{rank}(A), \quad s.t. \quad D = \pi \quad (A).$

• Robust PCA

 $\min \operatorname{rank}(A) + \lambda \|E\|_{l_0}, \quad s.t. \quad D = A + E.$

• Low-rank Representation (LRR)

(a), Corrupted Data

 $\min \operatorname{rank}(Z) + \lambda ||E||_{2,0},$ s.t. X = XZ + E.

Denoising

Filling in

missing entries

 $||E||_{l_0} = \#\{E_{ij}|E_{ij} \neq 0\} \qquad ||E||_{2,0} = \#\{i|||E_{:,i}||_2 \neq 0\}.$

NP Hard!

Convex Program Formulation

• Matrix Completion (MC)

 $\min \|A\|_{*}, \quad s.t. \quad D = \pi (A).$

• Robust PCA

 $\min \|A\|_* + \lambda \|E\|_{l_1}, \quad s.t. \quad D = A + E.$

• Low-rank Representation (LRR)

 $\min_{x \in X} ||Z||_{*} + \lambda ||E||_{2,1},$ s.t. X = XZ + E.

$$\begin{split} \|A\|_{*} &= \sum_{i \in J} \sigma_{i}(A), \\ \|E\|_{l_{1}} &= \sum_{i,j}^{i} |E_{ij}|. \\ ||E||_{2,1} &= \sum_{i}^{i} ||E_{:,i}||_{2}. \end{split}$$

nuclear norm

Applications of Low-rank Model

- Background modeling
- Robust Alignment
- Image Rectification
- Motion Segmentation
- Image Segmentation
- Saliency Detection
- Image Tag Refinement
- Partial Duplicate Image Search
- •

请勿遛狗

爱护花草

林宙辰、马毅, 信号与数据处理中的低秩模型, 中国计算机学会通讯, 2015年第4期。

• Closed form solution at noiseless case

$$\min_{Z} \|Z\|_{*},$$

s.t. $X = XZ,$

has a unique closed-form optimal solution: $Z^* = V_r V_r^T$, where $U_r \Sigma_r V_r^T$ is the skinny SVD of X.

- Shape Interaction Matrix
- when X is sampled from independent subspaces, Z* is block diagonal, each block corresponding to a subspace

$$\min_{X=XZ} \|Z\|_* = \operatorname{rank}(X).$$

Wei and Lin. *Analysis and Improvement of Low Rank Representation for Subspace segmentation*, arXiv: 1107.1561, 2010. Liu et al. *Robust Recovery of Subspace Structures by Low-Rank Representation*, TPAMI 2013.

• Closed form solution at general case

 $\min_{Z} \|Z\|_*, \quad s.t. \quad X = AZ,$

has a unique closed-form optimal solution: $Z^* = A^{\dagger}X$.

Valid for any unitary invariant norm!

 $||X||_{UI} = ||UXV^T||_{UI}, \quad \forall \ U^T U = I, \ V^T V = I.$

Liu et al., *Robust Recovery of Subspace Structures by Low-Rank Representation*, TPAMI 2013. Yao-Liang Yu and Dale Schuurmans, *Rank/Norm Regularization with Closed-Form Solutions: Application to Subspace Clustering*, UAI2011.

• Closed form solution of the original LRR

$$\min_{Z} \operatorname{rank}(Z), \quad \text{s.t.} \quad A = XZ. \tag{1}$$

Theorem: Suppose $U_X \Sigma_X V_X^T$ and $U_A \Sigma_A V_A^T$ are the skinny SVD of X and A, respectively. The complete solutions to feasible generalized LRR problem (1) are given by

$$Z^* = X^{\dagger}A + SV_A^T, \tag{2}$$

where S is any matrix such that $V_X^T S = 0$.

Hongyang Zhang, Zhouchen Lin, and Chao Zhang, A Counterexample for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank, ECML/PKDD2013.

• Small sample issue

$$\min \|Z\|_*,$$

s.t. $X = XZ$.

• Consider unobserved samples

$$\min \|Z\|_{*}, \\ s.t. \ X_{O} = [X_{O}, X_{H}]Z.$$

 $\min \|Z\|_{*}, \\ s.t. \ X_{O} = [X_{O}, X_{H}]Z.$

Theorem: Suppose $Z_{O,H}^* = [Z_{O|H}^*; Z_{H|O}^*]$. Then

$$Z_{O|H}^* = V_O V_O^T, \quad Z_{H|O}^* = V_H V_O^T,$$

where V_O and V_H are calculated as follows. Compute the skinny SVD: $[X_O, X_H] = U\Sigma V^T$ and partition V as $V = [V_O; V_H]$.

Proof: That $[X_O, X_H] = U\Sigma[V_O; V_H]^T$ implies

$$X_O = U\Sigma V_O^T, \quad X_H = U\Sigma V_H^T.$$

So $X_O = [X_O, X_H]Z$ reduces to:

$$V_O^T = V^T Z.$$

So $Z_{O,H}^* = VV_O^T = [V_O V_O^T; V_H V_O^T].$

Analysis on LatLRR

• Noiseless LatLRR has non-unique closed form solutions!

Theorem: The complete solutions to

$$\min_{Z,L} \operatorname{rank}(Z) + \operatorname{rank}(L), \quad s.t. \quad X = XZ + LX$$

$$\min_{Z,L} \operatorname{rank}(Z), \quad s.t. \quad \frac{1}{2}X = XZ,$$

$$\min_{Z} \operatorname{rank}(Z), \quad s.t. \quad \frac{1}{2}X = LX.$$

$$\min_{Z} \operatorname{rank}(Z), \quad s.t. \quad \alpha X = XZ.$$

$$\min_{Z} \operatorname{rank}(Z), \quad s.t. \quad \alpha X = XZ.$$

$$\min_{Z} \operatorname{rank}(Z), \quad s.t. \quad \alpha X = XZ.$$

$$\min_{Z} \operatorname{rank}(Z), \quad s.t. \quad \alpha X = XZ.$$

$$\min_{Z} \operatorname{rank}(Z), \quad s.t. \quad \alpha X = XZ.$$

$$\min_{Z} \operatorname{rank}(Z), \quad s.t. \quad \alpha X = XZ.$$

$$\min_{Z} \operatorname{rank}(Z), \quad s.t. \quad \alpha X = XZ.$$

$$\min_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad s.t. \quad \beta X = LX.$$

$$\max_{Z} \operatorname{rank}(Z), \quad s.t. \quad s$$

Zhang et al, A Counterexample for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank, ECML/PKDD 2013.

Analysis on LatLRR

Theorem: The complete solutions to

$$\min_{Z,L} \|Z\|_* + \|L\|_*, \quad s.t. \quad X = XZ + LX$$

are as follows

$$Z^* = V_X \widehat{W} V_X^T$$
 and $L^* = U_X (I - \widehat{W}) U_X^T$,

where \widehat{W} is any block diagonal matrix satisfying:

1. its blocks are compatible with Σ_X , i.e., if $[\Sigma_X]_{ii} \neq [\Sigma_X]_{jj}$ then $[\widehat{W}]_{ij} = 0$; and

Zhang et al, A Counterexample for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank, ECML/PKDD 2013.

Robust LatLRR

 $\min_{Z,W} ||Z||_1, \text{ s.t. } Z = V_X W V_X^T, W \text{ is diagonal},$

Comparison on the synthetic data as the percentage of corruptions increases.

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, *Robust Latent Low Rank Representation for Subspace Clustering*, Neurocomputing, Vol. 145, pp. 369-373, December 2014.

Robust LatLRR

Table 1: Segmentation errors (%) on the Hopkins 155 data set. For robust LatLRR, the parameter λ is set as $0.806/\sqrt{n}$. The parameters of other methods are also tuned to be the best.

	SSC	LRR	RSI	LRSC	LatLRR	Robust LatLRR
MAX	46.75	49.88	47.06	40.55	42.03	35.06
MEAN	2.72	5.64	6.54	4.28	4.17	3.74
STD	8.20	10.35	9.84	8.55	9.14	7.02

Table 2: Segmentation accuracy (%) on the Extended Yale B data set, with different number of persons. For robust LatLRR, the parameter λ is set as 0.014, 0.013, and 0.0135, respectively. The parameters of other methods are also tuned to be the best.

Persons	SSC	LRR	RSI	LRSC	LatLRR	Robust LatLRR
5	90.31	91.25	88.44	75.94	69.06	95.00
7	87.05	72.77	89.73	65.63	42.86	92.86
9	71.35	60.42	87.67	51.04	36.11	91.49

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, *Robust Latent Low Rank Representation for Subspace Clustering*, Neurocomputing, Vol. 145, pp. 369-373, December 2014.

Relationship Between LR Models

 $\min_{Z,E} \operatorname{rank}(Z) + \lambda ||E||_{\ell},$

s.t. X = XZ + E.

 $\min_{Z,L,E} \operatorname{rank}(Z) + \operatorname{rank}(L) + \lambda ||E||_{\ell},$

s.t. X = XZ + LX + E.

(Original Robust LRR) $\min_{Z,E} \operatorname{rank}(Z) + \lambda ||E||_{\ell}$,

(Original RPCA) $\min_{A,E} \operatorname{rank}(A) + \lambda ||E||_{\ell}$,

s.t. X - E = (X - E)Z.

s.t. X = A + E.

(Original Robust LatLRR) $\min_{Z,L,E} \operatorname{rank}(Z) + \operatorname{rank}(L) + \lambda ||E||_{\ell}$,

s.t. X - E = (X - E)Z + L(X - E).

 $\min_{Z,D,E} \operatorname{rank}(Z) + \lambda ||E||_{\ell},$ s.t. D = DZ, X = D + E. $\min_{Z,L,D,E} \operatorname{rank}(Z) + \operatorname{rank}(L) + \lambda ||E||_{\ell},$ s.t. D = DZ + LD, X = D + E.

Relationship Between LR Models

(Heuristic RPCA) $\min_{A,E} ||A||_* + \lambda ||E||_{\ell}$, s.t. X = A + E. (Heuristic Robust LRR) $\min_{Z,E} ||Z||_* + \lambda ||E||_{\ell}$, s.t. X - E = (X - E)Z. (Heuristic Robust LatLRR) $\min_{Z,L,E} ||Z||_* + ||L||_* + \lambda ||E||_{\ell}$, s.t. X - E = (X - E)Z + L(X - E).

- We could obtain a *globally optimal* solution to other low rank models.
- We could have *much faster* algorithms for other low rank models.

• Comparison of optimality

Comparison of accuracies of solutions to relaxed R-LRR computed by REDU-EXPR and partial ADM, where the parameter is adopted as 1/\sqrt(log n) and n is the input size. The program is run by 10 times and the average accuracies are reported.

• Comparison of speed

Model	Method	Accuracy	CPU Time (h)
LRR	ADM	-	>10
R-LRR	ADM	-	did not converge
R-LRR	partial ADM	-	> 10
R-LRR	REDU-EXPR	61.6365%	0.4603

Table 1: Unsupervised face image clustering results on the Extended YaleB database. REDU-EXPR means reducing to RPCA first and then express the solution as that of RPCA.

• Comparison of optimality and speed

Table 4: Comparison of robustness and speed between partial ADM (LRSC) (Favaro

et al., 2011) and REDU-EXPR (RSI) (Wei and Lin, 2010) methods for solving R-LRR

when the percentage of corruptions increases. All the experiments are run ten times and

Noise Percentage (%)	0	10	20	30	40	50
Rank(Z) (partial ADM)	20	30	30	30	30	30
Rank(Z) (REDU-EXPR)	20	20	20	20	20	20
$ E _{\ell_{2,0}}$ (partial ADM)	0	99	200	300	400	500
$ E _{\ell_{2,0}}$ (REDU-EXPR)	0	100	200	300	400	500
Objective (partial ADM)	20.00	67.67	106.10	144.14	182.19	220.24
Objective (REDU-EXPR)	20.00	58.05	96.10	134.14	172.19	210.24
Time (s, partial ADM)	4.89	124.33	126.34	119.12	115.20	113.94
Time (s, REDU-EXPR)	10.67	9.60	8.34	8.60	9.00	12.86

• Assumption: rank(A) = o(n).

 $\min ||A||_* + \lambda ||E||_{l_1}, \\ s.t. \quad D = A + E.$

• First, randomly sample D_{sub}.

Second, solve RPCA for D_{sub} : D_{sub} = A_{sub} + E_{sub} .

< O(n)

• Third, find the full rank submatrix *B* of A_{sub} .

 $\min ||A||_* + \lambda ||E||_{l_1}, \\ s.t. \quad D = A + E.$

• Fourth, correct the Kx(n-K) submatrix of D by C_{sub} .

• Fifth, correct the (*n*-*K*)x*K* submatrix of *D* by *R*_{sub}.

• Finally, the rest part of *A* is $A^c = Q_r B P_c$.

• What if the rank is unknown?

1. If rank(A_{sub}) > K/c, then increase K to c rank(A_{sub}). 2. Otherwise, resample another D_{sub} for cross validation.

 $\min ||A||_* + \lambda ||E||_{l_1}, \\ s.t. \quad D = A + E.$

Experiments

Synthetic Data								
Size	Method	$\frac{\ \mathbf{L}_0 - \mathbf{L}^*\ _F}{\ \mathbf{L}_0\ _F}$	$\operatorname{rank}(\mathbf{L}^*)$	$\ \mathbf{L}^*\ _*$	$\ \mathbf{S}^*\ _{l_0}$	$\ \mathbf{S}^*\ _{l_1}$	Time(s)	
		$\operatorname{rank}(\mathbf{L}_0)$	$\ \mathbf{S}_0\ _{l_1} = 998105$					
2000	S-ADM	1.46×10^{-8}	20	39546	39998	998105	84.73	
2000	L-ADM	4.72×10^{-7}	20	39546	40229	998105	27.41	
	l_1	1.66×10^{-8}	20	39546	40000	998105	5.56 = 2.24 + 3.32	
		$\operatorname{rank}(\mathbf{L}_0) =$	50, $\ \mathbf{L}_0\ _*$	= 249432	$2, \ \mathbf{S}_0\ _{l_0}$	= 250000,	$\ \mathbf{S}_0\ _{l_1} = 6246093$	
5000	S-ADM	7.13×10^{-9}	50	249432	249995	6246093	1093.96	
5000	L-ADM	4.28×10^{-7}	50	249432	250636	6246158	195.79	
	l_1	5.07×10^{-9}	50	249432	250000	6246093	$42.34{=}19.66+22.68$	
	$\operatorname{rank}(\mathbf{L}_0) = 100, \ \mathbf{L}_0\ _* = 997153, \ \mathbf{S}_0\ _{l_0} = 1000000, \ \mathbf{S}_0\ _{l_1} = 25004070$							
10000	S-ADM	1.23×10^{-8}	100	997153	1000146	25004071	11258.51	
10000	L-ADM	4.26×10^{-7}	100	997153	1000744	25005109	1301.83	
	l_1	$2.90 imes 10^{-10}$	100	997153	1000023	25004071	276.54 = 144.38 + 132.16	
Structure form Motion Data								
	$\operatorname{rank}(\mathbf{L}_0) = 4, \ \mathbf{L}_0\ _* = 31160, \ \mathbf{S}_0\ _{l_0} = 900850, \ \mathbf{S}_0\ _{l_1} = 3603146$							
4002×2251	S-ADM	5.38×10^{-8}	4	31160	900726	3603146	925.28	
	L-ADM	3.25×10^{-7}	4	31160	1698387	3603193	62.08	
	l_1	1.20×10^{-8}	4	31160	900906	3603146	5.29 = 3.51 + 1.78	

Experiments

Conclusions

- Low-rank models have much richer mathematical properties than sparse models.
- Closed-form solutions to low-rank models are useful in both theory and applications.

Thanks!

- <u>zlin@pku.edu.cn</u>
- <u>http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm</u>

