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» How human/animal learns: First input easy samples and
gradually involve more into training from easy to complex
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Curriculum Learning
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Collobert, and J. Weston.
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Abstract

Humans and animals learn much better when
the examples are not randomly presented but
organized in a meaningful order which illus-
trates gradually more concepts, and gradu-
ally more complex ones. Here, we formal-
ize such training strategies in the context
of machine learning, and call them “curricu-
lum learning”. In the context of recent re-
search studying the difficulty of training in
the presence of non-convex training criteria
(for deep deterministic and stochastic neu-
ral networks), we explore curriculum learn-
ing in various set-ups. The experiments show
that significant improvements in generaliza-
tion can be achieved. We hypothesize that
curriculum learning has both an effect on the
speed of convergence of the training process
to a minimum and, in the case of non-convex
criteria, on the quality of the local minima
obtained: curriculum learning can be seen
as a particular form of continuation method
(a general strategy for global optimization of
non-convex functions).

1. Introduction

Humans need about two decades to be trained as
fully functional adults of our society. That training
is highly organized, based on an education system and
a curriculum which introduces different concepts at
different. times, exploiting previously learned concepts
to ease the learning of new abstractions. By choos-
ing which examples to present and in which order to
present them to the learning system, one can guide

Appearing in Proceedings of the 26" International Confer-

ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2000 by the author(s)/owner(s).

training and remarkably increase the speed at which
learning can occur. This idea is routinely exploited in
animal training where it is called shaping (Skinner,
1958; Peterson, 2004; Krueger & Dayan, 2009).

Previous research (Elman, 1993; Rohde & Plaut, 1999;
Krueger & Dayan, 2009) at the intersection of cogni-
tive science and machine learning has raised the follow-
ing question: can machine learning algorithms benefit
from a similar training strategy? The idea of training a
learning machine with a curriculum can be traced back
at least to Elman (1993). The basic idea is to start
small, learn easier aspects of the task or easier sub-
tasks, and then gradually increase the difficulty level.
The experimental results, based on learning a simple
grammar with a recurrent network (Elman, 1993), sug-
gested that successful learning of grammatical struc-
ture depends, not on innate knowledge of grammar,
but on starting with a limited architecture that is at
first quite restricted in complexity, but then expands
its resources gradually as it learns. Such conclusions
are important for developmental psychology, because
they illustrate the adaptive value of starting, as hu-
man infants do, with a simpler initial state, and then
building on that to develop more and more sophis-
ticated representations of structure. Elman (1993)
makes the statement that this strategy could make
it possible for humans to learn what might otherwise
prove to be unlearnable. However, these conclusions
have been seriously questioned in Rohde and Plaut
(1999). The question of guiding learning of a recurrent
neural network for learning a simple language and in-
creasing its capacity along the way was recently revis-
ited from the cognitive perspective (Krueger & Dayan,
2009), providing evidence for faster convergence using
a shaping procedure. Similar ideas were also explored
in robotics (Sanger, 1994), by gradually making the
learning task more difficult.

We want to clarify when and why a curriculum or



Curriculum Learning

» Insight from cognitive science

» Machine learning algorithms can benefit from a similar
training strategy

» Learning from easier aspects of the task, and gradually
increase the difficulty level

» Expected two advantages:
* Help find a better local minima (as a regularizer)
* Speed the convergence of training towards the global
minimum (for convex problem)
» Basic steps:
* Sort samples according to certain “easiness’” measure
* Gradually add samples 1nto training from easy to complex
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Abstract

Latent variable models are a powerful tool for addressing several tasks in machine
learning. However, the algorithms for learning the parameters of latent variable
models are prone to getting stuck in a bad local optimum. To alleviate this prob-
lem, we build on the intuition that, rather than considering all samples simulta-
neously, the algorithm should be presented with the training data in a meaningful
order that facilitates learning. The order of the samples is determined by how
easy they are. The main challenge is that typically we are not provided with a
readily computable measure of the easiness of samples. We address this issue
by proposing a novel, iterative self-paced learning algorithm where each iteration
simultaneously selects easy samples and learns a new parameter vector. The num-
ber of samples selected is governed by a weight that is annealed until the entire
training data has been considered. We empirically demonstrate that the self-paced
learning algorithm outperforms the state of the art method for learning a latent
structural SVM on four applications: object localization, noun phrase coreference,
motif finding and handwritten digit recognition.

1 Introduction

Latent variable models provide an elegant formulation for several applications of machine learning.
For example, in computer vision, we may have many ‘car’ images from which we wish to learn a
‘car’ model. However, the exact location of the cars may be unknown and can be modeled as latent
variables. In medical diagnosis, learning to diagnose a disease based on symptoms can be improved
by treating unknown or unobserved diseases as latent variables (to deal with confounding factors).
Learning the parameters of a latent variable model often requires solving a non-convex optimization
problem. Some common approaches for obtaining an approximate solution include the well-known
EM [8] and cccp algorithms [9, 23, 24]. However, these approaches are prone to getting stuck in a
bad local optimum with high training and generalization error.

Machine learning literature is filled with scenarios in which one is required to solve a non-convex
optimization task, for example learning latent-variable conditional random fields or deep belief nets.
A common approach for avoiding a bad local minimum in these cases is to use multiple runs with
random initializations and pick the best solution amongst them (as determined, for example, by test-
ing on a validation set). However, this approach is ad hoc and computationally expensive as one may
be required to use several runs to obtain an accurate solution. Bengio ez al. [3] recently proposed an
alternative method for training with non-convex objectives, called curriculum learning. The idea is
inspired by the way children are taught: start with easier concepts (for example, recognizing objects
in simple scenes where an object is clearly visible) and build up to more complex ones (for example,
cluttered images with occlusions). Curriculum learning suggests using the easy samples first and
gradually introducing the learning algorithm to more complex ones. The main challenge in using
the curriculum learning strategy is that it requires the identification of easy and hard samples in a
given training dataset. However, in many real-world applications, such a ranking of training samples
may be onerous or conceptually difficult for a human to provide; andxo even if this additional human
supervision can be provided, what is intuitively “easy” for a human may not match what is easy for
the algorithm in the feature and hypothesis space employed for the given application.

To alleviate these deficiencies, we introduce self-paced learning. In the context of human education,
self-paced learning refers to a system where the curriculum is determined by the pupil’s abilities
rather than being fixed by a teacher. We build on this intuition for learning latent variable models by



Self-paced Learning

» Model:

min , ) viL(fGxs w), 1) + vg(w) ~ Allvl

w,ve|[0,1]

» Algorithm: Alternative search
O Fix w:

{1, L(f(x;; w),yi) < A,
Vi = .
0, otherwise

O Fix v: A standard classification problem.
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SPL Regularizer
» Koller’s SPL model:

min, ) viL(Ga;w), 1) +vg(w) — vl

w,ve[0,1
» v’s value is determined by a SPL regularizer:

arg minnz vil; +1(v,A)
i=1

vel0,1]



SPL Regularizer

arg min Z vil; +1(v,A)

ve[0,1]" =1

» Axiom for self-paced regularizer:

DEFINITION (Self-paced Regularizer): Suppose that v

denotes a weight variable, 1 is the loss, and A 1is the learning

pace parameter, f(v,A) is called a self-paced regularizer, if:

® f(v,A) isconvex with respectto v € [0,1];

® v*(A 1) is monotonically decreasing with respect to I, and
it holds that log,_,, v*'(A, 1) = 1, log;, V(A1) = 0;

® v*(A D) is monotonically increasing with respect to A, and
it holds that log, o v'(A,1) =0, logy_ V(A =1,

where v*(A, 1) = arg m(l)rh vl +f(v, D).

(Lu Jiang, Deyu Meng et al. ACM MM, 2014, Qian Zhao, Deyu Meng, et al. AAAIL 2015)



SPL Regularizer

arg min Z vil; +1(v,A)

ve[0,1]" =1

» Axiom for self-paced regularizer :

DEFINITION (Self-paced Regularizer): Suppose that v
denotes a weight variable, 1 is the loss, and A is the learning
pace parameter, f(v,A) is called a self-paced regularizer, if:

® f(v,A) is convex with respectto v € [0,1];

® v*(A D) is monotonically decreasing with respect to 1, and
it holds that log;_,o v'(A,1) = 1, log;_,,, V(A1) = 0;

=

® v*(A 1) is monotonically increasing with respect to A, and
it holds that log, o v'(A,1) =0, logy_. V(A1) =1,

where v*(A,1) = arg Vrer%(l)g] vl +f(v, A).

Favors Easy
Samples

(Lu Jiang, Deyu Meng et al. ACM MM, 2014, Qian Zhao, Deyu Meng, et al. AAAIL 2015)




SPL Regularizer

arg min Z vil; +1(v,A)

ve[0,1]" =1

» Axiom for self-paced regularizer :

DEFINITION (Self-paced Regularizer): Suppose When the model is
denotes a weight variable, 1 is the loss, and A is the young, use less
pace parameter, f(v,A) is called a self-paced regularizs samples; when the
® f{(v,A) is convex with respectto v € [0,1]; model is mature, use
® v*(A D) is monotonically decreasing with respect t more.

v'(A 1) 1s monotonically increasing with respect to A, and
it holds that log, o v'(A,1) =0, log, ., vV (A1) =1,

where v*(A,1) = arg Vrer%(l)g] vl +f(v, A).

(Lu Jiang, Deyu Meng et al. ACM MM, 2014, Qian Zhao, Deyu Meng, et al. AAAIL 2015)




SPL Regularizer

arg min Z vil; +1(v,A)

velo,1]" =1

» Axiom for self-paced regularizer:

DEFINITION (Self-paced Regularizer): Suppose that v
denotes a weight Var1able 1 is the loss, and A is the learning
: : : edregularizer, if:

» | Convex

TOTNOtOTICa CCTC T 1espect to 1, and
it holds that logl_,o vi(AlD = 1 log1_>oo v'(AlD =0;

® v*(A 1) is monotonically increasing with respect to A, and
it holds that log, o v:'(A,1) =0, log) L V(A1) =1,

where v*(A, 1) = arg m(1)rh vl +f(v, D).

(Lu Jiang, Deyu Meng et al. ACM MM, 2014, Qian Zhao, Deyu Meng, et al. AAAIL 2015)



SPL Regularizer

» Some soft extensions for self-paced regularizer:

Linear Soft Weighting:
n ]
1 . __
f(v,A) = )\(E ||V||2 . Evi) |:> Vi (}\’ ]) — { 3 +1,1< A
i=1 0, 1>A
Logarithmic Soft Weighting:
n _ log(1+1—2)
1-2)" . 1<
f(v,A) = Z(l —Dv; — ( M > vi"(AD =1 log(1-2)
i=1 log(1—2) 0, 1=>A
Mixture Weighting: ( Ay
1,1< (m)z
n 2 * _
f(v,A,Y)zz: I - = D = 0, 1>22
=i v/ ky(l/\/T — 1/1), otherwise

(Lu Jiang, Deyu Meng et al. ACM MM, 2014, Qian Zhao, Deyu Meng, et al. AAAIL 2015)



SPL Regularizer

» Some soft extensions for self-paced regularizer
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(Lu Jiang, Deyu Meng et al. ACM MM, 2014, Qian Zhao, Deyu Meng, et al. AAAIL 2015)



SPL

Model:
min  E(wW,v; A\)=) " v;L(y;.9(x;,W))+ f(ViA)

A o1|n
w,ve(0]] i1

SPL Algorithm:

Algorithm 1: SPL Algorithm.

input : Input dataset D, pace parameter p > 1, and
self-paced function f.
output: Model parameter w

Initializew*, A . // assign the starting value
while not converged do
while not converged do
Update v* = arg min, E(w*, v; \);
Update w* = arg minw E(w, v*™; \);
end
A — ,u)\; // update the learning pace

end
returnw = w';

E=RE- - - Y L T S




More extensions

SPaR: Lu Jiang, Deyu Meng, Qian Zhao et al. ACM MM, 2014.
— Soft extension on MED Ex( problem

SPMF: Qian Zhao, Deyu Meng, Lu Jiang et al. A4A1, 2015.

— Mixture extension on matrix factorization

SPLD: Lu Jiang, Deyu Meng, Shoou-I Yu et al. NIPS, 2014.

— Diversity extension on action recognition

SPCL: Lu Jiang, Deyu Meng, Teruko Mitamura et al. A4A1I. 2015.

— Curriculum extension on MED and matrix factorization

SP-MIL: Dingwen Zhang, Deyu Meng, Junwei Han. ICCV. 2015.

— Weakly supervised extension on co-saliency detection

MOSPL: Submitted to AAAI 2015 (Cooperated with Maoguo Gong)

— Multi-objective extension on action recognition

ASPL: In process (Cooperated with Liang Lin, Wangmeng Zuo)

— Active curriculum extension on face identification



Some successful applications

* State-of-the-art performance on
— Web Query dataset
— Hollywood?2 dataset
— Olympic Sports dataset

— 1Coseg dataset
— MSRC dataset

— Trecvid MED ExOtest 2013
— Trecvid MED ExOtest 2014
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Zero-Example Search

» Zero-Example Search (also known as Ex0) represents a
multimedia search condition where zero relevant
examples are provided

— Content-based search

* An example: TRECVID Multimedia Event Detection
(MED) competition. The task 1s very challengmg

— Detect every-day event in Internet
 Birthday party
* Wedding ceremony
* Changing a vehicle tire




Informedia@CMU 2013 Pipeline for ExO

An initial
ranking list of
data

e

radually lower the high-
confidence threshold

Annotate psudo-
labels for top-
ranked data

Pick up these top-ranked (high-
confidence) samples and add
them into training set

Retrain the classifier




SPaR

 Model
~ min E©1,....,0O0m,v,y; C,\) =
©1,....9,,.,y.v
m T
yo D —||WJ||2 +C Z 2 vitij +mf(v; )

s.t. Vi,Vj, yi(w TQS(XU)—I—I);)>1—€U,F >0
y € {~1,+1}",v € [0,1]"

(Lu Jiang, Deyu Meng et al. ACM MM, 2014)



ASS for solving SPaR model

radually increase the
age parameter \lambda

Fix wand v,
update y
Initialize a / :
classifier Fix w and y,
update v
Fixyandyv,
update w

]:E @ cen @ .C )\ —
@1,..?/1(%1;1,1),‘, ( 1, ,Om, VvV, Yy, U, )

— w3+ C vili;i + mf(v;\) . .
it S ]}]Z e 232 ’ Reranking is a self-paced

St Vi, Y5,y (W 6(xi) +b5) > 1= Ly, by >0 learning process!
y € {-1, +1}",v e [0,1]"




» On TRECVID MED 2013 Ex0 dataset

Method NIST s split 10 splits
Without Reranking 3.9 4.9 = 1.6
Rocchio 5.7 7.4 £ 2.2
Relevance Model 2.6 3.4 4+ 1.0
CPRF 6.4 8.3 & 1.8
Learning to Rank 3.4 4.2 + 1.4
MMPRF 10.1 13.6 &= 2.4
SPaR 12.9 15.3 + 2.6
» On Web Query dataset
Method MAP MAP@100
Without Reranking [17] 0.569 0.431
CPRF [38] 0.658 -
Random Walk [10] 0.616 -
Bayesian Reranking [33, 32] 0.658 29
Preference Learning Model [32] - 0.534
BVLS [26] 0.670 ]
Query-Relative(visual) [17] 0.649 -
Supervised Reranking [39] 0.665 -
SPaR 0.672 0.557

(Lu Jiang, Deyu Meng et al. ACM MM, 2014)




min E(w.v; /\)=Z v; L(y;,9(X; , W))+ f(ViA)
w,ve[0l]n i—1

Theoretical insight of SPL is still entirely unknown

* Why 1t’s effective 1n outlier/heavy noise cases

* Where 1t converges to

* What’s the theoretical insight of SPL working
mechanism
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Majorization Minimization Algorithm
miny F(w)

Majorization Step: Substitute F'(w) by a surrogate function
Q(w|w") such that

F(w) < Q(w|w")

with equality holding at w = w".

Minimization Step: Obtain the next parameter estimate w" ' by
solving the following minimization problem:

w* T = arg min Q(w|w").
W

* An effective technique utilized in optimization and machine learning!



Latent loss function under SPL:

v'(A D) =arg Vrer%(l)g] vl+f(v, 7).



Latent loss function under SPL:

Theorem 1 For v*(\:{) conducted by an SP-regularizer
and F(f) calculated by (5), given a fixed w*, it holds that:

Fa(f(w)) < Qa(wlw™) = Fa(£(w7)) + v (A (w™)) (£(w)—£(w7)).

1=1

QY (wiw") = Fx(li(w*))

ASS algorithm for SPL  Exactly is
MM Algorithm the latent SPL objective
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Let’s see what hides behind this latent
SPL objective:
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Let’s see some known non-convex penalties:

Capped-norm penalty: pﬁ’ip(t) = 7 min(|t|. A)y, A > 0;

t| — 5= ), 1f |t A
’ L= if |t > A

2 2
SCAD: p> (P (1) = 1 —22(’?_"51')“ GEA < [t] < v

(’Y+21)>\ if [E] > A

The research on non-convex penalty/loss attracts
increasing attention in statistics and machine learning!



Let’s see some known non-convex penalties:

Capped-norm penalty: pff:”ﬁp(t) =~y min(|t|,\), A > 0;

MCP: p)'{7 (t) = { V(¢

: S if [t < 9
L f [t > A
N, if [t < A
SCAD: p;’(,\AD(t) = — t.z_;(?_ltllj/\z APA < [t < 9A
QDX i 8] > 4

I, L<A,
A, L3>

L —12/2), 1<),
/2, 1> X\

1
! I< (1/A41/~4)2"

, _ _ ol 1 2
Y(2VI=1/2) (L/A+1/79)°  (1/A+1/7)2 SI<A
1> A2

, 1
YA = 73377 );

Hard SPL exactly
complies with the
Capped-norm penalty

Linear SPL exactly
complies with the
MCP penalty

Mixture SPL 1s very
similar to the SCAD
penalty



e Such theoretical understanding constructs a natural

connection between non-convex penalties(losses) and
SPL regimes

— SPL provides more rational choices for non-convex penalty/loss

— More SPL formats for multiple known non-convex penalties can
be found

Absolute Loss

F, (1) = LOG, () = Mlogil/A + 1)

— W=

--—-A=1
'''''''''' 2=2 _
2=3

LOG SP-regularizer

f(v,A) = KL(v,A) = —Alnv



e Such theoretical understanding constructs a natural

connection between non-convex penalties(losses) and
SPL regimes

— SPL provides more rational choices for non-convex penalty/loss

— More SPL formats for multiple known non-convex penalties can
be found

Absolute Loss

F, (1) = EXP, (1) = A(1 — expif—1/2)

—_— =00

—== =1
---------- %=2
A=3 ’

EXP SP-regularizer
f(v,A) = KL(v,A) = Avinv




Working mechanism under SPL

® Linear SPL performance demonstration in a synthetic
regression problem containing outliers and noises

A B c x 10° D
75 4813.92 1.934
551,38
74.8 1 4159 1.934
— 551.37 4813.88
74. . .
us 748 551.36 4813.86 1.934
:Nﬂ ] H
74.4 551.35 4813.84 k 1.934 &
4813.82
74.2 ] 551.34 1.9341 ]
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
[teration Number ’ |teration Number - [teration Number 80 |teration Number
1.5 20 60}
_ 0.2 1 15
=, 1 40+
w 0.1 10
) 20r
V )\ 5
0 E 0 0 ot ]
—10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 —10 -5 0 S5 10
y—f(x) y—f(x) y—f(x) y—f(x)

A

(Deyu Meng et al. submitted to AAAL 2016)



A natural problem is:

/
Why not directly optimize the latent

SPL objective, while we prefer to use

SPL regime instead?
\_

~

_/




Superiority of SPL: Non-convex Optimization

min Z_:l viL(yi,9(x;,W))

- Weighted Easy
mnm Z F(li(w)) Loss Minimization
i—1 (generally
convex)
Decompose ‘
21 : -t-MixturIeWIeighting o SP WeightS
: Updating
Problem
Useful sample loss/ (Convex)
importance prior .

0 0.1 02 03 04 05 06 07
Average dinge Lo

knowledge can be
easily embedded




Some useful sample loss/importance priors:

* Partial order prior:

* Daiversity prior: I a,



Easy encoding:

* Spatial/temporal smoothness prior: v/ Lv
 Partial order prior: v; > (OF

* Diversity prior: — HVHZ,l . HVHO.S,l



e SPCL on MED Ex0: Partial order
— SPCL, AAAI 2015

* SPLD on action recognition: Diversity

— SPLD, NIPS 2014

* SP-MIL on co-saliency detection: Diversity + Spatial
smoothness

— SP-MIL, ICCV 2015

» Such utilization of loss priors greatly help
alleviate the local minimum issue in non-
convex penalty/loss optimization problems!



Superiority of SPL: Data Screening
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Superiority of SPL: Data Screening

» Integrating data screening process into automatic network training!
» SPL provides a sound guidance for this aim, both empirically and theoretically
» Then all ML elements can be integrated into E2E DNN consideration
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* CL:
— Pros: Flexible to incorporate prior knowledge from
various sources

— Cons: The curriculum design is determined
independently of the subsequent learning; there is
no guarantee that the predetermined curriculum
can even lead to a converged solution

* SPL:

— Pros: Hard to incorporating prior knowledge into
learning, rendering it prone to overfitting

— Cons: Concise formulations; automatically learning
process



e CL: Instructor-driven

— Pros: Flexible to incorporate prior knowledge from
various sources

— Cons: The curriculum design is determined
independently of the subsequent learning; there is
no guarantee that the predetermined curriculum
can even lead to a converged solution

e SPL: Student-driven

— Pros: Hard to incorporating prior knowledge
into learning, rendering it prone to overfitting

— Cons: Concise formulations; automatically learning
process




SPCL

 SPCL: Instructor-student-collaborative

min E(w,v; A, =Z vil(y;,9(x;,W)) + f(ViA)

w,ve[0l]n .
i=1
sst.vew
CL SPL Proposed SPCL
Comparable to human learning Instructor-driven Student-driven Instructor-student collaborative
Curriculum design Prior knowledge | Learning objective | Learning objective + prior knowledge
Learning schemes Multiple Single Multiple
Iterative training Heuristic approach Gradient-based Gradient-based

(Lu Jiang, Deyu Meng et al. AAAI 2015)



SPCL

 SPCL: Instructor-student-collaborative

in E(w,v;A\,¥)= i L (yi,9(Xi, T A
o min E(wW.v A0 > il (yi,g(xi;W)) + F(V:))

i=1

* An interesting guess is:

—Nonconvex optimization corresponds to student learning, which
easily stuck to local minimum

—Loss prior corresponds to teacher’s prior knowledge, which
might be significantly useful to help alleviate such local-
minimum issue

(Lu Jiang, Deyu Meng et al. AAAI 2015)



Four key words

Machine Learning

Cognitive Science
Self-paced Learning

Big Data (Video/Multimedia)



A General Machine learning
Framework

min- (D, f(w))] + pW)

Loss/likelihood
term




Self-paced Learning
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Noise modeling
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Adapt Loss Function to Data




Future work

 Theoretical 1ssues

— Parameter setting, convergence analysis, statistical
properties

* Modeling 1ssues

— More useful SP regularizer formats, integration
with more machine learning models

* Application 1ssues

— Attempts on more computer vision, multimedia,
data mining applications
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