The 13rd Chinese Workshop on Machine Learning and Applications 第十三届中国机器学习及其应用研讨会

2015年11月6~8日 南京大学 南京

Tie-Yan Liu

Principle Researcher/Research Manager

Microsoft Research Asia

Era of Big Data and Big Model

Search engine index:

 10^{10} pages (10^{12} tokens)

Search engine logs: 10^{12} impressions and 10^9 clicks every year

Social networks: 10^9 nodes and 10^{12} edges

DistBelief: DNN with 10^{10} weights; Deeper and larger networks \rightarrow better performance with sufficient training data.

Peacock: LDA with 10^5 topics

 $(10^{10} \text{ parameters});$ More topics

 \rightarrow better performance in click

predictions

Human brain: 10^{11} neurons and 10¹⁵ connections, much larger than any existing ML model.

Existing Approach to Big Machine Learning

 Parallelization of existing machine learning algorithms using either MapReduce or Parameter Server

Iterative MapReduce /AllReduce

- Only synchronous updates (BSP, MA, ADMM), poor efficiency on heterogeneous clusters
- Only data parallelism, cannot handle big models

Parameter Server

- Support asynchronous updates; better efficiency on heterogeneous clusters
- Support model parallelism, but inefficient, especially on heterogeneous clusters.
- Only support fixed-structure models
- "sum", "average", and "addition" as atomic aggregation operations

Iterative MAP-Reduce

BSP, ADMM and Model Average

$$\begin{array}{c|c}
\min_{\mathbf{w}} \sum_{i=1}^{N} L_{i}(w) & \min_{\mathbf{w}} \sum_{i=1}^{N} L_{i}(w) \\
& w_{i}^{t} = w^{t} \\
\Delta w_{i}^{t} = -\eta_{t} \nabla L_{i}(w_{i}^{t}) \\
& w_{i}^{t+1} = w^{t} + \sum_{i} \Delta w_{i}^{t} & w_{i}^{t+1} = \arg\min_{\mathbf{w}_{i}} \{\sum_{i} (L_{i}(w_{i}) + (\lambda_{i}^{t})^{T}(w_{i} - z^{t}) + \frac{\rho}{2} \|w_{i} - z^{t}\|_{2}^{2})\} \\
& z^{t+1} = \frac{1}{N} \sum_{i=1}^{N} w_{i}^{t} \\
& z^{t+1} = \frac{1}{N} \sum_{i=1}^{N} (w_{i}^{t+1} + \frac{1}{\rho} \lambda_{i}^{t}) \\
& \lambda_{i}^{t+1} = \lambda_{i}^{t} + \rho(w_{i}^{t+1} - z^{t+1})
\end{array}$$

Parameter Server

Time

ASP: Asynchronous Parallel

SSP: Stale Synchronous Parallel

Model Parallelism

Limitations of Existing Approaches

- Scalability
 - Hard to train a topic model with millions of topics, or a DNN model with trillions of weights.
- Efficiency
 - 2+ days for 3000 CPU cores to finish the training of Peacock LDA.
 - 3 days for 16,000 CPU cores to finish the training of DistBelief DNN.
- Flexibility
 - Not many other big models beyond LDA and DNN were extensively studied in the literature.

Desirable System for Big Machine Learning

How to Achieve It?

Algorithmic Innovation

- Machine learning algorithms themselves need to have sufficiently high efficiency and throughout.
- Existing design/implementation of machine learning algorithms might not have considered this request; redesign/re-implementation might be needed.

System Innovation

- One needs to leverage the full power of distributed system, and pursue almost linear scale out/speed up.
- New distributed training paradigm needs to be invented in order to revolve the bottle neck of existing distributed machine learning systems.

Algorithmic Innovation

Case Studies

- LightLDA: Highly efficient LDA algorithm (with O(1) amortized pertoken sampling complexity) by using multiplicative factorization.
- **Distributed Word Embedding**: Highly scalable word embedding algorithm by using histogram-based data sampler.

Latent Dirichlet Allocation (LDA)

 $\begin{array}{ll} \theta_{d} \sim Dirichlet(\alpha); & \varphi_{k} \sim Dirichlet(\beta); \\ z_{di} \sim Multinomial(\theta_{d}); & w_{di} \sim Multinomial(\varphi_{z_{di}}) \end{array}$

[Blei, et al. 2003]

- For document d, sample a topic distribution θ_d from a Dirichlet distribution with parameter α .
- Sample a word distribution φ_k for each topic k from a Dirichlet distribution with parameter β
- For each token *i* in document *d*
 - Sample a specific topic z_{di} from topic distribution θ_d
 - Sample a word from word distribution $\varphi_{z_{di}}$.

Collapsed Gibbs Sampling

• Sampling from a closed-form conditional probability of topics, by integrating out θ and φ :

$$p(k) = p(z_{di} = k | rest) \propto \frac{n_{kw}^{-di} + \beta_w}{n_k^{-di} + \bar{\beta}} \left(n_{kd}^{-di} + \alpha_k \right)$$

-di much an effective contraction of the term i

Per-token sampling complexity proportional to the number of topics: O(K), thus hard to scale up to large number of topics.

Reduce Complexity by Amortizing Computations

Alias Table [Walker, 1977]

 Build alias table for some terms in p(k) and reuse it across many tokens (introducing approximation error)

Alias table construction: transform non-uniform distribution to uniform in O(K) time; sample from uniform distribution in O(1) time.

Metropolis Hastings [Hastings, 1970]

- Handle approximation error using a rejection procedure.
 - Given original p(k) and its approximation q(k)
 - Sample according to q(k) followed by a rejection procedure based on the difference between q(k) and p(k)
 - $r \sim U(0,1), s \xrightarrow{q(k)} t$
 - Accept *t* as next state if $r < \min\left\{1, \frac{p(t)q(s)}{p(s)q(t)}\right\}$.
 - Stationary distribution of the above Markov chain is exactly p(k); mixing rate depends on the difference between p(k) and q(k).

Amortizability

Terms	n_{kd}	n _{kw}	$n_{kd} \cdot n_{kw}$
Alias table construction	For each document d , in $O(L_d)$ time	For each word, in $O(KV)$ time	For each document and word, in $O(L_d V)$ time
Reused for	Only tokens in document <i>d</i>	All documents	Only tokens in document <i>d</i>
Amortized O(1)?	Yes	Yes	No

SparseLDA [Yao, et al. 2009]

• Decompose p(k) into additive terms, then sample the terms using the mixture approach

AliasLDA [Li, et al. 2014]

• Decompose p(k) into additive terms, then sample the terms using the mixture approach

LightLDA

- Factorize p(k) into *multiplicative* terms, instead of decomposing it into *additive* terms
 - Separate n_{kd}^{-di} and n_{kw}^{-di} into different terms, so as to avoid the issue of unamortizability.
 - All terms after factorization only contain either n_{kd}^{-di} , n_{kw}^{-di} , or constant, thus a O(1) sampling complexity can be achieved by Alias and MH methods.
- The mixture approach does not naturally work for multiplicative factorization we use a cycling approach instead.

[Yuan, et al. 2015]

Multiplicative Factorization

Other tricks: (1) sparsified alias table to further reduce the sampling complexity of $p_1(k)$; (2) fully leverage in-memory intermediate result to simply the sampling complexity of $p_2(k)$.

Experimental Results (Single-core)

With a single core only, LightLDA uses 20 hours to train 10K topics from ~1B tokens (PubMed). With a commodity machine of 20 cores, LightLDA can finish training in 2 hours. This single-machine capability is equivalent to (if not beyond) a medium-size cluster of SparseLDA or AliasLDA.

Case Studies

- LightLDA: Highly efficient LDA algorithm (with O(1) amortized pertoken sampling complexity) by using multiplicative factorization.
- **Distributed Word Embedding**: Highly scalable word embedding algorithm by using histogram-based data sampler.

Word Embedding

Native Discrete Representation

OS **Deep Learning** Learning Searcl Mining Retrieval State-of-the-art machine learning methods require data to be in a continuous space Continuous representation eases text Embedding understanding, inference, and reasoning

Representations in Continuous Space

MLA 2015

Word2Vec (Skip-Gram)

- Training data: enwiki9
- Dimension of word embedding: 100

Promising Accuracy on analogical reasoning

• Evaluate linear regularity of word embedding, e.g., the *accuracy* of [China– Beijing+ Tokyo] = [Japan]?

Dataset	#Questions	Accuracy
Mikolov	19544	31.30%

Training Word Embedding Using Entire Web

• Challenge: Web data are simply too large to copy, store, and process!

~1000 machines with 1TB disk are required to store training data; and ~5000 machines with 200GB memory to support in-memory training.

SGD Training for Word2Vec (Skip-Gram)

- Skip-gram training is based on stochastic gradient descent (SGD)
 - Read one word pair from the training corpus
 - Compute gradient for this pair, and update the model
 - Repeat this process until the model converges (after many epochs)
- SGD converges and is an unbiased estimate of gradient descent
 - When the training instances (word pairs) are i.i.d. sampled.
 - Under this assumption, only the distribution matters, but not necessarily the raw data set.

Histogram-based Sampler

- Obtain empirical distribution (word pair histogram) of the training corpus using MapReduce at the beginning of the training process.
- Train word embedding model using SGD, by sampling from the empirical distribution instead of the original text corpus, for an arbitrary number of epochs when needed.

Histogram Re-shape

• Smoothed histogram to handle truncation bias in limited number of sampling

Experimental Results

Accuracy Curve on Analogical Reasoning Task

System Innovations

A New Distributed ML Framework

MLA 2015

Scalability: Problem with Model Parallelism

- High comm cost: huge intermediate data
 - LDA: 0(10⁹)
 - $10^6 \text{ docs/data block} \times 10^3 \text{ tokens/doc}$
 - CNN: $O(10^9)$
 - 10² imgs/mini-batch × 10⁵ patches/img × 10 filters/patch × 10 layers

X Sensitive to comm delay & machine failure

• SGD-like algorithms require intermediate results for every data sample to be transferred between machines.

- Speed differences among machines → slow down training.
- Machine failure \rightarrow break down training.

Scalability: Tackle the Challenges

- Model parallelism might be necessary from system perspective
 - Ensure the same behavior of distributed training with single machine training
- However, it is not necessary from machine learning perspective
 - Machine learning is statistical: achieving similar results (in large probability) is enough, not necessarily preserving exactly the same behaviors.
- Our proposal
 - Change gradient descent to (block) coordinate descent
 - Allow one-round communication delay

Scalability: Model Scheduling

SCD and SGD have the similar convergence rate for λ -strongly convex problem; and both lead to local optima for non-convex problems.

•	Lower comm cost (only model is transferred)					
		Model Parallelism	Model Scheduling			
	LDA	Data ~ $0(10^9)$	Model ~ $0(10^7)$			
	CNN	Data ~ $0(10^9)$	Model ~ $0(10^4)$			

Robust to comm delay & machine failure

	Model Parallelism	Model Scheduling
Updates	Synchronous	Asynchronous

Efficiency: Hybrid Model Store

Efficiency: Adaptive Pipelining

• Adaptively determine the optimal setting to match learning algorithms, disk speed, CPU/GPU speed, and network speed.

Flexibility: Customizable Model Representation and Aggregations

• Beyond matrix-form models and sum/average aggregation operators.

```
Interface IAggregation
```

Public bool Aggregate(void* models, enum agg_type)

Class ParallelModel: IAggregation

public virtual bool Aggregate(void* models, void* inter_data, enum agg_type); private void* _models;//model parameters private void* _inter_data;//intermediate variables

```
//Pre-defined models data structure in Multiverso:
//Matrix (sparse/dense), Trees.
```

//Pre-defined aggregation operations:
//Weighted sum, Average, Voting, Max, Min, Histogram merge.

For DNN/Logistic Regression/LDA:

- models = (sparse) matrix
- agg_type = Sum/Average

For FastRank/Decision trees:

- models = trees(with split point information) + histogram
- agg_type = max info gain/histogram merge

For Ensemble Models:

- models = trees + (sparse) matrix + ...
- agg_type = voting/max/min/weighted sum

For other algorithms, one can implement their own model data structures and aggregation operators.

Flexibility: Plug-in Mode

- Scenario: existing codebase; model is dense and can fit into local machine memory.
- Examples: CNTK, CNN for image classification.

Flexibility: Embedded Mode

- Scenario: model exceeds single machine memory; sparse model training (only a small subset of model parameters are used when training a data block)
- Examples: LightLDA, Word Embeding, Logistic Regression.

visual studio to assist algorithm

developer

Record Breaking: Model Size & Training Speed

• Topic Models:

	Data Scale	Model Scale	#Core	Training time
Distributed LightLDA	10 ¹¹	10 ¹³	384	60 hrs
Peacock LDA (Tencent)	10 ⁹	10 ¹⁰	3,000	50 hrs
Alias LDA (Google, Baidu, CMU)	10 ¹⁰	10 ¹⁰	10,000	70 hrs

• Word2vec:

	Data Scale	Model Scale	#Core	Training time
Distributed Word Embedding	10 ¹¹	10¹⁰	96	40 hrs
Word2Vec (Google)	10 ¹¹	10 ⁸	N/A	N/A

Rich Learning Algorithms on Multiverso

LightLDA	Word2Vec	GBDT	LSTM	CNN	Online FTRL
Model	Model	Model	Model	Model	Model
20M vocab, 1M topics (largest topic model)	10M vocab, 1000 dim (largest word embedding)	3000 trees (120 -node) (GBDT)	20M parameters (4 hidden layer, LSTM)	60M parameters (AlexNet)	800M parameters (Logistic Regression)
Data	Data	Data	Data	Data	Data
200B tokens (Bing web chunk)	200B samples (Bing web chunk)	7M records (Bing HRS data)	375 hrs speech data (Win phone data)	2M images (ImageNet 1K dataset)	6.4B impressions (Bing Ads click log)
Training time	Training time	Training time	Training time	Training time	Training time
60 hrs on 24 machines (nearly linear speed-up)	40 hrs on 8 machines (nearly linear speed-up)	3 hrs on 8 machines (4 x of speed-up)	11180 on 4 GPU (3.8 x speed-up)	2 hrs on 16 GPU cards (12x speed-up)	2400s on 24 machines (12x speed-up)

Our New Platform

Open Source

• Releasing to Github

- <u>https://github.com/Microsoft/multiverso</u>
- Containing a parameter server based framework, LightLDA and distributed word embedding
- Next steps:
 - Release more distributed machine learning algorithms, and new features of Multiverso.

http://dmtk.io

LightLDA, an extremely fast and scalable topic model algorithm, with a O(1) Gibbs sampler
 and an efficient distributed implementation.

Distributed (Multisense) Word Embedding, a distributed version of (multi-sense) word embedding algorithm.

Machine learning researchers and practitioners can also build their own distributed machine learning algorithms on top of our framework with small modifications to their existing single-machine algorithms.

Future Research

- Data exchange vs. model exchange
- Data server vs. parameter server
- Adaptive communication filters
- Automatic hyper-parameter tuning
- Machine learning for distributed machine learning

Thanks!

tyliu@microsoft.com

http://research.microsoft.com/users/tyliu/