
Making Super-Large Scale
Machine Learning Possible

Tie-Yan Liu

Principle Researcher/Research Manager

Microsoft Research Asia

Era of Big Data and Big Model

2015/11/7 MLA 2015 2

Search engine index:
1010 pages (1012 tokens)

Search engine logs: 1012

impressions and 109 clicks
every year

Social networks: 109

nodes and 1012 edges

Peacock: LDA with 105 topics
(1010 parameters); More topics
 better performance in click
predictions

DistBelief: DNN with 1010 weights;
Deeper and larger networks 
better performance with sufficient
training data.

Human brain: 1011 neurons and
1015 connections, much larger
than any existing ML model.

Existing Approach to Big Machine Learning

2015/11/7 3MLA 2015

Iterative MapReduce /AllReduce

• Only synchronous updates (BSP,
MA, ADMM), poor efficiency on
heterogeneous clusters

• Only data parallelism, cannot
handle big models

Parameter Server

• Support asynchronous updates; better
efficiency on heterogeneous clusters

• Support model parallelism, but inefficient,
especially on heterogeneous clusters.

• Only support fixed-structure models
• “sum”, “average”, and “addition” as

atomic aggregation operations

• Parallelization of existing machine
learning algorithms using either
MapReduce or Parameter Server

Iterative MAP-Reduce

2015/11/7 MLA 2015 4

BSP, ADMM and Model Average

2015/11/7 MLA 2015 5

min
𝒘

𝑖=1

𝑁

𝐿𝑖 𝑤

s. t. 𝑤𝑖 − 𝒛 = 𝟎, 𝑖 = 1,… ,𝑁

𝒘𝑖
𝑡+1 = argmin

𝒘𝑖
{

𝑖

(𝐿𝑖 𝒘𝑖 + (𝝀𝑖
𝑡)𝑇 𝑤𝑖 − 𝒛

𝑡 +
𝜌

2
𝑤𝑖 − 𝒛

𝑡
2
2) }

𝒛𝒕+1 =
1

𝑁

𝑖=1

𝑁

(𝒘𝑖
𝑡+1 +
1

𝜌
𝝀𝑖
𝑡)

𝝀𝑖
𝑡+1 = 𝝀𝑖

𝑡 + 𝜌(𝒘𝑖
𝑡+1 − 𝒛𝑡+1)

𝒛𝑡+1 =
1

𝑁

𝑖=1

𝑁

𝒘𝑖
𝑡

𝒘𝑖
𝑡+1 = 𝒛𝑡+1

min
𝒘

𝑖=1

𝑁

𝐿𝑖 𝑤

𝑤𝑖
𝑡 = 𝑤𝑡

∆𝑤𝑖
𝑡 = −𝜂𝑡𝛻𝐿𝑖(𝑤𝑖

𝑡)

𝑤𝑡+1 = 𝑤𝑡 +

𝑖

∆𝑤𝑖
𝑡

Parameter Server

2015/11/7 MLA 2015 6

Worker 1

Worker 2

Worker 3

Worker 4

∆𝜔1
2 𝜔

Time

Parameter ServerWorkers push update to
parameter server and/or
pull latest parameter back

ASP: Asynchronous Parallel

Worker 1

Worker 2

Worker 3

Worker 4

∆𝜔1
2 𝜔

Time

Finished Iteration# = 6

Finished Iteration# = 2

When staleness=4, worker
3 will wait here for worker
1 to catch up.

Parameter ServerWorkers push update to
parameter server and/or
pull latest parameter back

SSP: Stale Synchronous Parallel

Model Parallelism

2015/11/7 MLA 2015 9

Limitations of Existing Approaches

• Scalability
• Hard to train a topic model with millions of topics, or a DNN model with

trillions of weights.

• Efficiency
• 2+ days for 3000 CPU cores to finish the training of Peacock LDA.

• 3 days for 16,000 CPU cores to finish the training of DistBelief DNN.

• Flexibility
• Not many other big models beyond LDA and DNN were extensively studied in

the literature.

2015/11/7 MLA 2015 10

• Web data (trillions of tokens)

• Click logs (trillions of impressions)

• Social networks (trillions of edges)

• Gradient boosting trees

• Decision trees / Random forest

• Ensemble models

Desirable System for Big Machine Learning

Data
Scalability

Model
Scalability

Flexibility Efficiency

2015/11/7 11MLA 2015

• LDA (millions of topics)

• CNN (trillions of activations)

• DNN (trillions of edge weights)

• Word embedding (millions of words)

• Almost linear speed up, even on
heterogeneous clusters

• Reasonable training time even for big data
and big model

How to Achieve It?

Algorithmic Innovation

• Machine learning algorithms
themselves need to have
sufficiently high efficiency and
throughout.

• Existing design/implementation of
machine learning algorithms might
not have considered this request;
redesign/re-implementation might
be needed.

System Innovation

• One needs to leverage the full
power of distributed system, and
pursue almost linear scale
out/speed up.

• New distributed training paradigm
needs to be invented in order to
revolve the bottle neck of existing
distributed machine learning
systems.

2015/11/7 MLA 2015 12

Algorithmic Innovation

2015/11/7 MLA 2015 13

Case Studies

• LightLDA: Highly efficient LDA algorithm (with O(1) amortized per-
token sampling complexity) by using multiplicative factorization.

• Distributed Word Embedding: Highly scalable word embedding
algorithm by using histogram-based data sampler.

2015/11/7 MLA 2015 14

Latent Dirichlet Allocation (LDA)

[Blei, et al. 2003]

MLA 2015 15

• For document 𝑑, sample a topic
distribution 𝜃𝑑 from a Dirichlet
distribution with parameter 𝛼.

• Sample a word distribution 𝜑𝑘 for
each topic 𝑘 from a Dirichlet
distribution with parameter 𝛽

• For each token 𝑖 in document 𝑑
• Sample a specific topic 𝑧𝑑𝑖 from

topic distribution 𝜃𝑑
• Sample a word from word

distribution 𝜑𝑧𝑑𝑖.

2015/11/7

Collapsed Gibbs Sampling

• Sampling from a closed-form conditional probability of
topics, by integrating out 𝜃 and 𝜑:

MLA 2015 16

𝑝 𝑘 = 𝑝(𝑧𝑑𝑖 = 𝑘|𝑟𝑒𝑠𝑡) ∝
𝑛𝑘𝑤
−𝑑𝑖 + 𝛽𝑤

𝑛𝑘
−𝑑𝑖 + 𝛽

𝑛𝑘𝑑
−𝑑𝑖 + 𝛼𝑘

2015/11/7

• 𝑛𝑘
−𝑑𝑖: number of tokens assigned to topic 𝑘

(excluding 𝑧𝑑𝑖 , 𝑤𝑑𝑖 in count) ;

• 𝑛𝑘𝑤
−𝑑𝑖:number of tokens with word w assigned to

topic 𝑘 (excluding 𝑧𝑑𝑖 , 𝑤𝑑𝑖 in count);

• 𝑛𝑘𝑑
−𝑑𝑖: number of tokens in document 𝑑 assigned to

topic 𝑘 (excluding 𝑧𝑑𝑖 , 𝑤𝑑𝑖 in count).

Word-topic
table

Document-topic
table

Per-token sampling complexity proportional to the number of
topics: 𝑂(𝐾), thus hard to scale up to large number of topics.

Reduce Complexity by Amortizing Computations

Alias Table
• Build alias table for some terms in 𝑝(𝑘)

and reuse it across many tokens
(introducing approximation error)

Metropolis Hastings
• Handle approximation error using a rejection

procedure.

• Given original 𝑝(𝑘) and its approximation 𝑞(𝑘)

• Sample according to 𝑞(𝑘) followed by a rejection
procedure based on the difference between
𝑞(𝑘) and 𝑝 𝑘

• 𝑟~𝑈(0,1), 𝑠
𝑞(𝑘)
𝑡

• Accept t as next state if 𝑟 < min 1,
𝑝 𝑡 𝑞(𝑠)

𝑝 𝑠 𝑞(𝑡)
.

• Stationary distribution of the above Markov
chain is exactly 𝑝 𝑘 ; mixing rate depends on
the difference between 𝑝(𝑘) and 𝑞(𝑘).

2015/11/7 MLA 2015 17

Alias table construction: transform non-uniform distribution to

uniform in O(K) time; sample from uniform distribution in O(1) time.

[Walker, 1977] [Hastings, 1970]

Amortizability

Terms 𝒏𝒌𝒅 𝒏𝒌𝒘 𝒏𝒌𝒅 ∙ 𝒏𝒌𝒘

Alias table
construction

For each document 𝑑,
in 𝑂(𝐿𝑑) time

For each word, in
𝑂 𝐾𝑉 time

For each document
and word, in 𝑂 𝐿𝑑𝑉

time

Reused for
Only tokens in
document 𝑑

All documents
Only tokens in
document 𝑑

Amortized
O(1)?

Yes Yes No

MLA 2015 182015/11/7

SparseLDA

𝑝(𝑧𝑑𝑖 = 𝑘|𝑟𝑒𝑠𝑡) ∝
𝛼𝑘𝛽𝑤

𝑛𝑘
−𝑑𝑖+ 𝛽

+
𝑛𝑘𝑑
−𝑑𝑖𝛽𝑤

𝑛𝑘
−𝑑𝑖+ 𝛽

+
𝑛𝑘𝑤
−𝑑𝑖 𝑛𝑘𝑑

−𝑑𝑖+𝛼𝑘

𝑛𝑘
−𝑑𝑖+ 𝛽

MLA 2015 19

Per-token complexity: 𝑂(𝐾𝑤) ≪ 𝑂(𝐾)
𝐾𝑤: number of topics word 𝑤 belongs to

Amortizable  O(1) Unamortizable but sparse  𝑂 𝐾𝑤

• Decompose 𝑝(𝑘) into additive terms, then sample the terms using the
mixture approach

2015/11/7

[Yao, et al. 2009]

Non-zero elements in

word-topic table {𝑛𝑘𝑤
−𝑑𝑖}

AliasLDA

𝑝(𝑧𝑑𝑖 = 𝑘|𝑟𝑒𝑠𝑡) ∝
𝑛𝑘𝑑
−𝑑𝑖(𝑛𝑘𝑤

−𝑑𝑖+𝛽𝑤)

𝑛𝑘
−𝑑𝑖+ 𝛽

+
𝛼𝑘(𝑛𝑘𝑤

−𝑑𝑖+𝛽𝑤)

𝑛𝑘
−𝑑𝑖+ 𝛽

MLA 2015 20

Per-token complexity: 𝑂 𝐾𝑑 ≪ 𝑂(𝐾𝑤) ≪ 𝑂(𝐾)
𝐾𝑑: number of topics document 𝑑 contains

Amortizable  O(1)Unamortizable but sparse  𝑂 𝐾𝑑

• Decompose 𝑝(𝑘) into additive terms, then sample the terms using the
mixture approach

2015/11/7

[Li, et al. 2014]

Non-zero elements in doc-topic table {𝑛𝑘𝑑
−𝑑𝑖}

LightLDA

• Factorize 𝑝(𝑘) into multiplicative terms, instead of decomposing
it into additive terms
• Separate 𝑛𝑘𝑑

−𝑑𝑖 and 𝑛𝑘𝑤
−𝑑𝑖 into different terms, so as to avoid the issue of

unamortizability.

• All terms after factorization only contain either 𝑛𝑘𝑑
−𝑑𝑖, 𝑛𝑘𝑤

−𝑑𝑖, or constant,
thus a O(1) sampling complexity can be achieved by Alias and MH
methods.

• The mixture approach does not naturally work for multiplicative
factorization - we use a cycling approach instead.

MLA 2015 212015/11/7

[Yuan, et al. 2015]

Multiplicative Factorization

𝑝(𝑧𝑑𝑖 = 𝑘|𝑟𝑒𝑠𝑡) ∝
𝑛𝑘𝑤
−𝑑𝑖 + 𝛽𝑤

𝑛𝑘
−𝑑𝑖 + 𝛽

𝑛𝑘𝑑
−𝑑𝑖 + 𝛼𝑘

MLA 2015 22

Per-token complexity: 𝑂(1)

Amortizable: O(1)Amortizable: O(1)

𝑝1(𝑘) 𝑝2(𝑘)

2015/11/7

Other tricks: (1) sparsified alias table to further reduce the sampling complexity of 𝑝1(𝑘); (2) fully leverage
in-memory intermediate result to simply the sampling complexity of 𝑝2 𝑘 .

Experimental Results (Single-core)

23
2015/11/7 MLA 2015

NYTimes Dataset
• 300K documents
• 99M tokens

PubMed Dataset
• 8.2M documents
• 738M tokens

LightLDA achieves
better log-likelihood
than SparseLDA and
AliasLDA in much
shorter time!

With a single core only, LightLDA uses 20 hours to train 10K topics from
~1B tokens (PubMed). With a commodity machine of 20 cores, LightLDA
can finish training in 2 hours. This single-machine capability is equivalent
to (if not beyond) a medium-size cluster of SparseLDA or AliasLDA.

Case Studies

• LightLDA: Highly efficient LDA algorithm (with O(1) amortized per-
token sampling complexity) by using multiplicative factorization.

• Distributed Word Embedding: Highly scalable word embedding
algorithm by using histogram-based data sampler.

2015/11/7 MLA 2015 24

Word Embedding

2015/11/7 25

Native Discrete Representation

Word: 1-of-N vector

0, 0, … , 1, … , 0, 0

{𝑤1, 𝑤2, … , 𝑤𝑖 , … , 𝑤𝑁−1 , 𝑤𝑁 }

Representations in Continuous Space

• State-of-the-art machine learning methods

require data to be in a continuous space

• Continuous representation eases text

understanding, inference, and reasoning

Deep Learning

Search

Retrieval

OS

Learning

Mining

EmbeddingN
a
tu

ra
l

L
a
n

g
u

a
g

e
s

MLA 2015

Word2Vec (Skip-Gram)

262015/11/7 MLA 2015

U

V

Promising Accuracy on analogical reasoning

• Evaluate linear regularity of word embedding, e.g.,

the accuracy of [China– Beijing+ Tokyo] = [Japan]?

Dataset #Questions Accuracy

Mikolov 19544 31.30%
• Training data: enwiki9
• Dimension of word embedding: 100

Training Word Embedding Using Entire Web

• Challenge: Web data are simply too large to copy, store, and process!

2015/11/7 27

~ 1 billion words
Tier-0: ~15 trillion words
(~150 trillion word pairs, ~1PB data)

Web Chunk

~1000 machines with 1TB disk are required to store training data; and
~5000 machines with 200GB memory to support in-memory training.

MLA 2015

SGD Training for Word2Vec (Skip-Gram)

• Skip-gram training is based on stochastic gradient descent (SGD)
• Read one word pair from the training corpus

• Compute gradient for this pair, and update the model

• Repeat this process until the model converges (after many epochs)

• SGD converges and is an unbiased estimate of gradient descent
• When the training instances (word pairs) are i.i.d. sampled.

• Under this assumption, only the distribution matters, but not necessarily the
raw data set.

2015/11/7 MLA 2015 28

Histogram-based Sampler

Original Web Data
(~1PB)

Stochastic
sampling

Map-Reduce
Training Data

∞

2015/11/7 29

(𝑤𝑖 , 𝑤𝑗)

𝐻
(𝑤
𝑖,
𝑤
𝑗
)

Word pair histogram 𝐻 𝑤𝑖 , 𝑤𝑗

(~1.5TB)

• Obtain empirical distribution (word pair histogram) of the training corpus using
MapReduce at the beginning of the training process.

• Train word embedding model using SGD, by sampling from the empirical
distribution instead of the original text corpus, for an arbitrary number of epochs
when needed.

MLA 2015

Histogram Re-shape

• Smoothed histogram to handle truncation bias in limited number of sampling

2015/11/7 30

min 𝑖
1

𝐻 𝑤𝑖
𝜖𝑖
2

𝑠. 𝑡. 𝐻 𝑤𝑖 + 𝜖𝑖 ≥ 𝑇, ∀𝑖.
 𝑖 𝜖𝑖 = 0

Similar to original empirical histogram
(relative change is minimized)

Each word has at least T counts

The total count remains unchanged

To satisfy hard constraint 𝐻 𝑤𝑖 + 𝜖𝑖 ≥ 𝑇, for
those pairs whose 𝐻 𝑤𝑖 < 𝑇, the modification
𝜖𝑖 is lower bounded and the minimization of
the loss function will push
𝜖𝑖 = 𝑇 − 𝐻 𝑤𝑖 .

For those pairs whose 𝐻 𝑤𝑖 ≥ 𝑇, the optimal
solution 𝜖𝑖 will be proportional to 𝐻 𝑤𝑖 , i.e.,

𝜖𝑖 =
−𝐻 𝑤𝑖

 𝐻 𝑤𝑖 ≥𝑇𝐻 𝑤𝑖

𝐻 𝑤𝑖 <𝑇

𝑇 − 𝐻 𝑤𝑖

MLA 2015

Experimental Results

2015/11/7 31MLA 2015

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000 60000

Accuracy Curve on Analogical Reasoning Task

Accuracy of Histogram Based Sampler Accuracy of Standard WordVec

System Innovations

2015/11/7 MLA 2015 32

A New Distributed ML Framework

2015/11/7 MLA 2015 33

Multiverso Client

Training threadsParameter
loading thread

Local Model
Store

Communicator
Thread

Update
cache

…

D1

D2

Gradients ∆i, ∆j, …

Parameter
request

Server
responses

Pre-fetch parameter for
next data block

• Model Scheduling
• Automatic pipelining

Client
updates

Client
requests Server

responses

Communicator
Thread

Update Parameter Get Parameter

G1 G3 G2 …

Message queue

Hybrid model store

Server processing threads

• Aggregation of model updates
• Send model to clients

Intermediate
Data store

Training
data

queue

Multiverso Server

Client
updates

U1 U2 U5

Efficiency - Hybrid Model Store

Flexibility – Customizable Model
Representation and Aggregations

Efficiency – Automatic Pipelining

Scalability – Model Scheduling

Scalability: Problem with Model Parallelism

2015/11/7

Model Parallelism

• SGD-like algorithms require
intermediate results for every
data sample to be transferred
between machines.

MLA 2015 34

• High comm cost: huge intermediate data

• Sensitive to comm delay & machine failure

• LDA: O 109

• 106 docs/data block × 103 tokens/doc

• CNN: O(109)
• 102imgs/mini-batch × 105patches/img ×

10 filters/patch × 10 layers

• Speed differences among machines  slow
down training.

• Machine failure  break down training.

Scalability: Tackle the Challenges

• Model parallelism might be necessary from system perspective
• Ensure the same behavior of distributed training with single machine training

• However, it is not necessary from machine learning perspective
• Machine learning is statistical: achieving similar results (in large probability) is

enough, not necessarily preserving exactly the same behaviors.

• Our proposal
• Change gradient descent to (block) coordinate descent

• Allow one-round communication delay

2015/11/7 MLA 2015 35

Scalability: Model Scheduling

Intermediate Data

𝑤𝑖,𝑗 ∈ 𝑠𝑙𝑖𝑐𝑒1

Multiverso server

e.g., activations in DNN,
Doc-topic table in LDA

𝑤𝑖,𝑗 ∈ 𝑠𝑙𝑖𝑐𝑒2

Stochastic (Block) Coordinate Descent (SCD)

Timeline

Other activations are
retrieved from historical
storage in local machine

Parameters in the slice
and hidden-node

activations triggered by
the slice are updated.

𝑡1 𝑡2

When updating
Slice1, previous

information about
Slice2 is reused.

when updating
Slice2, previous

information about
Slice1 is reused.

• Model slices are pulled from server
and updated in a round robin fashion.

Client

Server

2015/11/7 MLA 2015 36

2015/11/7 MLA 2015 37

Scalability: Model Scheduling

• Lower comm cost (only model is transferred)

Intermediate
Data

e.g., Activations

𝑤𝑖,𝑗 ∈ 𝑠𝑙𝑖𝑐𝑒1

Multiverso
server

Local Training

SCD and SGD have the similar convergence rate for 𝜆-
strongly convex problem; and both lead to local optima
for non-convex problems.

• Robust to comm delay & machine failure

Model Parallelism Model Scheduling

LDA Data ~ O(109) Model ~ O(107)

CNN Data ~ O(109) Model ~ O(104)

Theoretical
guarantee

Practical
efficiency

Model Parallelism Model Scheduling

Updates Synchronous Asynchronous

Typical scenarios

Efficiency: Hybrid Model Store

2015/11/7 MLA 2015 38

• Huge sparse model
• Example: topic model
• Dense format is prohibitively

large and unnecessary

• Screwed model access
• Example: word embedding
• 0.1% terms are used in 90%

training samples

Goal: High memory usage + model access speed

Hybrid Store format

• Frequent term 
topic vector is sparse 
Hash table O(K)

• Rare term 
topic vector is dense 
Dense Array O(1).

Sparse container

Dense container

Sparse container

Dense container

Sparse container

Dense container

Multi-tier storage

• Separate storage of
terms with different
access frequencies

• High cache hit rate
• Balance between

memory usage and
access speed

Efficiency: Adaptive Pipelining

• Adaptively determine the optimal setting to match learning algorithms, disk
speed, CPU/GPU speed, and network speed.

2015/11/7 MLA 2015

Load model slice from server
𝑇2 = Δ𝑀/𝑆𝑁

Train on data block and generate
updates for model slice:
𝑇3 = 𝑓(Δ𝑀, Δ𝐷, 𝑆𝐶 , 𝑁)

Send aggregated updates to server:
𝑇4 = Δ𝑀/𝑆𝑁

Load data block from disk
𝑇1 = Δ𝐷/𝑆𝐷

Cluster situations:
• Network speed: 𝑆𝑁
• CPU/GPU speed: 𝑆𝐶
• Disk speed: 𝑆𝐷
Multiverso settings
• Data block size: Δ𝐷
• Model slice size: Δ𝑀
• Number of threads: 𝑁

Perfect pipelining:
𝑇1 = 𝑇2 = 𝑇3 = 𝑇4

Adaptive pipelining:

min
Δ𝐷,Δ𝑀,𝑁

𝑖,𝑗

𝑇𝑖 − 𝑇𝑗
2

• Online algorithm to adjust Δ𝐷, Δ𝑀,𝑁.
• Efficient optimization since all 𝑇𝑖’s are

monotone functions w.r.t. Δ𝐷, Δ𝑀,𝑁.

39

Flexibility: Customizable Model Representation
and Aggregations

• Beyond matrix-form models and sum/average aggregation operators.

2015/11/7 MLA 2015

Class ParallelModel: IAggregation

{

public virtual bool Aggregate(void* models,

void* inter_data, enum agg_type);

private void* _models;//model parameters

private void* _inter_data;//intermediate variables

}

//Pre-defined models data structure in Multiverso:

//Matrix (sparse/dense), Trees.

//Pre-defined aggregation operations:

//Weighted sum, Average, Voting, Max, Min, Histogram merge.

Interface IAggregation

{

Public bool Aggregate(void* models, enum agg_type)

}

For DNN/Logistic Regression/LDA:
• models = (sparse) matrix

• agg_type = Sum/Average

For FastRank/Decision trees:
• models = trees(with split point

information) + histogram

• agg_type = max info gain/histogram merge

For Ensemble Models:
• models = trees + (sparse) matrix + …

• agg_type = voting/max/min/weighted sum

For other algorithms, one can implement their own
model data structures and aggregation operators.

40

Flexibility: Plug-in Mode

Injected sync-up logics in
training iterations

Model aggregation logic
(optional)

Multiverso Server
Needed for algorithms
with non matrix-form
models like FastRank

Tiny Code Changes

Existing single machine trainer

Client SDK

- Model serialization
and deserialization
- Sync up with
Multiverso server

2015/10/27 MSRA TAB Review 41

• Scenario: existing codebase; model is dense and can fit into local machine memory.
• Examples: CNTK, CNN for image classification.

2015/10/27 MSRA TAB Review

Flexibility: Embedded Mode

Model aggregation logic
(optional)

Multiverso Server

Client SDK

Multiverso Client

Data Block

Multiverso client manages the pipelining
of the following procedures

Training threads

Parameter loading thread to fetch model slices

Local aggregation thread to aggregate and send
out updates

Training threadsTraining threads to obtain model updates

User needs to define
• Data block & model slices
• Train logic for one data block
• Model parsing and update logics

42

Project template integrated with
visual studio to assist algorithm
developer

Model Slice

• Scenario: model exceeds single machine memory; sparse model training (only a small subset of model
parameters are used when training a data block)

• Examples: LightLDA, Word Embeding, Logistic Regression.

Trainer

Record Breaking: Model Size & Training Speed

• Topic Models:

• Word2vec:

2015/11/7 MLA 2015 43

Data Scale Model Scale #Core Training time

Distributed LightLDA 𝟏𝟎𝟏𝟏 𝟏𝟎𝟏𝟑 384 60 hrs

Peacock LDA (Tencent) 109 1010 3,000 50 hrs

Alias LDA (Google, Baidu, CMU) 1010 1010 10,000 70 hrs

Data Scale Model Scale #Core Training time

Distributed Word Embedding 𝟏𝟎𝟏𝟏 𝟏𝟎𝟏𝟎 96 40 hrs

Word2Vec (Google) 1011 108 N/A N/A

Rich Learning Algorithms on Multiverso

2015/11/7 MLA 2015

Our New Platform

LightLDA Word2Vec GBDT LSTM CNN

44

Online FTRL

Model

20M vocab, 1M topics
(largest topic model)

Data

200B tokens
(Bing web chunk)

Training time

60 hrs on 24 machines
(nearly linear speed-up)

Model

10M vocab, 1000 dim
(largest word embedding)

Data

200B samples
(Bing web chunk)

Training time

40 hrs on 8 machines
(nearly linear speed-up)

Model

3000 trees (120-node)
(GBDT)

Data

7M records
(Bing HRS data)

Training time

3 hrs on 8 machines
(4x of speed-up)

Model

20M parameters
(4 hidden layer, LSTM)

Data

375 hrs speech data
(Win phone data)

Training time

11180 on 4 GPU
(3.8x speed-up)

Model

60M parameters
(AlexNet)

Data

2M images
(ImageNet 1K dataset)

Training time

2 hrs on 16 GPU cards
(12x speed-up)

Model

800M parameters
(Logistic Regression)

Data

6.4B impressions
(Bing Ads click log)

Training time

2400s on 24 machines
(12x speed-up)

Open Source

• Releasing to Github
• https://github.com/Microsoft/multiverso

• Containing a parameter server based
framework, LightLDA and distributed
word embedding

• Next steps:
• Release more distributed machine

learning algorithms, and new features of
Multiverso.

2015/11/7 MLA 2015 45

http://dmtk.io

https://github.com/Microsoft/multiverso
http://dmtk.io/

Future Research

• Data exchange vs. model exchange

• Data server vs. parameter server

• Adaptive communication filters

• Automatic hyper-parameter tuning

• Machine learning for distributed machine learning

2015/11/7 MLA 2015 46

Thanks!

tyliu@microsoft.com

http://research.microsoft.com/users/tyliu/

mailto:tyliu@microsoft.com
http://research.microsoft.com/users/tyliu/

