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Challenges of High-dim Data 

?? 

Images 

Videos 

Web data 

> 1M dim 

> 1B dim 

> 10B+ dim? 

Courtesy of Y. Ma. 



Sparsity vs. Low-rankness 



Sparse Models 

• Sparse Representation 

 

 

• Sparse Subspace Clustering 

min jjzjj0;
s:t: x = Az:

(1)

Elhamifar and Vidal. Sparse Subspace Clustering. CVPR2009. 

min jjzi jj0 ;
s:t: x i = X

î
zi ; 8i: (2)

where X
î
= [x1 ; ¢¢¢; x i¡ 1 ; xi+1 ; ¢¢¢; xn ].

min jjZ jj0 ;
s:t: X = X Z; diag (Z ) = 0:

(3)

min jjZ jj1 ;
s:t: X = X Z; diag (Z ) = 0:

(4)



Low-rank Models 

• Matrix Completion (MC) 

 

• Robust PCA 

 

• Low-rank Representation (LRR) 

min rank(A ); s:t: D = ¼­ (A ):

min rank(A ) + ¸kE k l0 ; s:t: D = A + E :

kE k l0 = #fE ij jE ij 6= 0g

NP Hard! 

min rank(Z) + j̧jEjj2;0;
s:t: X =XZ +E:

jjEjj2;0 =#fijjjE:;ijj2 6= 0g.

Filling in 
missing entries 

Denoising 

Clustering 



Convex Program Formulation 

• Matrix Completion (MC) 

 

• Robust PCA 

 

• Low-rank Representation (LRR) 

 

min kAk¤; s:t: D = ¼­ (A ):

min kAk¤ + ¸kE k l1 ; s:t: D = A + E :

kAk¤ =
P

i

¾i (A );

kE k l1 =
P

i;j

jE ij j:

nuclear norm 

min jjZjj¤+ j̧jEjj2;1;
s:t: X =XZ +E:

jjEjj2;1 =
P
i

jjE:;ijj2.



Applications of Low-rank Models 

• Background modeling 

• Robust Alignment 

• Image Rectification 

• Motion Segmentation 

• Image Segmentation 

• Saliency Detection 

• Image Tag Refinement 

• Partial Duplicate Image Search 

• …… 
 

 

 

 

 

 

林宙辰、马毅，信号与数据处理中的低秩模型，中国计算机学会通讯，2015年第4期。 



Closed-form Solution of LRR 

• Closed form solution at noiseless case 

 

 

 

 
– Shape Interaction Matrix 

– when X is sampled from independent subspaces, Z* is block 
diagonal, each block corresponding to a subspace 

min
Z

kZ k¤;

s:t: X = X Z;

has a unique closed-form optimal solution: Z ¤ = V rV
T
r , where U r§ rV

T
r is the

skinny SVD of X .

min
X=XZ

kZk¤= rank(X):

Wei and Lin. Analysis and Improvement of Low Rank Representation for Subspace segmentation, arXiv: 1107.1561, 2010. 
Liu et al. Robust Recovery of Subspace Structures by Low-Rank Representation, TPAMI 2013. 



• Closed form solution at general case 

 

 

 

 

Liu et al., Robust Recovery of Subspace Structures by Low-Rank Representation, TPAMI 2013. 
Yao-Liang Yu and Dale Schuurmans, Rank/Norm Regularization with Closed-Form Solutions: Application to Subspace 
Clustering, UAI2011. 

min
Z

kZ k¤; s:t: X = AZ ;

has a unique closed-form optimal solution: Z ¤ = A yX .

Closed-form Solution of LRR 

Valid for any unitary invariant norm! 



• Closed form solution of the original LRR 

 

 

 

 

Hongyang Zhang, Zhouchen Lin, and Chao Zhang, A Counterexample for the Validity of Using Nuclear Norm as a 
Convex Surrogate of Rank, ECML/PKDD2013. 

Closed-form Solution of LRR 

min
Z

rank(Z); s.t. A = XZ: (1)

Theorem: Suppose UX§XV
T
X and UA§AV

T
A are the skinny SVD of X and A,

respectively. The complete solutions to feasible generalized LRR problem (1)

are given by

Z¤= XyA+ SV T
A ; (2)

where S is any matrix such that V T
X S = 0.



Latent LRR 

• Small sample issue 

 
min kZk¤;
s:t: X = XZ:

Liu and Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction, ICCV 2011. 

minkZk¤;
s:t: XO = [XO;XH]Z:

• Consider unobserved samples 



Latent LRR 

Theorem: Suppose Z¤
O;H = [Z¤

OjH ;Z
¤
HjO]. Then

Z¤
OjH = VOV

T
O ; Z¤

HjO = VHV
T
O ;

where VO and VH are calculated as follows. Compute the skinny SVD: [XO;XH ] =

U§V T and partition V as V = [VO;VH ].

minkZk¤;
s:t: XO = [XO;XH]Z:

Proof: That [XO; XH ] = U§[VO;VH ]
T implies

XO = U§V T
O ; XH = U§V T

H :

So XO = [XO;XH ]Z reduces to:

V T
O = V TZ:

So Z¤
O;H = V V T

O = [VOV
T
O ;VHV

T
O ]:

Liu and Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction, ICCV 2011. 



Latent LRR 

Z¤
OjH = VOV

T
O ; Z¤

HjO = VHV
T
O :

minkZk¤;
s:t: XO = [XO;XH]Z:

Liu and Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction, ICCV 2011. 

XO = [XO;XH ]Z
¤
O;H

= XOZ
¤
OjH +XHZ

¤
HjO

= XOZ
¤
OjH +XHVHV

T
O

= XOZ
¤
OjH + U§V T

H VHV
T
O

= XOZ
¤
OjH + U§V T

H VH§
¡1UTXO

´ XOZ
¤
OjH + L¤

HjOXO:

low rank! 

min rank(Z) + rank(L);

s:t: X =XZ +LX:

min kZk¤+ kLk¤;
s:t: X = XZ + LX:



Latent LRR 

Liu and Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction, ICCV 2011. 

min kZk¤+ kLk¤+ ķEk1;
s:t: X = XZ +LX +E:



Analysis on LatLRR 

• Noiseless LatLRR has non-unique closed form solutions! 

Zhang et al, A Counterexample for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank, ECML/PKDD 
2013. 

Theorem: The complete solutions to

min
Z;L

rank(Z) + rank(L); s:t: X = XZ + LX

are as follows

Z¤= VX ~WV T
X +S1 ~WV T

X and L¤= UX§X(I ¡ ~W )§¡1
X UT

X +UX§X(I ¡ ~W )S2;

where ~W is any idempotent matrix and S1 and S2 are any matrices satisfying:

1. V T
X S1 = 0 and S2UX = 0; and

2. rank(S1) · rank( ~W ) and rank(S2) · rank(I ¡ ~W ). A2 = A 

min
Z

rank(Z); s:t:
1

2
X = XZ:

min
L

rank(L); s:t:
1

2
X = LX:

min
Z

rank(Z); s:t: ®X = XZ:

min
L

rank(L); s:t: X̄ = LX:
®+¯= 1:



Analysis on LatLRR 

Zhang et al, A Counterexample for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank, ECML/PKDD 
2013. 

Theorem: The complete solutions to

min
Z;L

kZk¤+ kLk¤; s:t: X = XZ + LX

are as follows

Z¤= VXcWV T
X and L¤= UX(I ¡cW )UT

X ;

where cW is any block diagonal matrix satisfying:

1. its blocks are compatible with §X , i.e., if [§X ]ii 6= [§X ]jj then [cW ]ij = 0;

and

2. both cW and I ¡cW are positive semi-de n̄ite.



Robust LatLRR 

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Robust Latent Low Rank Representation for Subspace 
Clustering, Neurocomputing, Vol. 145, pp. 369-373, December 2014. 

Comparison on the synthetic data as the percentage of corruptions increases.  



Robust LatLRR 

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Robust Latent Low Rank Representation for Subspace 
Clustering, Neurocomputing, Vol. 145, pp. 369-373, December 2014. 

Table 1: Segmentation errors (%) on the Hopkins 155 data set. For robust

LatLRR, the parameter ¸ is set as 0:806=
p
n. The parameters of other methods

are also tuned to be the best.

SSC LRR RSI LRSC LatLRR Robust LatLRR

MAX 46.75 49.88 47.06 40.55 42.03 35.06

MEAN 2.72 5.64 6.54 4.28 4.17 3.74

STD 8.20 10.35 9.84 8.55 9.14 7.02



Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Relation among Some Low Rank Subspace Recovery 
Models, Neural Computation, Vol. 27, No. 9, pp. 1915-1950, 2015. 

Relationship Between LR Models 



Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Relation among Some Low Rank Subspace Recovery 
Models, Neural Computation, Vol. 27, No. 9, pp. 1915-1950, 2015. 

Relationship Between LR Models 



Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Relation among Some Low Rank Subspace Recovery 
Models, Neural Computation, Vol. 27, No. 9, pp. 1915-1950, 2015. 

Relationship Between LR Models 



Implications 

• We could obtain a globally optimal solution to other low 
rank models. 

• We could have much faster algorithms for other low rank 
models. 

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Relation among Some Low Rank Subspace Recovery 
Models, Neural Computation, Vol. 27, No. 9, pp. 1915-1950, 2015. 



Implications 
• Comparison of optimality 

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Relation among Some Low Rank Subspace Recovery 
Models, Neural Computation, Vol. 27, No. 9, pp. 1915-1950, 2015. 

Comparison of accuracies of solutions to relaxed R-LRR computed by REDU-EXPR and 
partial ADM, where the parameter  is adopted as 1/\sqrt(log n) and n is the input size. 
The program is run by 10 times and the average accuracies are reported. 



Implications 

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Relation among Some Low Rank Subspace Recovery 
Models, Neural Computation, Vol. 27, No. 9, pp. 1915-1950, 2015. 

Model Method Accuracy CPU Time (h)

LRR ADM - >10

R-LRR ADM - did not converge

R-LRR partial ADM - >10

R-LRR REDU-EXPR 61.6365% 0.4603

Table 1: Unsupervised face image clustering results on the Extended YaleB

database. REDU-EXPR means reducing to RPCA r̄st and then express the

solution as that of RPCA.

• Comparison of speed 



Implications 

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao, Relation among Some Low Rank Subspace Recovery 
Models, Neural Computation, Vol. 27, No. 9, pp. 1915-1950, 2015. 

• Comparison of optimality and speed 



O(n1) RPCA by l1-Filtering 
• Assumption: rank(A) = o(n).  

r=o(n) 

n 

D 

min kAk¤+ ķEkl1;
s:t: D = A+E:

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions 
using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014. 



O(n1) RPCA by l1-Filtering 
• First, randomly sample Dsub. 

K=cr 
n 

D 

Dsub 

min kAk¤+ ķEkl1;
s:t: D = A+E:

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions 
using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014. 



O(n1) RPCA by l1-Filtering 
• Second, solve RPCA for Dsub: Dsub=Asub+Esub.  

K=cr 
n 

D 

Dsub 

min kAsubk¤+ 1̧kEsubk1
subj Dsub = Asub +Esub:

< O(n) 
complexity ! 

min kAk¤+ ķEkl1;
s:t: D = A+E:

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions 
using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014. 



O(n1) RPCA by l1-Filtering 
• Third, find the full rank submatrix B of  Asub.  

r=o(n) 
K=cr 

n 

D 

Asub 

B 

min kAk¤+ ķEkl1;
s:t: D = A+E:

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions 
using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014. 



O(n1) RPCA by l1-Filtering 
• Fourth, correct the Kx(n-K) submatrix of D by Csub.  

r=o(n) 
K=cr 

n 

D 

Asub 

min
pc

kdc ¡ Csubpck1
dc 

O(n) 
complexity! 
Can be done 
in parallel!! 

B 

Csub 

min kAk¤+ ķEkl1;
s:t: D = A+E:

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions 
using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014. 



O(n1) RPCA by l1-Filtering 
• Fifth, correct the (n-K)xK submatrix of D by Rsub.  

r=o(n) 
K=cr 

n 

D 

Asub 

min
qr

kdr ¡ qrRsubk1

dr 

O(n) 
complexity! 
Can be done 
in parallel!! 

Rows and 
columns 

can also be 
processed 

in parallel!! 

B Rsub 

min kAk¤+ ķEkl1;
s:t: D = A+E:

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions 
using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014. 



O(n1) RPCA by l1-Filtering 
• Finally, the rest part of A is Ac=QrBPc. 

r=o(n) 
K=cr 

n 

Asub 

Pc = (p1; p2;¢¢¢; pn¡K)

Qr =

0
BB@

q1
q2
¢¢¢
qn¡K

1
CCA

D 

Ac 

B 

A compact 
representation 

of A! 

min kAk¤+ ķEkl1;
s:t: D = A+E:

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions 
using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014. 



O(n1) RPCA by l1-Filtering 
• What if the rank is unknown? 

r=o(n) 
K=cr 

n 

Asub 

D 

B 

1. If  
rank(Asub) > K/c, 
then increase K to  
c rank(Asub). 
2. Otherwise, 
resample another 
Dsub for cross 
validation. 

D’sub 

B’ 
min kAk¤+ ķEkl1;
s:t: D = A+E:

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions 
using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014. 



Experiments 
Synthetic Data

Size Method
kL0¡L¤kF
kL0kF rank(L¤) kL¤k¤ kS¤kl0 kS¤kl1 Time(s)

2000

rank(L0) = 20, kL0k¤= 39546, kS0kl0 = 40000, kS0kl1 = 998105

S-ADM 1.46 £10¡8 20 39546 39998 998105 84.73

L-ADM 4.72 £10¡7 20 39546 40229 998105 27.41

l1 1.66 £10¡8 20 39546 40000 998105 5.56 = 2.24 + 3.32

5000

rank(L0) = 50, kL0k¤= 249432, kS0kl0 = 250000, kS0kl1 = 6246093

S-ADM 7.13 £10¡9 50 249432 249995 6246093 1093.96

L-ADM 4.28 £10¡7 50 249432 250636 6246158 195.79

l1 5.07 £10¡9 50 249432 250000 6246093 42.34=19.66 + 22.68

10000

rank(L0) = 100, kL0k¤= 997153, kS0kl0 = 1000000, kS0kl1 = 25004070

S-ADM 1.23 £10¡8 100 997153 1000146 25004071 11258.51

L-ADM 4.26 £10¡7 100 997153 1000744 25005109 1301.83

l1 2.90 £10¡10 100 997153 1000023 25004071 276.54 = 144.38 + 132.16

Structure form Motion Data

4002 £ 2251

rank(L0) = 4, kL0k¤= 31160, kS0kl0 = 900850, kS0kl1 = 3603146

S-ADM 5.38 £10¡8 4 31160 900726 3603146 925.28

L-ADM 3.25 £10¡7 4 31160 1698387 3603193 62.08

l1 1.20 £10¡8 4 31160 900906 3603146 5.29 = 3.51 + 1.78

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions 
using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014. 



Experiments 

Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao, Linear time Principal Component Pursuit and its extensions 
using l1 Filtering, Neurocomputing, Vol. 142, pp. 529-541, 2014. 



Conclusions 

• Low-rank models have much richer mathematical 
properties than sparse models. 

• Closed-form solutions to low-rank models are useful in 
both theory and applications. 



Thanks! 

• zlin@pku.edu.cn 

• http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm  
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