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Era of Big Data and Big Model
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Search engine index: 
1010 pages (1012 tokens)

Search engine logs: 1012

impressions and 109 clicks 
every year

Social networks: 109

nodes and 1012 edges

Peacock: LDA with 105 topics 
(1010 parameters); More topics 
 better performance in click 
predictions

DistBelief: DNN with 1010 weights; 
Deeper and larger networks 
better performance with sufficient 
training data.

Human brain: 1011 neurons and 
1015 connections, much larger 
than any existing ML model.



Existing Approach to Big Machine Learning
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Iterative MapReduce /AllReduce

• Only synchronous updates (BSP,
MA, ADMM), poor efficiency on 
heterogeneous clusters

• Only data parallelism, cannot 
handle big models

Parameter Server

• Support asynchronous updates; better 
efficiency on heterogeneous clusters

• Support model parallelism, but inefficient, 
especially on heterogeneous clusters.

• Only support fixed-structure models
• “sum”, “average”, and “addition” as 

atomic aggregation operations

• Parallelization of existing machine 
learning algorithms using either 
MapReduce or Parameter Server



Iterative MAP-Reduce
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BSP, ADMM and Model Average

2015/11/7 MLA 2015 5

min
𝒘
 

𝑖=1

𝑁

𝐿𝑖 𝑤

s. t. 𝑤𝑖 − 𝒛 = 𝟎, 𝑖 = 1,… ,𝑁

𝒘𝑖
𝑡+1 = argmin

𝒘𝑖
{ 

𝑖

(𝐿𝑖 𝒘𝑖 + (𝝀𝑖
𝑡)𝑇 𝑤𝑖 − 𝒛

𝑡 +
𝜌

2
𝑤𝑖 − 𝒛

𝑡
2
2) }

𝒛𝒕+1 =
1

𝑁
 

𝑖=1

𝑁

(𝒘𝑖
𝑡+1 +
1

𝜌
𝝀𝑖
𝑡)

𝝀𝑖
𝑡+1 = 𝝀𝑖

𝑡 + 𝜌(𝒘𝑖
𝑡+1 − 𝒛𝑡+1)

𝒛𝑡+1 =
1

𝑁
 

𝑖=1

𝑁

𝒘𝑖
𝑡

𝒘𝑖
𝑡+1 = 𝒛𝑡+1

min
𝒘
 

𝑖=1

𝑁

𝐿𝑖 𝑤

𝑤𝑖
𝑡 = 𝑤𝑡

∆𝑤𝑖
𝑡 = −𝜂𝑡𝛻𝐿𝑖(𝑤𝑖

𝑡)

𝑤𝑡+1 = 𝑤𝑡 + 

𝑖

∆𝑤𝑖
𝑡



Parameter Server
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Worker 1

Worker 2

Worker 3

Worker 4

∆𝜔1
2 𝜔

Time

Parameter ServerWorkers push update to 
parameter server and/or 
pull latest parameter back

ASP: Asynchronous Parallel



Worker 1

Worker 2

Worker 3

Worker 4

∆𝜔1
2 𝜔

Time

Finished Iteration# = 6

Finished Iteration# = 2

When staleness=4, worker 
3 will wait here for worker 
1 to catch up.

Parameter ServerWorkers push update to 
parameter server and/or 
pull latest parameter back

SSP: Stale Synchronous Parallel



Model Parallelism
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Limitations of Existing Approaches

• Scalability
• Hard to train a topic model with millions of topics, or a DNN model with 

trillions of weights.

• Efficiency
• 2+ days for 3000 CPU cores to finish the training of Peacock LDA.

• 3 days for 16,000 CPU cores to finish the training of DistBelief DNN.

• Flexibility
• Not many other big models beyond LDA and DNN were extensively studied in 

the literature.
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• Web data (trillions of tokens)

• Click logs (trillions of impressions)

• Social networks (trillions of edges)

• Gradient boosting trees

• Decision trees / Random forest

• Ensemble models

Desirable System for Big Machine Learning

Data 
Scalability

Model 
Scalability

Flexibility Efficiency
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• LDA (millions of topics)

• CNN (trillions of activations)

• DNN (trillions of edge weights)

• Word embedding (millions of words)

• Almost linear speed up, even on 
heterogeneous clusters

• Reasonable training time even for big data  
and big model



How to Achieve It?

Algorithmic Innovation

• Machine learning algorithms 
themselves need to have 
sufficiently high efficiency and 
throughout.

• Existing design/implementation of 
machine learning algorithms might 
not have considered this request; 
redesign/re-implementation might 
be needed.

System Innovation

• One needs to leverage the full 
power of distributed system, and 
pursue almost linear scale 
out/speed up.

• New distributed training paradigm 
needs to be invented in order to 
revolve the bottle neck of existing 
distributed machine learning 
systems.

2015/11/7 MLA 2015 12



Algorithmic Innovation
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Case Studies

• LightLDA: Highly efficient LDA algorithm (with O(1) amortized per-
token sampling complexity) by using multiplicative factorization.

• Distributed Word Embedding: Highly scalable word embedding 
algorithm by using histogram-based data sampler.
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Latent Dirichlet Allocation (LDA)

[Blei, et al. 2003]
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• For document 𝑑, sample a topic 
distribution 𝜃𝑑 from a Dirichlet
distribution with parameter 𝛼.

• Sample a word distribution 𝜑𝑘 for 
each topic 𝑘 from a Dirichlet
distribution with parameter 𝛽

• For each token 𝑖 in document 𝑑
• Sample a specific topic 𝑧𝑑𝑖 from 

topic distribution 𝜃𝑑
• Sample a word from word 

distribution 𝜑𝑧𝑑𝑖.

2015/11/7



Collapsed Gibbs Sampling

• Sampling from a closed-form conditional probability of 
topics, by integrating out 𝜃 and 𝜑:
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𝑝 𝑘 = 𝑝(𝑧𝑑𝑖 = 𝑘|𝑟𝑒𝑠𝑡) ∝
𝑛𝑘𝑤
−𝑑𝑖 + 𝛽𝑤

𝑛𝑘
−𝑑𝑖 +  𝛽

𝑛𝑘𝑑
−𝑑𝑖 + 𝛼𝑘

2015/11/7

• 𝑛𝑘
−𝑑𝑖: number of tokens assigned to topic 𝑘

(excluding 𝑧𝑑𝑖 , 𝑤𝑑𝑖 in count) ; 

• 𝑛𝑘𝑤
−𝑑𝑖:number of tokens with word w assigned to 

topic 𝑘 (excluding 𝑧𝑑𝑖 , 𝑤𝑑𝑖 in count); 

• 𝑛𝑘𝑑
−𝑑𝑖: number of tokens in document 𝑑 assigned to 

topic 𝑘 (excluding 𝑧𝑑𝑖 , 𝑤𝑑𝑖 in count). 

Word-topic 
table

Document-topic 
table

Per-token sampling complexity proportional to the number of 
topics: 𝑂(𝐾), thus hard to scale up to large number of topics.



Reduce Complexity by Amortizing Computations

Alias Table
• Build alias table for some terms in 𝑝(𝑘)

and reuse it across many tokens 
(introducing approximation error)

Metropolis Hastings
• Handle approximation error using a rejection 

procedure.

• Given original 𝑝(𝑘) and its approximation 𝑞(𝑘)

• Sample according to 𝑞(𝑘) followed by a rejection 
procedure based on the difference between 
𝑞(𝑘) and 𝑝 𝑘

• 𝑟~𝑈(0,1), 𝑠
𝑞(𝑘)
𝑡

• Accept t as next state if 𝑟 < min 1,
𝑝 𝑡 𝑞(𝑠)

𝑝 𝑠 𝑞(𝑡)
.

• Stationary distribution of the above Markov 
chain is exactly 𝑝 𝑘 ; mixing rate depends on 
the difference between 𝑝(𝑘) and 𝑞(𝑘).
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Alias table construction: transform non-uniform distribution to 

uniform in O(K) time; sample from uniform distribution in O(1) time. 

[Walker, 1977] [Hastings, 1970]



Amortizability

Terms 𝒏𝒌𝒅 𝒏𝒌𝒘 𝒏𝒌𝒅 ∙ 𝒏𝒌𝒘

Alias table 
construction

For each document 𝑑, 
in 𝑂(𝐿𝑑) time

For each word, in 
𝑂 𝐾𝑉 time

For each document 
and word, in 𝑂 𝐿𝑑𝑉

time

Reused for
Only tokens in 
document 𝑑

All documents
Only tokens in 
document 𝑑

Amortized 
O(1)?

Yes Yes No

MLA 2015 182015/11/7



SparseLDA

𝑝(𝑧𝑑𝑖 = 𝑘|𝑟𝑒𝑠𝑡) ∝
𝛼𝑘𝛽𝑤

𝑛𝑘
−𝑑𝑖+ 𝛽

+
𝑛𝑘𝑑
−𝑑𝑖𝛽𝑤

𝑛𝑘
−𝑑𝑖+ 𝛽

+
𝑛𝑘𝑤
−𝑑𝑖 𝑛𝑘𝑑

−𝑑𝑖+𝛼𝑘

𝑛𝑘
−𝑑𝑖+ 𝛽
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Per-token complexity: 𝑂(𝐾𝑤) ≪ 𝑂(𝐾)
𝐾𝑤: number of topics word 𝑤 belongs to

Amortizable  O(1) Unamortizable but sparse  𝑂 𝐾𝑤

• Decompose 𝑝(𝑘) into additive terms, then sample the terms using the 
mixture approach

2015/11/7

[Yao, et al. 2009]

Non-zero elements in 

word-topic table {𝑛𝑘𝑤
−𝑑𝑖}



AliasLDA

𝑝(𝑧𝑑𝑖 = 𝑘|𝑟𝑒𝑠𝑡) ∝
𝑛𝑘𝑑
−𝑑𝑖(𝑛𝑘𝑤

−𝑑𝑖+𝛽𝑤)

𝑛𝑘
−𝑑𝑖+ 𝛽

+
𝛼𝑘(𝑛𝑘𝑤

−𝑑𝑖+𝛽𝑤)

𝑛𝑘
−𝑑𝑖+ 𝛽
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Per-token complexity: 𝑂 𝐾𝑑 ≪ 𝑂(𝐾𝑤) ≪ 𝑂(𝐾)
𝐾𝑑: number of topics document 𝑑 contains 

Amortizable  O(1)Unamortizable but sparse  𝑂 𝐾𝑑

• Decompose 𝑝(𝑘) into additive terms, then sample the terms using the 
mixture approach

2015/11/7

[Li, et al. 2014]

Non-zero elements in doc-topic table {𝑛𝑘𝑑
−𝑑𝑖}



LightLDA

• Factorize 𝑝(𝑘) into multiplicative terms, instead of decomposing 
it into additive terms 
• Separate 𝑛𝑘𝑑

−𝑑𝑖 and 𝑛𝑘𝑤
−𝑑𝑖 into different terms, so as to avoid the issue of 

unamortizability.

• All terms after factorization only contain either 𝑛𝑘𝑑
−𝑑𝑖, 𝑛𝑘𝑤

−𝑑𝑖, or constant, 
thus a O(1) sampling complexity can be achieved by Alias and MH 
methods.

• The mixture approach does not naturally work for multiplicative 
factorization - we use a cycling approach instead.

MLA 2015 212015/11/7

[Yuan, et al. 2015]



Multiplicative Factorization

𝑝(𝑧𝑑𝑖 = 𝑘|𝑟𝑒𝑠𝑡) ∝
𝑛𝑘𝑤
−𝑑𝑖 + 𝛽𝑤

𝑛𝑘
−𝑑𝑖 +  𝛽

𝑛𝑘𝑑
−𝑑𝑖 + 𝛼𝑘
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Per-token complexity: 𝑂(1)

Amortizable: O(1)Amortizable: O(1)

𝑝1(𝑘) 𝑝2(𝑘)

2015/11/7

Other tricks: (1) sparsified alias table to further reduce the sampling complexity of 𝑝1(𝑘); (2) fully leverage 
in-memory intermediate result to simply the sampling complexity of 𝑝2 𝑘 .



Experimental Results (Single-core)
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NYTimes Dataset
• 300K documents
• 99M tokens

PubMed Dataset
• 8.2M documents
• 738M tokens

LightLDA achieves 
better log-likelihood 
than SparseLDA and 
AliasLDA in much 
shorter time!

With a single core only, LightLDA uses 20 hours to train 10K topics from 
~1B tokens (PubMed). With a commodity machine of 20 cores, LightLDA
can finish training in 2 hours. This single-machine capability is equivalent 
to (if not beyond) a medium-size cluster of SparseLDA or AliasLDA.



Case Studies

• LightLDA: Highly efficient LDA algorithm (with O(1) amortized per-
token sampling complexity) by using multiplicative factorization.

• Distributed Word Embedding: Highly scalable word embedding 
algorithm by using histogram-based data sampler.
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Word Embedding
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Native Discrete Representation

Word: 1-of-N vector

0, 0, … , 1, … , 0, 0

{𝑤1, 𝑤2, … , 𝑤𝑖 , … , 𝑤𝑁−1 , 𝑤𝑁 }

Representations in Continuous Space

• State-of-the-art machine learning methods 

require data to be in a continuous space

• Continuous representation eases text 

understanding, inference, and reasoning

Deep Learning

Search

Retrieval

OS

Learning

Mining

EmbeddingN
a
tu

ra
l 

L
a
n

g
u

a
g

e
s
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Word2Vec (Skip-Gram)
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U

V

Promising Accuracy on analogical reasoning

• Evaluate linear regularity of word embedding, e.g., 

the accuracy of [China– Beijing+ Tokyo] = [Japan]? 

Dataset #Questions Accuracy

Mikolov 19544 31.30%
• Training data: enwiki9
• Dimension of word embedding: 100



Training Word Embedding Using Entire Web

• Challenge: Web data are simply too large to copy, store, and process!
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~ 1 billion words
Tier-0:    ~15 trillion words 
(~150 trillion word pairs, ~1PB data)

Web Chunk

~1000 machines with 1TB disk are required to store training data; and 
~5000 machines with 200GB memory to support in-memory training.

MLA 2015



SGD Training for Word2Vec (Skip-Gram)

• Skip-gram training is based on stochastic gradient descent (SGD)
• Read one word pair from the training corpus

• Compute gradient for this pair, and update the model

• Repeat this process until the model converges (after many epochs)

• SGD converges and is an unbiased estimate of gradient descent
• When the training instances (word pairs) are i.i.d. sampled.

• Under this assumption, only the distribution matters, but not necessarily the 
raw data set.
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Histogram-based Sampler

Original Web Data
(~1PB)

Stochastic 
sampling

Map-Reduce
Training Data

∞
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(𝑤𝑖 , 𝑤𝑗)

𝐻
(𝑤
𝑖,
𝑤
𝑗
)

Word pair histogram 𝐻 𝑤𝑖 , 𝑤𝑗

(~1.5TB)

• Obtain empirical distribution  (word pair histogram) of the training corpus using 
MapReduce at the beginning of the training process.

• Train word embedding model using SGD, by sampling from the empirical 
distribution instead of the original text corpus, for an arbitrary number of epochs 
when needed.

MLA 2015



Histogram Re-shape

• Smoothed histogram to handle truncation bias in limited number of sampling
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min  𝑖
1

𝐻 𝑤𝑖
𝜖𝑖
2

𝑠. 𝑡. 𝐻 𝑤𝑖 + 𝜖𝑖 ≥ 𝑇, ∀𝑖.
 𝑖 𝜖𝑖 = 0

Similar to original empirical histogram 
(relative change is minimized)

Each word has at least T counts

The total count remains unchanged

To satisfy hard constraint 𝐻 𝑤𝑖 + 𝜖𝑖 ≥ 𝑇, for 
those pairs whose 𝐻 𝑤𝑖 < 𝑇, the modification 
𝜖𝑖 is lower bounded and the minimization of 
the loss function will push 
𝜖𝑖 = 𝑇 − 𝐻 𝑤𝑖 .

For those pairs whose 𝐻 𝑤𝑖 ≥ 𝑇, the optimal  
solution 𝜖𝑖 will be proportional to 𝐻 𝑤𝑖 , i.e., 

𝜖𝑖 =
−𝐻 𝑤𝑖

 𝐻 𝑤𝑖 ≥𝑇𝐻 𝑤𝑖
 

𝐻 𝑤𝑖 <𝑇

𝑇 − 𝐻 𝑤𝑖

MLA 2015



Experimental Results
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System Innovations
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A New Distributed ML Framework
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Multiverso Client

Training threadsParameter 
loading thread

Local Model 
Store

Communicator 
Thread

Update
cache

…

D1

D2

Gradients ∆i, ∆j, …

Parameter 
request

Server 
responses

Pre-fetch parameter for 
next data block

• Model Scheduling
• Automatic pipelining

Client 
updates

Client 
requests Server 

responses

Communicator 
Thread

Update Parameter Get Parameter

G1 G3 G2 …

Message queue

Hybrid model store

Server processing threads

• Aggregation of model updates
• Send model to clients

Intermediate 
Data store

Training 
data 

queue

Multiverso Server

Client 
updates

U1 U2 U5

Efficiency - Hybrid Model Store

Flexibility – Customizable Model 
Representation and Aggregations

Efficiency – Automatic Pipelining

Scalability – Model Scheduling



Scalability: Problem with Model Parallelism

2015/11/7

Model Parallelism

• SGD-like algorithms require 
intermediate results for every 
data sample to be transferred 
between machines.
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• High comm cost: huge intermediate data

• Sensitive to comm delay & machine failure

• LDA: O 109

• 106 docs/data block × 103 tokens/doc 

• CNN: O(109)
• 102imgs/mini-batch × 105patches/img ×

10 filters/patch × 10 layers

• Speed differences among machines  slow 
down training.

• Machine failure  break down training.



Scalability: Tackle the Challenges

• Model parallelism might be necessary from system perspective
• Ensure the same behavior of distributed training with single machine training

• However, it is not necessary from machine learning perspective
• Machine learning is statistical: achieving similar results (in large probability) is 

enough, not necessarily preserving exactly the same behaviors.

• Our proposal
• Change gradient descent to (block) coordinate descent

• Allow one-round communication delay
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Scalability: Model Scheduling

Intermediate Data

𝑤𝑖,𝑗 ∈ 𝑠𝑙𝑖𝑐𝑒1

Multiverso server

e.g., activations in DNN, 
Doc-topic table in LDA

𝑤𝑖,𝑗 ∈ 𝑠𝑙𝑖𝑐𝑒2

Stochastic (Block) Coordinate Descent (SCD)

Timeline

Other activations are 
retrieved from historical 
storage in local machine

Parameters in the slice 
and hidden-node 

activations triggered by 
the slice are updated.

𝑡1 𝑡2

When updating 
Slice1, previous 

information about 
Slice2 is reused.

when updating 
Slice2, previous 

information about 
Slice1 is reused.

• Model slices are pulled from server 
and updated  in a round robin fashion.

Client

Server

2015/11/7 MLA 2015 36
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Scalability: Model Scheduling

• Lower comm cost (only model is transferred)

Intermediate 
Data

e.g., Activations

𝑤𝑖,𝑗 ∈ 𝑠𝑙𝑖𝑐𝑒1

Multiverso
server

Local Training

SCD and SGD have the similar convergence rate for 𝜆-
strongly convex problem; and both lead to local optima 
for non-convex problems.

• Robust to comm delay & machine failure

Model Parallelism Model Scheduling

LDA Data ~ O(109) Model ~ O(107)

CNN Data ~ O(109) Model ~ O(104)

Theoretical 
guarantee

Practical 
efficiency

Model Parallelism Model Scheduling

Updates Synchronous Asynchronous



Typical scenarios

Efficiency: Hybrid Model Store
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• Huge sparse model
• Example: topic model
• Dense format is prohibitively 

large and unnecessary

• Screwed model access
• Example: word embedding
• 0.1% terms are used in 90% 

training samples

Goal: High memory usage + model access speed

Hybrid Store format

• Frequent term 
topic vector is sparse 
Hash table O(K)

• Rare term 
topic vector is dense 
Dense Array O(1). 

Sparse container

Dense container

Sparse container

Dense container

Sparse container

Dense container

Multi-tier storage

• Separate storage of 
terms with different 
access frequencies

• High cache hit rate
• Balance between 

memory usage and 
access speed



Efficiency: Adaptive Pipelining

• Adaptively determine the optimal setting to match learning algorithms, disk 
speed, CPU/GPU speed, and network speed.
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Load model slice from server
𝑇2 = Δ𝑀/𝑆𝑁

Train on data block and generate 
updates for model slice: 
𝑇3 = 𝑓(Δ𝑀, Δ𝐷, 𝑆𝐶 , 𝑁)

Send aggregated updates to server: 
𝑇4 = Δ𝑀/𝑆𝑁

Load data block from disk 
𝑇1 = Δ𝐷/𝑆𝐷

Cluster situations:
• Network speed: 𝑆𝑁
• CPU/GPU speed: 𝑆𝐶
• Disk speed: 𝑆𝐷
Multiverso settings
• Data block size: Δ𝐷
• Model slice size: Δ𝑀
• Number of threads: 𝑁

Perfect pipelining: 
𝑇1 = 𝑇2 = 𝑇3 = 𝑇4

Adaptive pipelining:

min
Δ𝐷,Δ𝑀,𝑁

 

𝑖,𝑗

𝑇𝑖 − 𝑇𝑗
2

• Online algorithm to adjust Δ𝐷, Δ𝑀,𝑁.
• Efficient optimization since all 𝑇𝑖’s are 

monotone functions w.r.t. Δ𝐷, Δ𝑀,𝑁.

39



Flexibility: Customizable Model Representation 
and Aggregations

• Beyond matrix-form models and sum/average aggregation operators.

2015/11/7 MLA 2015

Class ParallelModel: IAggregation

{

public virtual bool Aggregate(void* models, 

void* inter_data, enum agg_type);

private void* _models;//model parameters

private void* _inter_data;//intermediate variables

}

//Pre-defined models data structure in Multiverso: 

//Matrix (sparse/dense), Trees.

//Pre-defined aggregation operations: 

//Weighted sum, Average, Voting, Max, Min, Histogram merge. 

Interface IAggregation

{

Public bool Aggregate(void* models, enum agg_type)

}

For DNN/Logistic Regression/LDA: 
• models = (sparse) matrix

• agg_type = Sum/Average

For FastRank/Decision trees:
• models = trees(with split point 

information) + histogram

• agg_type = max info gain/histogram merge

For Ensemble Models: 
• models = trees + (sparse) matrix + …

• agg_type = voting/max/min/weighted sum

For other algorithms, one can implement their own 
model data structures and aggregation operators.

40



Flexibility: Plug-in Mode

Injected sync-up logics in 
training iterations

Model aggregation logic 
(optional)

Multiverso Server
Needed for algorithms 
with non matrix-form 
models like FastRank

Tiny Code Changes

Existing single machine trainer

Client SDK

- Model serialization 
and deserialization
- Sync up with 
Multiverso server
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• Scenario: existing codebase; model is dense and can fit into local machine memory.
• Examples: CNTK, CNN for image classification.
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Flexibility: Embedded Mode

Model aggregation logic 
(optional)

Multiverso Server

Client SDK

Multiverso Client

Data Block

Multiverso client manages the pipelining 
of the following procedures

Training threads

Parameter loading thread to fetch model slices

Local aggregation thread to aggregate and send 
out updates

Training threadsTraining threads to obtain model updates

User needs to define
• Data block & model slices
• Train logic for one data block
• Model parsing and update logics
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Project template integrated with 
visual studio to assist algorithm 
developer

Model Slice

• Scenario: model exceeds single machine memory; sparse model training (only a small subset of model 
parameters are used when training a data block)

• Examples: LightLDA, Word Embeding, Logistic Regression. 

Trainer



Record Breaking: Model Size & Training Speed

• Topic Models:

• Word2vec:
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Data Scale Model Scale #Core Training time

Distributed LightLDA 𝟏𝟎𝟏𝟏 𝟏𝟎𝟏𝟑 384 60 hrs

Peacock LDA (Tencent) 109 1010 3,000 50 hrs

Alias LDA (Google, Baidu, CMU) 1010 1010 10,000 70 hrs

Data Scale Model Scale #Core Training time

Distributed Word Embedding 𝟏𝟎𝟏𝟏 𝟏𝟎𝟏𝟎 96 40 hrs

Word2Vec (Google) 1011 108 N/A N/A



Rich Learning Algorithms on Multiverso

2015/11/7 MLA 2015

Our New Platform

LightLDA Word2Vec GBDT LSTM CNN
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Online FTRL

Model

20M vocab, 1M topics
(largest topic model)

Data

200B tokens 
(Bing web chunk)

Training time

60 hrs on 24 machines 
(nearly linear speed-up)

Model

10M vocab, 1000 dim 
(largest word embedding)

Data

200B samples
(Bing web chunk)

Training time

40 hrs on 8 machines 
(nearly linear speed-up)

Model

3000 trees (120-node)
(GBDT)

Data

7M records 
(Bing HRS data)

Training time

3 hrs on 8 machines 
(4x of speed-up)

Model

20M parameters
(4 hidden layer, LSTM)

Data

375 hrs speech data
(Win phone data)

Training time

11180 on 4 GPU
(3.8x speed-up)

Model

60M parameters 
(AlexNet)

Data

2M images 
(ImageNet 1K dataset)

Training time

2 hrs on 16 GPU cards 
(12x speed-up)

Model

800M parameters
(Logistic Regression)

Data

6.4B impressions
(Bing Ads click log)

Training time

2400s on 24 machines
(12x speed-up)



Open Source

• Releasing to Github
• https://github.com/Microsoft/multiverso

• Containing a parameter server based 
framework, LightLDA and distributed 
word embedding

• Next steps: 
• Release more distributed machine 

learning algorithms, and new features of 
Multiverso.
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http://dmtk.io

https://github.com/Microsoft/multiverso
http://dmtk.io/


Future Research

• Data exchange vs. model exchange

• Data server vs. parameter server

• Adaptive communication filters

• Automatic hyper-parameter tuning

• Machine learning for distributed machine learning
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Thanks!

tyliu@microsoft.com

http://research.microsoft.com/users/tyliu/

mailto:tyliu@microsoft.com
http://research.microsoft.com/users/tyliu/

