
Multi-Armed Bandit Algorithms for
Personalized Recommendation

Tao Li (李涛)

南京邮电大学 计算机学院
School of Computer Science, Florida International University

My Research Summary

Data Mining, Information Retrieval, System Management

Practical Problems

Generic Tools

Theory/Algorithm

Tools and Libraries:

 Computing System Management

 Event Mining, Log Parser,
Visualization Tools

 SumView: Online Product Review

 iHelp: Intelligent Helpdesk

 LIBGS: Gene Selection

 Twitter Event Summarization

 Information sharing and processing
tools in disaster management

 Malware scanners

 iHR: Online Recruiting System

 FIU-Miner: A Fast, Integrated, and
User-Friendly System for Data Mining
in Distributed Environment

Research Issues:

 Matrix-based Learning
Framework

 Semi-supervised Learning

 Learning from heterogeneous
data types

 Log/Event mining

 Stream data mining

 Incremental/online ming

 Large-scale data analysis

Applications:

 System Analytics

 Computing System Management,
Intelligent Malware Detection

 Cloud Analytics

 Capacity Planning, Demand Prediction

 Social Media Analytics

 Sentiment analysis, influential user
identification

 Service Analytics

Intelligent helpdesk, Cloud Service
Marketplace, recommendation

 Music Information Retrieval

 Text Mining

Document categorization & summarization

 Disaster Management

 Bioinformatics

Who?

When?

Where?

What?

Recommender Systems

• User

• News

• Product

• Movie

• Music

• Photo

• Location

Outline

 Introduction

 Motivation

 Contextual-free Bandit Algorithms

 Contextual Bandit Algorithms

 Our Recent Studies
 Ensemble Contextual Bandits for Personalized Recommendation

 Personalized Recommendation via Parameter-Free Contextual Bandits

 Future Work

 Q&A

What is Personalized
Recommendation?
 Personalized Recommendation

help users find interesting items
based the individual interest of
each item.
 Ultimate Goal: maximize user

engagement.

What is Cold Start Problem?

 Do not have enough observations for new items or new users.
 How to predict the preference of users if we do not have data?

 Many practical issues for offline data
 Historical user log data is biased.

 User interest may change over time.

Approach: Multi-armed
Bandit Algorithm

 A gambler walks into a casino

 A row of slot machines providing
a random rewards

Objective: Maximize the sum of
rewards(Money)!

Example: News Personalization

 Recommend news
based on users’
interests.

 Goal: Maximize user’s
Click-Through-Rate.

[1] Li, Lihong, et al. "A contextual-bandit approach to personalized news article recommendation." Proceedings of
the 19th international conference on World wide web. ACM, 2010.

reference/A contextual-bandit approach to personalized news article recommendation.pdf

Example: News Personalization

 There are a bunch of articles in the news pool

 Users come sequentially and ready to be entertained

News articles

[1] Zhou Li, “News personalization with Multi-armed bandits”.

Example: News Personalization

 At each time, we want to select one article for user.

news articles

article 1

Like it?

MABs

Example: News Personalization

 Goal: maximum CTR.

MABs

news articles

article 1

Like it?

Not really!

Example: News Personalization

 Update the model with user’s feedback

MABs

news articles

article 1

Like it?

Not really!

feedback

Example: News Personalization

• Update the model once given the feedback

MABs

news articles

article 2

Like it?

Yeah!

Example: News Personalization

 Update the model once given the feedback

MABs

news articles

article 2

Like it?

Yeah!

feedback

How about
article 3,4,5…?

Multi-Armed Bandit (MAB)
Definition

 The MAB problem is a classical paradigm in Machine Learning
in which an online algorithm choses from a set of strategies in
a sequence of trials so as to maximize the total payoff of the
chosen strategies[1].

[1] http://research.microsoft.com/en-us/projects/bandits/

http://research.microsoft.com/en-us/projects/bandits/

Application: Clinical Trial

[1] Einstein, A., B. Podolsky, and N. Rosen, 1935, “Can quantum-mechanical description of physical reality be considered
complete?”, Phys. Rev. 47, 777-780

 Two treatments with unknown effectiveness

reference/Can quantum-mechanical description of physical reality be considered complete .pdf

Web advertising

[1] Tang L, Rosales R, Singh A, et al. Automatic ad format selection via contextual bandits[C], Proceedings of the 22nd ACM
international conference on Conference on information & knowledge management. ACM, 2013: 1587-1594.

 Where to place the ad?

reference/Automatic ad format selection via contextual bandit.pdf

Playing Golf with multi-balls

[1] Dumitriu, Ioana, Prasad Tetali, and Peter Winkler. "On playing golf with two balls." SIAM Journal on Discrete
Mathematics 16.4 (2003): 604-615.

reference/On playing golf with two balls.pdf
reference/On playing golf with two balls.pdf

Multi-Agent System

[1] Ny, Jerome Le, Munther Dahleh, and Eric Feron. "Multi-agent task assignment in the bandit framework." Decision and
Control, 2006 45th IEEE Conference on. IEEE, 2006.

 K agents tracking N (N > K) targets:

reference/Multi-agent task assignment in the bandit framework.pdf

Some Jargon Terms[1]

 Arm: one idea/strategy

 Bandit: A group of ideas(strategies)

 Pull/Play/Trial: One chance to try your strategy

 Reward: The unit of success we measure after each pull

 Regret: Performance Metric

 Learning through experimentation

[1] Bandit Algorithms for Website Optimization Developing, Deploying, and Debugging By John Myles
White, O'Reilly Media,2012

http://shop.oreilly.com/product/0636920027393.do

K-Armed Bandit

 Each Arm a
 Wins(reward=1) with fixed(unknown) prob. 𝜇𝑎
 Loses(reward=0) with fixed(unknown) prob. (1 − 𝜇𝑎)

 How to pull arms to maximize total reward?(estimate the
arm’s prob. of winning 𝜇𝑎)

Model of K-Armed Bandit

 Set of 𝒌 choices(arms)

 Each choice a is associated with unknown probability
distribution 𝑷𝒂 in [0, 1]

 We play the game for T rounds

 In each round t :

 We pick some arm j

 We obtain random sample 𝑿𝒕 from 𝑷𝒋

 Goal: maximize 𝑡=1
𝑇 𝑿𝒕 (without known 𝜇𝑎)

 However, every time we pull some arm a we get to learn a bit
about 𝜇𝑎.

Performance Metric: Regret

 Let be 𝜇𝑎 the mean of 𝑷𝒂
 Payoff/reward best arm: 𝜇∗ = 𝒎𝒂𝒙 𝜇𝑎 𝒂 = 𝟏,… , 𝒌}

 Let 𝑖1, … 𝑖𝑇 be the sequence of arms pulled

 Instantaneous regret at time t: 𝑟𝑡= 𝜇
∗ − 𝜇 𝑎𝑖𝑡

 Total regret:

 𝑹𝑻 = 𝑡=1
𝑇 𝒓𝒕

 Typical goal: arm allocation strategy that guarantees :

𝑹𝑻

𝑇
→ 0 as T → ∞

Allocation Strategies

 If we knew the payoffs, which arm should we pull?

 best arm: 𝜇∗ = 𝒎𝒂𝒙 𝜇𝑎 𝒂 = 𝟏,… , 𝒌}

 What if we only care about estimating payoff 𝜇𝑎?

 Pick each of k arms equally often :
𝑻

𝑘

 Estimate : 𝜇𝑎 = 𝑗=1

𝑇

𝑘 𝑋𝑎,𝑗 /(
𝑻

𝑘
)

𝒌

𝑇
 𝑗=1
𝑇/𝑘
𝑋𝑎,𝑗

 Total regret:

 𝑹𝑻 =
𝑻

𝑘
 𝑎=1
𝑘 (𝜇∗− 𝜇𝑎)

Exploitation vs. Exploration
 Tradeoff:

 Only exploitation(making decisions based on history data),
you will have bad estimation for “best” items.
 Exploitation: Pull an arm currently having the highest estimate

 Only exploration(gathering data about arm payoffs), you
will have low user’s engagement.
 Exploration: Pull an arm never pulled before

Algorithm to Exploration & Exploitation

Exploration Exploitation

Contextual
free

Contextual

1. Epsilon algorithm[1]
2. UCB1[2]

1. Ex3, Ex4
2. Tompson Sampling[3]
3. LinUCB[4]

tradeoff

[1] Wynn P. On the convergence and stability of the epsilon algorithm[J]. SIAM Journal on Numerical Analysis, 1966, 3(1): 91-122.
[2] Auer P, Cesa-Bianchi N, Fischer P. Finite-time analysis of the multi-armed bandit problem[J]. Machine learning, 2002, 47(2-3): 235-
256.
[3] Agrawal S, Goyal N. Analysis of Thompson sampling for the multi-armed bandit problem[J]. arXiv preprint arXiv:1111.1797, 2011.
[4] Li, Lihong, et al. "A contextual-bandit approach to personalized news article recommendation." Proceedings of the 19th international
conference on World wide web. ACM, 2010.

reference/On the convergence and stability of the epsilon algorithm.pdf
reference/Finite-time analysis of the multi-armed bandit problem.pdf
reference/Analysis of Thompson Sampling for the Multi-armed Bandit Problem.pdf
reference/A contextual-bandit approach to personalized news article recommendation.pdf

Contextual and Contextual- Free
• Contextual

– Every round receives context

– User features, arm/item features (e.g., articles
reviewed before) at each trial

– Select items to users based on contextual
information about the user and the items

– Bandits with covariate, bandits with side
information, associative bandits

• Contextual-free

– Both the arm set and contexts are constant at every
trial 28

 It tries to be fair to the two opposite goals of exploration(with
prob. 휀) and exploitation(1-휀) by using a mechanism: flips a
coin.

𝜀-Greedy Algorithm

Round
t

Exploration

Exploitation
(choose best arm)

𝜺

1-𝜺

Arm 𝑎 ∗

Arm 𝑎

1/k

1-𝜺

𝜺/k

Arm 𝑏

𝜺/k
1/k

 For t=1:T

 Set 휀𝑡 = 𝑂
1

𝑡

 With prob. 휀𝑡: Explore by picking an arm chosen
uniformly at random

 With prob. 1-휀𝑡: Exploit by picking an arm with
highest empirical mean payoff

 Theorem [Auer et al. ‘02]
 For suitable choice of 휀𝑡 it holds that

𝜀-Greedy Algorithm

 Not elegant” : Algorithm explicitly distinguishes between
exploration and exploitation

 More importantly: Exploration makes suboptimal
choices(since it picks any arm equally likely)

 Idea: When exploring/exploiting we need to compare arms.

Issues with 𝜀-Greedy
Algorithm

Example : Comparing Arms

 Suppose we have done experiments :
 Arm 1: 1 0 0 1 1 1 0 0 0 1
 Arm 2: 1
 Arm 3: 1 1 0 1 0 0 1 1 1 1

 Mean arm values:
 Arm 1: 5/10 Arm 2: 1 Arm 3: 7/10

 Which arm would you choose next?
 Idea: Not only look at the mean but also the

confidence!

Confidence Intervals

 A confidence interval is a range of values within which
we are sure the mean lies with a certain probability
 We could believe 𝜇𝑎 is within [0.2,0.5] with

probability 0.95
 If we would have tried an action less often, our

estimated reward is less accurate so the confidence
interval is larger

 Interval shrinks as we get more information (try the
action more often)

Confidence Based Selection

 Assuming we know the confidence intervals
 Then, instead of trying the action with the highest mean we can

try the action with the highest upper bound on its confidence
interval.

Confidence intervals vs Sampling
times

The estimation of confidence becomes smaller as the number of pulling times
increases.

[1] Jean-Yves Audibert and Remi Munos, Introduction to Bandits: Algorithms and Theory. ICML 2011,
Bellevue(WA), USA

reference/Introduction to Bandits Algorithms and Theory.pdf

Calculating Confidence Bounds

 Suppose we fix arm a:
 Let 𝑟𝑎,1 … 𝑟𝑎,𝑚 be the payoffs of arm a in the first m

trials
 𝑟𝑎,1 … 𝑟𝑎,𝑚 are i.i.d. taking values in [0,1]

 Our estimate : 𝜇𝑎,𝑚 =
𝟏

𝑚
 𝑗=1
𝑚 𝑟𝑎,𝑗

 Want to find b such that with high probability

𝜇𝑎 − 𝜇𝑎,𝑚 ≤ 𝑏 (want b to be as small as possible)

 Goal : Want to bound 𝐏(𝜇𝑎 − 𝜇𝑎,𝑚 ≤ 𝑏)

UCB1 Algorithm

Hoeffding’s Inequality

 UCB1 (Upper confidence sampling) algorithm
 Let 𝜇1… = 𝜇𝑘 = 0 and 𝑚1 = … = 𝑚𝑘 = 0

 𝜇𝑎 is our estimate of payoff of arm 𝑎
 𝑚𝑎 is the number of pulls of arm 𝑎 so far.

 For t = 1 : T

 For each arm a calculate UCB a = 𝜇𝑎 + 𝛼
2ln𝑡

𝑚𝑎

 Pick arm 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑈𝐶𝐵(𝑎)
 Pull arm 𝑗 and observe 𝑦𝑡
 𝑚𝑗 = 𝑚𝑗 + 1 and 𝜇𝑗 = 1/𝑚𝑗(𝑦𝑡+(𝑚𝑗−1) 𝜇𝑗)

Hoeffding’s Inequality

38[1] CS246 Mining Massive Data Sets 2015, Stanford University

UCB1 Algorithm: Discussion

 Confidence interval grows with the total number of
actions t we have taken

 But Shrinks with the number of times 𝑚𝑎 we have tried
arm a

 This ensures each arm is tried infinitely often but still
balances exploration and exploitation

 𝛼 plays the role of 𝛿: 𝛼 = f
2

𝛿
= 1 + ln(2/𝛿)

2

 For each arm a calculate UCB a = 𝜇𝑎 + 𝛼
2ln𝑡

𝑚𝑎

 Pick arm 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑈𝐶𝐵(𝑎)
 Pull arm 𝑗 and observe 𝑦𝑡
 𝑚𝑗 = 𝑚𝑗 + 1 and 𝜇𝑗 = 1/𝑚𝑗(𝑦𝑡+(𝑚𝑗−1) 𝜇𝑗)

UCB1 Algorithm Performance

 Theorem [Auer et al. 2002]
 Suppose optimal mean payoff is
 And for each arm let
 Then it holds that

 So, we get

Quick Summary

• Multi-armed bandit problem as a formalization
the exploration-exploitation tradeoff

• Simple algorithms for context-free bandits are
able to achieve no regret (in the limit)

– 𝜀-Greedy

– UCB (Upper Confidence Sampling)

41

Contextual Bandits

 Contextual bandit algorithm in round t
 Algorithm observers user 𝒖𝒕 and a set 𝐀 of arms

together with their features 𝒙𝒕,𝒂(context)
 Based on payoffs from previous trials, algorithm

chooses arm 𝒂 ∈ 𝐀 and receives payoff 𝒓𝒕,𝒂
 Algorithm improves arm selection strategy with each

observation(𝒙𝒕,𝒂, 𝒂, 𝒓𝒕,𝒂)

LinUCB Algorithm[1]

 Contextual bandit algorithm in round t
 Algorithm observers user 𝒖𝒕 and a set 𝐀 of arms

together with their features 𝒙𝒕,𝒂(context)
 Based on payoffs from previous trials, algorithm

chooses arm 𝒂 ∈ 𝐀 and receives payoff 𝒓𝒕,𝒂
 Algorithm improves arm selection strategy with each

observation(𝒙𝒕,𝒂, 𝒂, 𝒓𝒕,𝒂)

[1] Li, Lihong, et al. "A contextual-bandit approach to personalized news article recommendation." Proceedings
of the 19th international conference on World wide web. ACM, 2010.

reference/A contextual-bandit approach to personalized news article recommendation.pdf

LinUCB Algorithm

 Expectation of reward of each arm is modeled as a linear
function of the context.

Payoff of arm a : E 𝑟𝑡,𝑎 𝑥𝑡,𝑎 = [𝑥𝑡,𝑎]
𝑇𝜃𝑎
∗

 The goal is to minimize regret, defined as the difference
between the expectation of the reward of best arms and
the expectation of the reward of selected arms.

𝑅𝑡 𝑇 ≝ 𝐸

𝑡=1

𝑇

𝑟𝑡,𝑎𝑡∗ − 𝐸[

𝑡=1

𝑇

𝑟𝑡,𝑎𝑡]

𝒙𝒕,𝒂 is a d-dimensional feature vector

𝜽𝒂
∗ is the unknown coefficient vector we aim to learn

LinUCB Algorithm

 E 𝑟𝑡,𝑎 𝑥𝑡,𝑎 = [𝑥𝑡,𝑎]
𝑇𝜃𝑎
∗

 How to estimate 𝜃𝑎?
 Linear regression solution to 𝜃𝑎 is

 𝜽𝒂 = 𝒂𝒓𝒈𝒎𝒊𝒏𝜽 𝒎∈𝑫𝒂([𝑥𝑡,𝑎]
𝑇𝜃𝑎 − 𝒃𝒂

(𝒎)
)2

We can get:
 𝜽𝒂 = (𝑫𝒂

𝑻𝑫𝒂 + 𝑰𝒅)
−𝟏 𝑫𝒂

𝑻𝒃𝒂

𝑫𝒂 is a m × d matrix of m
training inputs [𝑥𝑡,𝑎]

𝒃𝒂 is a m-dimension vector of
responses to 𝒂(click/no-click)

LinUCB Algorithm

 Using similar techniques as we used for UCB

|[𝑥𝑡,𝑎]
𝑇 𝜽𝒂 − E 𝑟𝑡,𝑎 𝑥𝑡,𝑎 | ≤ 𝜶 [𝑥𝑡,𝑎]

𝑇(𝑫𝒂
𝑻𝑫𝒂 + 𝑰𝒅)

−𝟏𝑥𝑡,𝑎

 For a given context, we estimate the reward and the
confidence interval.

𝒂𝒕 ≝ 𝒂𝒓𝒈𝒎𝒂𝒙𝒂∈𝑨𝒕([𝑥𝑡,𝑎]
𝑇 𝜽𝒂 + 𝜶 [𝑥𝑡,𝑎]

𝑇(𝑫𝒂
𝑻𝑫𝒂 + 𝑰𝒅)

−𝟏𝑥𝑡,𝑎)

𝜶 = 𝟏 + 𝒍𝒏(𝟐/𝜹)/𝟐

Estimated 𝜇𝑎 Confidence interval

LinUCB Algorithm
 Initialization: 𝐴𝑎 ≝ 𝑫𝒂

𝑻𝑫𝒂 + 𝑰𝒅
 For each arm 𝑎:

 𝐴𝑎 = 𝐼𝑑 //identity matrix d×d

 𝑏𝑎 = [0]𝑑 //vector of zeros

 Online algorithm:
 For t=[1:T]:

 Observe features for all arms 𝑎 ∶ 𝑥𝑡,𝑎 ∈ 𝑅
𝑑

 For each arm 𝑎 ∶
 𝜃𝑎 = 𝐴𝑎

−1𝑏𝑎 //regression coefficients

 𝑝𝑡,𝑎 = [𝑥𝑡,𝑎]
𝑇𝜃𝑎 + 𝜶 [𝑥𝑡,𝑎]

𝑇𝐴𝑎
−1𝑥𝑡,𝑎

 Choose arm 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑝𝑡,𝑎 //choose arm

 𝐴𝑎𝑡 = 𝐴𝑎𝑡 + 𝑥𝑡,𝑎𝑡[𝑥𝑡,𝑎𝑡]
𝑇 //update A for the chosen arm 𝑎𝑡

 𝑏𝑎𝑡 = 𝑏𝑎𝑡 + 𝑟𝑡 𝑥𝑡,𝑎𝑡 //update b for the chosen arm 𝑎𝑡

Different between UCB1
and LinUCB

 UCB1 directly estimates 𝜇𝑎 through experimentation
(without any knowledge about arm a)

 LinUCB estimates 𝜇𝑎 by regression 𝜇𝑎 = [𝑥𝑡,𝑎]
𝑇𝜽𝒂
∗

 The hope is that we will be able to learn faster as
we consider the context 𝑥𝑎(user, ad) of arm a

 𝜽𝒂
∗ unknown coefficient vector we aim to learn

LinUCB: Discussion

 LinUCB computational complexity is
 Linear in the number of arms and
 At most cubic in the number of features

 LinUCB works well for a dynamic arm set(arms come and
go)
 For example, in news article recommendation, for

instance, editors add/remove articles to/from a pool

Thompson Sampling

 A simple natural Bayesian heuristic
 Maintain a belief(distribution) for the unknown

parameters
 Each time, pull arm a and observe a reward 𝑟

 Initialize priors using belief distribution
 For t=1:T:

 Sample random variable X from each arm’s belief
distribution

 Select the arm with largest X
 Observe the result of selected arm
 Update prior belief distribution for selected arm

[1] Agrawal S, Goyal N. Analysis of Thompson sampling for the multi-armed bandit problem[J]. arXiv preprint arXiv:1111.1797,

2011.

reference/Analysis of Thompson Sampling for the Multi-armed Bandit Problem.pdf

Simple Example

 Coin toss: x ̴ Bernoulli(𝜃)
 Let’s assume that

 𝜃 ̴ Beta(𝛼𝐻 , 𝛼𝑇)
 P(𝜃) ∝ 𝜃𝛼𝐻−1 (1 − 𝜃)𝛼𝑇−1

 𝑃 𝜃 𝑋 =
𝑃 𝑋 𝜃 𝑃(𝜃)
 𝜃 𝑃(𝑋|𝜃)

Posterior

Prior

Beta distribution

The prior is conjugate!

Thompson Sampling
Using Beta belief distribution
 Theorem [Emilie et al. 2012]

 Initially assumes arm 𝒊 with prior Beta(1,1) on 𝝁𝒊
 𝑆𝑖 = #“Success”, 𝐹𝑖= #“Failure”

 This posterior distribution could then be used as the
prior for more samples, with the hyperparameters
simply adding each extra piece of information as it
comes.

Thompson Sampling
Using Beta belief distribution

Arm 1 Arm 2 Arm 3

Beta(1,1) Beta(1,1) Beta(1,1)

 Initialization

Thompson Sampling
Using Beta belief distribution

Arm 1 Arm 2 Arm 3

Beta(1,1) Beta(1,1) Beta(1,1)

X 0.7 0.2 0.4

 For each round:
 Sample random variable X from each arm’s Beta

Distribution

Thompson Sampling
Using Beta belief distribution

Arm 1 Arm 2 Arm 3

Beta(1,1) Beta(1,1) Beta(1,1)

X 0.7 0.2 0.4

 For each round:
 Sample random variable X from each arm’s Beta

Distribution
 Select the arm with largest X

Thompson Sampling
Using Beta belief distribution

Arm 1 Arm 2 Arm 3

Beta(1,1) Beta(1,1) Beta(1,1)

X 0.7 0.2 0.4

 For each round:
 Sample random variable X from each arm’s Beta

Distribution
 Select the arm with largest X
 Observe the result of selected arm

Success!

Thompson Sampling
Using Beta belief distribution

Arm 1 Arm 2 Arm 3

Beta(2,1) Beta(1,1) Beta(1,1)

X 0.7 0.2 0.4

 For each round:
 Sample random variable X from each arm’s Beta

Distribution
 Select the arm with largest X
 Observe the result of selected arm
 Update prior Beta distribution for selected arm

Success!

Our Recent Research Studies

• Ensemble Contextual Bandits for Personalized
Recommendation (RecSys 2014)

• Parameter-free Contextual Bandits for
Personalized Recommendation (SIGIR 2015)

58

Ensemble Contextual Bandits
for Personalized Recommendation

[1] Tang, Liang, et al. "Ensemble contextual bandits for personalized recommendation." Proceedings of the 8th ACM Conference
on Recommender systems. ACM, 2014.

reference/Ensemble contextual bandits for personalized recommendation.pdf

Problem Statement

 Problem Setting: have many different recommendation
models (or policies):

 Different CTR Prediction Algorithms.

 Different Exploration-Exploitation Algorithms.

 Different Parameter Choices.

 No data to do model validation

 Problem Statement: how to build an ensemble model that is
close to the best model in the cold start situation ?

How Ensemble?

 Classifier ensemble method does not work in this setting

 Recommendation decision is NOT purely based on the
predicted CTR.

 Each individual model only tells us:

 Which item to recommend.

Not appropriate to adopt majority voting or
consensus prediction as the ensemble

Ensemble Method

 Our Method:

 Allocate recommendation chances to individual models.

 Problem:

 Better models should have more chances.

 We do not know which one is good or bad in advance.

 Ideal solution: allocate all chances to the best one.

Current Practice: Online
Evaluation (or A/B testing)

 Let π1, π2 … πm be the individual models.

 Deploy π1, π2 … πm into the online system at the same
time.

 Dispatch a small percent user traffic to each model.

 After a period, choose the model having the best CTR as
the production model.

Current Practice: Online
Evaluation (or A/B testing)

 Let π1, π2 … πm be the individual models.

 Deploy π1, π2 … πm into the online system at the same
time.

 Dispatch a small percent user traffic to each model.

 After a period, choose the model having the best CTR as
the production model.

If we have too many models, this will hurt the
performance of the online system.

Our Idea 1 (HyperTS)

 The CTR of model πi is a random unknown variable, Ri .

 Goal:

 maximize ,
rt is a random number drawn from Rs(t), s(t)=1,2,…, or m.
For each t=1,…,N, we decide s(t).

 Solution:

 Bernoulli Thompson Sampling (flat prior: beta(1,1)) .

 π1, π2 … πm are bandit arms.

1

N
rt

t=1

N

å CTR of our ensemble model

No tricky parameters

An Example of HyperTS

In memory, we keep these

estimated CTRs for π1, π2 … πm.

R1

R2

Rk

…

Rm

…

An Example of HyperTS
A user visit

HyperTS selects a
candidate model, πk .

Estimated CTRs

R1

R2

Rk

…

Rm

…

An Example of HyperTS
A user visit

HyperTS selects a
candidate model, πk .

πk recommends item A to
the user.

A

xt:: context
features

Estimated CTRs

R1

R2

Rk

…

Rm

…

An Example of HyperTS
A user visit

HyperTS selects a
candidate model, πk .

πk recommends item A to
the user.

A

xt:: context
features

Estimated CTRs

R1

R2

Rk

…

Rm

…
HyperTS updates the

estimation of Rk based on rt.

update

Two-Layer Decision

Bernoulli Thompson
Sampling

π1 π2 πmπk

Item A Item B Item C

… …

Our Idea 2 (HyperTSFB)

 Limitation of Previous Idea:

 For each recommendation, user feedback is used by only
one individual model (e.g., πk).

 Motivation:

 Can we update all R1, R2, …, Rm by every user feedback?
(Share every user feedback to every individual model).

Our Idea 2 (HyperTSFB)

 Assume each model can output the probability of
recommending any item given xt.

 E.g., for deterministic recommendation, it is 1 or 0.

 For a user visit xt:

 πk is selected to perform recommendation (k=1,2,…, or m).

 Item A is recommended by πk given xt.

 Receive a user feedback (click or not click), rt.

 Ask every model π1, π2 … πm, what is the probability of
recommending A given xt.

Our Idea 2 (HyperTSFB)

 Assume each model can output the probability of
recommending any item given xt.

 E.g., for deterministic recommendation, it is 1 or 0.

 For a user visit xt:

 πk is selected to perform recommendation (k=1,2,…, or m).

 Item A is recommended by πk given xt.

 Receive a user feedback (click or not click), rt.

 Ask every model π1, π2 … πm, what is the probability of
recommending A given xt.

Estimate the CTR of π1, π2 … πm

(Importance Sampling)

Experimental Setup

 Experimental Data

 Yahoo! Today News data logs (randomly displayed).

 KDD Cup 2012 Online Advertising data set.

 Evaluation Methods

 Yahoo! Today News: Replayer (see Lihong Li et. al’s WSDM
2011 paper).

 KDD Cup 2012 Data: Simulation by a Logistic Regression
Model.

reference/Ensemble contextual bandits for personalized recommendation.pdf

Comparative Methods

 CTR Prediction Algorithm

 Logistic Regression

 Exploitation-Exploration Algorithms

 Random, ε-greedy, LinUCB, Softmax, Epoch-greedy,
Thompson sampling

 HyperTS and HyperTSFB

Results for Yahoo! News Data

 Every 100,000 impressions are aggregated into a bucket.

Results for Yahoo! News Data
(Cont.)

Conclusions

 The performance of baseline exploitation-exploration
algorithms is very sensitive to the parameter setting.

 In cold-start situation, no enough data to tune parameter.

 HyperTS and HyperTSFB can be close to the optimal baseline
algorithm (No guarantee be better than the optimal one),
even though some bad individual models are included.

 For contextual Thompson sampling, the performance depends
on the choice of prior distribution for the logistic regression.
 For online Bayesian learning, the posterior distribution

approximation is not accurate(cannot store the past data).

Personalized Recommendation via
Parameter-Free Contextual Bandits

[1] Tang, Liang, et al. "Personalized recommendation via parameter-free contextual bandits." Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2015.

reference/Personalized recommendation via parameter-free contextual bandits.pdf

How to Balance Tradeoff

 Performance is mainly determined by the tradeoff. Existing
algorithms find the tradeoff by user input parameters and
data characteristics (e.g., variance of the estimated reward).

 Existing algorithms are all parameter-sensitive.

An
algorithm

Bad

Goodalgorithm parameter is good

algorithm parameter is bad

Chicken-and-Egg Problem for
Existing Bandit Algorithms

 Why we use bandit algorithms?

 Solve the cold start problem (No enough data for
estimating user preferences).

 How to find the best input parameters?

 Tune the parameters online or offline.

if you already have the data or online traffic to
tune the parameters, why do you need bandit

algorithms?

Our Work

 Parameter-free:

 It can find the tradeoff by data characteristics
automatically.

 Robust:

 Existing algorithm can have very bad performance if the
input parameter is not appropriate.

Solution

 Thompson Sampling

 Randomly selecting a model coefficient vector from
posterior distribution and find the “best” item.

 Prior is the input parameter for computing posterior.

 Non-Bayesian Thompson Sampling (Our Solution)

 Randomly selecting a bootstrap sample to find the MLE of
model coefficient and find the “best” item.

 Bootstrapping has no input parameter.

Bootstrap Bandit Algorithm

Input : a feature vector x of the context.
Algorithm:

if each article has sufficient observations then {

for each article i=1,…, k

i. Di randomly sample nk impression data of article i with

replacement // Generate a bootstrap sample

ii. θi MLE coefficient of Di // Model estimation on bootstrap sample

select the article i* = argmax(f(x, θi)), i=1,…, k. to show.

}

else

{

randomly select an article that has no sufficient observations to show.

}

Prediction function

Online Bootstrap Bandits

 Why Online Bootstrap?

 Inefficient to generate a bootstrap sample for each
recommendation.

 How to online bootstrap?

 Keep the coefficient estimated by each bootstrap sample
in memory.

 No need to keep all bootstrap samples in memory.

 When a new data arrives, incrementally update the
estimated coefficient for each bootstrap sample [1].

[1] N. C. Oza and S. Russell. Online bagging and boosting. In IEEE international conference on Systems, man and cybernetics,
volume 3, pages 2340–2345, 2005.

reference/Online bagging and boosting.pdf

Experiment Data

 Two public data sets

 News recommendation data (Yahoo! Today News)

 News displayed on the Yahoo! Front Page from Oct. 2nd,
2011 to Oct. 16th 2011.

 28,041,015 user visit events.

 136 dimensions of feature vector for each event.

 Online advertising data (KDD Cup 2012, Track 2)

 The data set is collected by a search engine and
published by KDD Cup 2012.

 1 million user visit events.

 1,070,866 dimensions of the context feature vector.

Offline Evaluation Metric and
Methods

 Setup

 Overall CTR (average reward of a trial).

 Evaluation Method

 The experiment on Yahoo! Today News is evaluated by the
replay method [1].

 The reward on KDD Cup 2012 AD data is simulated with a
weight vector for each AD [2].

[1] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-based news article recommendation
algorithms. In WSDM, pages 297–306, 2011.
[2] O. Chapelle and L. Li. An empirical evaluation of thompson sampling. In NIPS, pages 2249–2257, 2011.

reference/Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms.pdf
reference/An empirical evaluation of thompson sampling.pdf

Experimental Methods
 Our method

 Bootstrap(B), where B is the number of bootstrap samples.

 Baselines
 Random: it randomly selects an arm to pull.

 Exploit: it only consider the exploitation without exploration.

 ε-greedy(ε): ε is the probability of exploration.

 LinUCB(α): it pulls the arm with largest score defined by the parameter
α

 TS(q0): Thompson sampling with logistic regression, where q0
-1 is the

prior variance, 0 is the prior mean.

 TSNR(q0): Similar to TS(q0), but the logistic regression is not regularized
by the prior.

Experiment(Yahoo! News Data)
 All numbers are relative to the random model.

Experiment(AD KDD Cup’12)
 All numbers are relative to the random model.

CTR over Time Bucket (Yahoo!
News Data)

CTR over Time Buckets (KDD
Cup Ads Data)

Efficiency
 Time cost on different bootstrap sample sizes

Summary of Experiment

 For solving the contextual bandit problem, the algorithms
of є-greedy and LinUCB can achieve the optimal
performance, but the input parameters that control the
exploration need to be tuned carefully.

 The probability matching/Thomson Sampling strategies
highly depend on the selection of the prior.

 Our proposed algorithm is a safe choice of building
predictive models for contextual bandit problems under
the scenario of cold-start.

Conclusion

 Propose a non-Bayesian Thompson Sampling method to solve
the personalized recommendation problem.

 Give both theoretical and empirical analysis to show that the
performance of Thompson sampling depends on the choice of
the prior.

 Conduct extensive experiments on real data sets to
demonstrate the efficacy of the proposed method and other
contextual bandit algorithms.

Future Work

 MAB with similarity information
 MAB in a changing environment
 Explore-exploit tradeoff in mechanism design
 Explore-exploit learning with limited resources
 Risk vs. reward tradeoff in MAB

[1] http://research.microsoft.com/en-us/projects/bandits/

http://research.microsoft.com/en-us/projects/bandits/

Acknowledgements

• Funding

–NSF
–Department of Homeland Security
–Army Research Office
–Faculty Research Awards from Industry

• Ph.D. Students working on recommendation
systems
– Dr. Lei Li (Samsung Research)
– Dr. Yexi Jiang (Facebook)
– Dr. Liang Tang (LinkedIn)
– Dr. Chao Shen (Amazon)
– Dr. Dingding Wang (Florida Atlantic University)
– Qing Wang (FIU)
– Chunqiu Zeng (FIU)

谢 谢 ！

Email: taoli@cs.fiu.edu
http://www.cs.fiu.edu/~taoli

mailto:taoli@cs.fiu.edu

Bandit Algorithm: simple greedy
• Regret is defined in terms of average reward

• So if we can estimate avg. reward, we can minimize
regret

• Consider a greedy algorithm that takes the arm with
the highest avg. reward

– Example:
• Arm1 has reward 1 with prob. 0.2

• Arm 2 has reward 1 with prob. 0.8

– Play A1, get reward 1

– Play A2, get reward 0

– Now avg. reward of A1 will never drop to 0,and we will never
play A2

