Closed－Form Solutions in Low－Rank Subspace Recovery Models and Their Implications

Zhouchen Lin（林宙辰）
北京大学
Nov．7， 2015

Sutine

- Sparsity vs. Low-rankness
- Closed-Form Solutions of Low-rank Models
- Applications of Closed-Form Solutions
- Conclusions

Challenges of High-dim Data

Sparsity vs. Low-rankness

Sparse Models

- Sparse Representation

$$
\begin{align*}
& \min \|z\|_{0} \\
& \text { s.t. } x=A z \tag{1}
\end{align*}
$$

- Sparse Subspace Clustering

$$
\begin{equation*}
\min \left\|z_{i}\right\|_{0} \tag{2}
\end{equation*}
$$

$$
\text { s.t. } x_{i}=X_{\hat{i}} z_{i}, \quad \forall i
$$

$$
\text { where } X_{\hat{i}}=\left[x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n}\right]
$$

$$
\begin{equation*}
\min \|Z\|_{0} \tag{3}
\end{equation*}
$$

$$
\text { s.t. } X=X Z, \operatorname{diag}(Z)=0
$$

$$
\begin{equation*}
\min \|Z\|_{1} \tag{4}
\end{equation*}
$$

$$
\text { s.t. } X=X Z, \operatorname{diag}(Z)=0
$$

Elhamifar and Vidal. Sparse Subspace Clustering. CVPR2009.

Low-rank Models

- Matrix Completion (MC)

$$
\min \operatorname{rank}(A), \quad \text { s.t. } \quad D=\pi(A)
$$

Filling in missing entries

- Robust PCA

$$
\min \operatorname{rank}(A)+\lambda\|E\|_{l_{0}}, \quad \text { s.t. } \quad D=A+E
$$

Denoising

- Low-rank Representation (LRR)

Clustering
$\min \operatorname{rank}(Z)+\lambda\|E\|_{2,0}$
s.t. $X=X Z+E$

$$
\|E\|_{l_{0}}=\#\left\{E_{i j} \mid E_{i j} \neq 0\right\} \quad\|E\|_{2,0}=\#\left\{i\| \| E_{:, i} \|_{2} \neq 0\right\} .
$$

NP Hard!

Convex Program Formulation

- Matrix Completion (MC)

$$
\min \|A\|_{*}, \quad \text { s.t. } \quad D=\pi \quad(A)
$$

- Robust PCA

$$
\min \|A\|_{*}+\lambda\|E\|_{l_{1}}, \quad \text { s.t. } \quad D=A+E
$$

- Low-rank Representation (LRR)

$$
\begin{aligned}
& \min \|Z\|_{*}+\lambda\|E\|_{2,1} \\
& \text { s.t. } X=X Z+E \\
& \|A\|_{*}=\sum_{i} \sigma_{i}(A) \\
& \|E\|_{l_{1}}=\sum_{i, j}\left|E_{i j}\right| \\
& \|E\|_{2,1}=\sum_{i}\left\|E_{:, i}\right\|_{2}
\end{aligned}
$$

Applications of Low－rank Models

－Background modeling
－Robust Alignment

－Image Rectification
－Motion Segmentation
－Image Segmentation

－Saliency Detection
－Image Tag Refinement
－Partial Duplicate Image Search

Closed-form Solution of LRR

- Closed form solution at noiseless case

$$
\begin{aligned}
& \min _{Z}\|Z\|_{*}, \\
& \text { s.t. } \quad X=X Z,
\end{aligned}
$$

has a unique closed-form optimal solution: $Z^{*}=V_{r} V_{r}^{T}$, where $U_{r} \Sigma_{r} V_{r}^{T}$ is the skinny SVD of X.

- Shape Interaction Matrix
- when X is sampled from independent subspaces, Z^{*} is block diagonal, each block corresponding to a subspace

$$
\min _{X=X Z}\|Z\|_{*}=\operatorname{rank}(X)
$$

Closed-form Solution of LRR

- Closed form solution at general case

$$
\min _{Z}\|Z\|_{*}, \quad \text { s.t. } \quad X=A Z
$$

has a unique closed-form optimal solution: $Z^{*}=A^{\dagger} X$.

Valid for any unitary invariant norm!

$$
\|X\|_{U I}=\left\|U X V^{T}\right\|_{U I}, \quad \forall U^{T} U=I, \quad V^{T} V=I .
$$

Closed-form Solution of LRR

- Closed form solution of the original LRR

$$
\begin{equation*}
\min _{Z} \operatorname{rank}(Z), \text { s.t. } A=X Z \tag{1}
\end{equation*}
$$

Theorem: Suppose $U_{X} \Sigma_{X} V_{X}^{T}$ and $U_{A} \Sigma_{A} V_{A}^{T}$ are the skinny SVD of X and A, respectively. The complete solutions to feasible generalized LRR problem (1) are given by

$$
\begin{equation*}
Z^{*}=X^{\dagger} A+S V_{A}^{T}, \tag{2}
\end{equation*}
$$

where S is any matrix such that $V_{X}^{T} S=0$.

Latent LRR

- Small sample issue

$$
\begin{aligned}
& \min \|Z\|_{*}, \\
& \text { s.t. } X=X Z .
\end{aligned}
$$

- Consider unobserved samples

$$
\begin{aligned}
& \min \|Z\|_{*}, \\
& \text { s.t. } X_{O}=\left[X_{O}, X_{H}\right] Z .
\end{aligned}
$$

Latent LRR

$$
\begin{aligned}
& \min \|Z\|_{*}, \\
& \text { s.t. } X_{O}=\left[X_{O}, X_{H}\right] Z .
\end{aligned}
$$

Theorem: Suppose $Z_{O, H}^{*}=\left[Z_{O \mid H}^{*} ; Z_{H \mid O}^{*}\right]$. Then

$$
Z_{O \mid H}^{*}=V_{O} V_{O}^{T}, \quad Z_{H \mid O}^{*}=V_{H} V_{O}^{T},
$$

where V_{O} and V_{H} are calculated as follows. Compute the skinny SVD: $\left[X_{O}, X_{H}\right]=$ $U \Sigma V^{T}$ and partition V as $V=\left[V_{O} ; V_{H}\right]$.
Proof: That $\left[X_{O}, X_{H}\right]=U \Sigma\left[V_{O} ; V_{H}\right]^{T}$ implies

$$
X_{O}=U \Sigma V_{O}^{T}, \quad X_{H}=U \Sigma V_{H}^{T}
$$

So $X_{O}=\left[X_{O}, X_{H}\right] Z$ reduces to:

$$
V_{O}^{T}=V^{T} Z
$$

So $Z_{O, H}^{*}=V V_{O}^{T}=\left[V_{O} V_{O}^{T} ; V_{H} V_{O}^{T}\right]$.
Liu and Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction, ICCV 2011.

Latent LRR

$$
\begin{aligned}
& \min \|Z\|_{*} \text {, } \\
& \text { s.t. } X_{O}=\left[X_{O}, X_{H}\right] Z \text {. } \\
& Z_{O \mid H}^{*}=V_{O} V_{O}^{T}, \quad Z_{H \mid O}^{*}=V_{H} V_{O}^{T} . \\
& X_{O}=\left[X_{O}, X_{H}\right] Z_{O, H}^{*} \\
& =X_{O} Z_{O \mid H}^{*}+X_{H} Z_{H \mid O}^{*} \\
& =X_{O} Z_{O \mid H}^{*}+X_{H} V_{H} V_{O}^{T} \\
& =X_{O} Z_{O \mid H}^{*}+U \Sigma V_{H}^{T} V_{H} V_{O}^{T} \\
& =X_{O} Z_{O \mid H}^{*}+U \Sigma V_{H}^{T} V_{H} \Sigma^{-1} U^{T} X_{O} \\
& \equiv X_{O} Z_{O \mid H}^{*}+L_{H \mid O}^{*} X_{O} . \\
& \text { low rank! } \\
& \min \operatorname{rank}(Z)+\operatorname{rank}(L), \\
& \text { s.t. } X=X Z+L X \text {. } \\
& \min \|Z\|_{*}+\|L\|_{*} \text {, } \\
& \text { s.t. } X=X Z+L X \text {. }
\end{aligned}
$$

Latent LRR

$X=X Z^{*}+L^{*} X+E^{*}$
data $\quad=$ principal features + salient features + sparse noise

$$
\begin{aligned}
& \min \|Z\|_{*}+\|L\|_{*}+\lambda\|E\|_{1}, \\
& \text { s.t. } X=X Z+L X+E .
\end{aligned}
$$

Analysis on LatLRR

- Noiseless LatLRR has non-unique closed form solutions!

Theorem: The complete solutions to
are as follows

$$
\begin{aligned}
& Z^{*}=V_{X} \tilde{W} V_{X}^{T}+S_{1} \tilde{W} V_{X}^{T} \text { and } L^{*}=U_{X} \Sigma_{X}(I-\tilde{W}) \Sigma_{X}^{-1} U_{X}^{T}+U_{X} \Sigma_{X}(I-\tilde{W}) S_{2},
\end{aligned}
$$

where \tilde{W} is any idempotent matrix and S_{1} and S_{2} are any matrices satisfying:

1. $V_{X}^{T} S_{1}=0$ and $S_{2} U_{X}=0$; and
2. $\operatorname{rank}\left(S_{1}\right) \cdot \operatorname{rank}(\tilde{W})$ and $\operatorname{rank}\left(S_{2}\right) \cdot \operatorname{rank}(I-\tilde{W})$. $\quad A^{2}=A$

Analysis on LatLRR

Theorem: The complete solutions to

$$
\min _{Z, L}\|Z\|_{*}+\|L\|_{*}, \quad \text { s.t. } \quad X=X Z+L X
$$

are as follows

$$
Z^{*}=V_{X} \widehat{W} V_{X}^{T} \text { and } L^{*}=U_{X}(I-\widehat{W}) U_{X}^{T},
$$

where \widehat{W} is any block diagonal matrix satisfying:

1. its blocks are compatible with Σ_{X}, i.e., if $\left[\Sigma_{X}\right]_{i i} \neq\left[\Sigma_{X}\right]_{j j}$ then $[\widehat{W}]_{i j}=0$; and
2. both \widehat{W} and $I-\widehat{W}$ are positive semi-definite.

$$
\left.\Sigma_{\mathrm{X}}=\left[\begin{array}{cccccc}
10 & 0 & 0 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 & 0 & 0 \\
0 & 0 & 8 & 0 & 0 & 0 \\
0 & 0 & 0 & 8 & 0 & 0 \\
0 & 0 & 0 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 3
\end{array}\right] \Rightarrow W=\left[\begin{array}{cccccc}
0.8 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.5 & 0.1 & 0.3 & 0 & 0 \\
0 & 0.1 & 0.6 & 0.2 \\
0 & 0 & 0 \\
0.3 & 0.2 & 0.4 \\
0 & 0 & 0 & 0 & 0 & 0.3 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
\text { Positive } \\
\text { Semi-definite }
\end{array}\right]
$$

Zhang et al, A Counterexample for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank, ECML/PKDD 2013.

Robust LatLRR

Comparison on the synthetic data as the percentage of corruptions increases.

Robust LatLRR

Table 1: Segmentation errors (\%) on the Hopkins 155 data set. For robust LatLRR, the parameter λ is set as $0.806 / \sqrt{n}$. The parameters of other methods are also tuned to be the best.

	SSC	LRR	RSI	LRSC	LatLRR	Robust LatLRR
MAX	46.75	49.88	47.06	40.55	42.03	$\mathbf{3 5 . 0 6}$
MEAN	$\mathbf{2 . 7 2}$	5.64	6.54	4.28	4.17	3.74
STD	8.20	10.35	9.84	8.55	9.14	$\mathbf{7 . 0 2}$

Table 2: Segmentation accuracy (\%) on the Extended Yale B data set, with different number of persons. For robust LatLRR, the parameter λ is set as $0.014,0.013$, and 0.0135 , respectively. The parameters of other methods are also tuned to be the best.

Persons	SSC	LRR	RSI	LRSC	LatLRR	Robust LatLRR
5	90.31	91.25	88.44	75.94	69.06	$\mathbf{9 5 . 0 0}$
7	87.05	72.77	89.73	65.63	42.86	$\mathbf{9 2 . 8 6}$
9	71.35	60.42	87.67	51.04	36.11	$\mathbf{9 1 . 4 9}$

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Robust Latent Low Rank Representation for Subspace Clustering, Neurocomputing, Vol. 145, pp. 369-373, December 2014.

Relationship Between LR Models

$\min _{Z, E} \operatorname{rank}(Z)+\lambda\|E\|_{\ell}$,
s.t. $X=X Z+E$.
(Original RPCA) $\min _{A, E} \operatorname{rank}(A)+\lambda\|E\|_{\ell}$,
$\min _{Z, L, E} \operatorname{rank}(Z)+\operatorname{rank}(L)+\lambda\|E\|_{\ell}$,
s.t. $X=A+E$.
s.t. $X=X Z+L X+E$.
(Original Robust LRR) $\min _{Z, E} \operatorname{rank}(Z)+\lambda\|E\|_{\ell}$,

$$
\text { s.t. } X-E=(X-E) Z \text {. }
$$

(Original Robust LatLRR) $\min _{Z, L, E} \operatorname{rank}(Z)+\operatorname{rank}(L)+\lambda\|E\|_{\ell}$,

$$
\text { s.t. } X-E=(X-E) Z+L(X-E) \text {. }
$$

$$
\begin{aligned}
& \min _{Z, D, E} \operatorname{rank}(Z)+\lambda\|E\|_{\ell}, \\
& \text { s.t. } D=D Z, X=D+E . \\
& \min _{Z, L, D, E} \operatorname{rank}(Z)+\operatorname{rank}(L)+\lambda\|E\|_{\ell}, \\
& \text { s.t. } D=D Z+L D, X=D+E .
\end{aligned}
$$

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Relation among Some Low Rank Subspace Recovery Models, Neural Computation, Vol. 27, No. 9, pp. 1915-1950, 2015.

Relationship Between LR Models

(Heuristic RPCA) $\min _{A, E}\|A\|_{*}+\lambda\|E\|_{\ell}$,

$$
\text { s.t. } X=A+E .
$$

(Heuristic Robust LRR) $\min _{Z, E}\|Z\|_{*}+\lambda\|E\|_{\ell}$,

$$
\text { s.t. } X-E=(X-E) Z .
$$

(Heuristic Robust LatLRR) $\min _{Z, L, E}\|Z\|_{*}+\|L\|_{*}+\lambda\|E\|_{\ell}$,

$$
\text { s.t. } X-E=(X-E) Z+L(X-E) \text {. }
$$

Relationship Between LR Models

$$
\begin{aligned}
& \min _{Z, E} \operatorname{rank}(Z)+\lambda\|E\|_{\ell}, \\
& \text { s.t. } X-E=(X-E) Z .
\end{aligned}
$$

$$
\begin{aligned}
& \min _{Z, E}\|Z\|_{*}+\lambda\|E\|_{\ell} \\
& \text { s.t. } X-E=(X-E) Z .
\end{aligned}
$$

Original Robust LRR

Original RPCA $\min _{A, E} \operatorname{rank}(A)+\lambda\|E\|_{\ell}$,

Heuristic Robust LatLRR

$$
\begin{aligned}
& \min _{Z, L, E}\|Z\|_{*}+\|L\|_{*}+\lambda\|E\|_{\ell}, \\
& \text { s.t. } X-E=(X-E) Z+L(X-E) .
\end{aligned}
$$

Implications

- We could obtain a globally optimal solution to other low rank models.
- We could have much faster algorithms for other low rank models.

Implications

- Comparison of optimality

Comparison of accuracies of solutions to relaxed R-LRR computed by REDU-EXPR and partial ADM, where the parameter is adopted as $1 / \backslash \operatorname{sqrt}(\log n)$ and n is the input size.
The program is run by 10 times and the average accuracies are reported.
Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Relation among Some Low Rank Subspace Recovery Models, Neural Computation, Vol. 27, No. 9, pp. 1915-1950, 2015.

Implications

- Comparison of speed

Model	Method	Accuracy	CPU Time (h)
LRR	ADM	-	>10
R-LRR	ADM	-	did not converge
R-LRR	partial ADM	-	>10
R-LRR	REDU-EXPR	61.6365%	0.4603

Table 1: Unsupervised face image clustering results on the Extended YaleB database. REDU-EXPR means reducing to RPCA first and then express the solution as that of RPCA.

Implications

- Comparison of optimality and speed

Table 4: Comparison of robustness and speed between partial ADM (LRSC) (Favaro
et al., 2011) and REDU-EXPR (RSI) (Wei and Lin, 2010) methods for solving R-LRR
when the percentage of corruptions increases. All the experiments are run ten times and
the λ is set to be the same: $\lambda=1 / \sqrt{\log n}$, where n is the data size.

Noise Percentage (\%)	0	10	20	30	40	50		
$\operatorname{Rank}(Z)$ (partial ADM)	20	30	30	30	30	30		
$\operatorname{Rank}(Z)$ (REDU-EXPR)	20	20	20	20	20	20		
$\\|E\\|_{\ell_{2,0}}($ partial ADM)	0	99	200	300	400	500		
$\\|E\\|_{\ell_{2,0}}($ REDU-EXPR)	0	100	200	300	400	500		
Objective (partial ADM)	$\mathbf{2 0 . 0 0}$	67.67	106.10	144.14	182.19	220.24		
Objective (REDU-EXPR)	$\mathbf{2 0 . 0 0}$	$\mathbf{5 8 . 0 5}$	$\mathbf{9 6 . 1 0}$	$\mathbf{1 3 4 . 1 4}$	$\mathbf{1 7 2 . 1 9}$	$\mathbf{2 1 0 . 2 4}$		
Time (s, partial ADM)	$\mathbf{4 . 8 9}$	124.33	126.34	119.12	115.20	113.94		
Time (s, REDU-EXPR)	10.67	$\mathbf{9 . 6 0}$	$\mathbf{8 . 3 4}$	$\mathbf{8 . 6 0}$	$\mathbf{9 . 0 0}$	$\mathbf{1 2 . 8 6}$		

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Relation among Some Low Rank Subspace Recovery Models, Neural Computation, Vol. 27, No. 9, pp. 1915-1950, 2015.

$O\left(n^{1}\right)$ RPCA by l_{1}-Filtering

- Assumption: $\operatorname{rank}(A)=o(n)$.

$$
\begin{aligned}
& \min \|A\|_{*}+\lambda\|E\|_{l_{1}}, \\
& \text { s.t. } \quad D=A+E .
\end{aligned}
$$

$O\left(n^{1}\right)$ RPCA by l_{1}-Filtering

- First, randomly sample $D_{\text {sub }}$.

$$
\begin{aligned}
& \min \|A\|_{*}+\lambda\|E\|_{l_{1}}, \\
& \text { s.t. } \quad D=A+E .
\end{aligned}
$$

$O\left(n^{1}\right)$ RPCA by l_{1}-Filtering

- Second, solve RPCA for $D_{s u b}: D_{s u b}=A_{s u b}+E_{s u b}$.

$$
\begin{gathered}
\min \left\|A_{\text {sub }}\right\|_{*}+\lambda_{1}\left\|E_{\text {sub }}\right\|_{1} \\
\operatorname{subj} D_{\text {sub }}=A_{\text {sub }}+E_{\text {sub }} . \\
<\quad D_{\text {sub }} \\
<O(n) \\
\text { complexity }!
\end{gathered}
$$

$$
\begin{aligned}
& \min \|A\|_{*}+\lambda\|E\|_{l_{1}}, \\
& \text { s.t. } \quad D=A+E .
\end{aligned}
$$

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014.

$O\left(n^{1}\right)$ RPCA by l_{1}-Filtering

- Third, find the full rank submatrix B of $A_{\text {sub }}$.

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014.

$O\left(n^{1}\right)$ RPCA by l_{1}-Filtering

- Fourth, correct the $K x(n-K)$ submatrix of D by $C_{\text {sub }}$.

$$
\begin{aligned}
& \min \|A\|_{*}+\lambda\|E\|_{l_{1}}, \\
& \text { s.t. } D=A+E
\end{aligned}
$$

$O\left(n^{1}\right)$ RPCA by l_{1}-Filtering

- Fifth, correct the $(n-K) x K$ submatrix of D by $R_{\text {sub }}$.

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014.

$O\left(n^{1}\right)$ RPCA by l_{1}-Filtering

- Finally, the rest part of A is $A^{c}=\mathrm{Q}_{r} B P_{c}$.

A compact representation of A !

$$
\begin{aligned}
& \min \|A\|_{*}+\lambda\|E\|_{l_{1}}, \\
& \text { s.t. } \quad D=A+E .
\end{aligned}
$$

$O\left(n^{1}\right)$ RPCA by l_{1}-Filtering

- What if the rank is unknown?

1. If
$\operatorname{rank}\left(A_{\text {sub }}\right)>K / c$, then increase K to $c \operatorname{rank}\left(A_{\text {sub }}\right)$.
2. Otherwise, resample another $D_{\text {sub }}$ for cross validation.

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014.

Experiments

Synthetic Data

Synthetic Data																
Size	Method	$\frac{\left\\|\mathbf{L}_{0}-\mathrm{L}^{-\\|^{\prime}}\right\\|_{F}}{\left\\|\mathbf{L}_{0}\right\\|_{F}}$	$\operatorname{rank}\left(\mathbf{L}^{*}\right)$	$\left\\|\mathbf{L}^{*}\right\\|_{*}$	${ }^{\text {S }} \\|_{l_{0}}$	$\mathbf{S}^{*} \\|_{l_{1}}$	Time(s)									
2000	$\operatorname{rank}\left(\mathbf{L}_{0}\right)=20, \quad \\| \mathbf{L}_{0}$			$\left\\|_{*}=39546, \quad\right\\| \mathbf{S}_{0} \\|_{l_{0}}=40000$,	$\left\\|\mathbf{S}_{0}\right\\|_{l_{0}}=40000$,		$\left\\|\mathbf{S}_{0}\right\\|_{l_{1}}=998105$									
	S-ADM	1.46×10^{-8}	20	39546	39998	998105	84.73									
	L-ADM	4.72×10^{-7}	20	39546	40229	998105	27.41									
	l_{1}	1.66×10^{-8}	20	39546	40000	998105	$5.56=2.24+3.32$									
5000	$\operatorname{rank}\left(\mathbf{L}_{0}\right)=50, \quad\left\\|\mathbf{L}_{0}\right\\|_{*}=249432, \quad\left\\|\mathbf{S}_{0}\right\\|_{l_{0}}=250000, \quad\left\\|\mathbf{S}_{0}\right\\|_{l_{1}}=6246093$															
	S-ADM	7.13×10^{-9}	50	249432	249995	6246093	1093.96									
	L-ADM	4.28×10^{-7}	50	249432	250636	6246158	195.79									
	l_{1}	5.07×10^{-9}	50	249432	250000	6246093	$42.34=19.66+22.68$									
10000		$\operatorname{rank}\left(\mathbf{L}_{0}\right)=100, \quad\left\\|\mathbf{L}_{0}\right\\|$	$0,\left\\|\mathbf{L}_{0}\right\\|_{*}=997153, \quad\left\\|\mathbf{S}_{0}\right\\|_{l_{0}}=1000000$,		$\left\\|\mathbf{S}_{0}\right\\|_{l_{0}}=1000000$,		$\mathbf{S}_{0} \\|_{l_{1}}=25004070$									
	S-ADM	1.23×10^{-8}	100	997153	1000146	25004071	11258.511301.83$\mathbf{2 7 6 . 5 4}=$$\mathbf{1 4 4 . 3 8}+\mathbf{1 3 2 . 1 6}$									
	L-ADM	4.26×10^{-7}	100	997153	1000744	25005109										
	l_{1}	2.90×10^{-10}	100	997153	1000023	25004071										
Structure form Motion Data																
4002×2251	$\operatorname{rank}\left(\mathbf{L}_{0}\right)=4$,			$=31160$	$\left\\|\mathbf{S}_{0}\right\\|_{l_{0}}=900850$,		$\mathbf{S}_{0} \\|_{l_{1}}=3603146$									
	S-ADM	5.38×10^{-8}	4	31160	900726	3603146	925.28									
	L-ADM	3.25×10^{-7}	4	31160	1698387	3603193	62.08									
	l_{1}	1.20×10^{-8}	4	31160	900906	3603146	$5.29=3.51+1.78$									

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014.

Experiments

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014.

Conclusions

- Low-rank models have much richer mathematical properties than sparse models.
- Closed-form solutions to low-rank models are useful in both theory and applications.

Thanks!

- zlin@pku.edu.cn
- http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm

