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Non-Convex Opt: Something to Avoid? 

n  Non-convex optimization 
n  typically considered difficult 
n  algorithms may get stuck in stationary points 
n  convergence rates of algorithms seem difficult to

 establish 



Non-Convex Opt: Something to Avoid? 

n  Non-convex optimization 
n  typically considered difficult 
n  algorithms may get stuck in stationary points 
n  convergence rates of algorithms seem difficult to

 establish 

n  Structured non-convex optimization models 
n  arise in many applications (examples follow shortly) 
n  structure could be exploited for algorithm design and

 possibly also for analysis 
n  sometimes admit faster/cheaper computation than

 the corresponding convex approximations 



Structured Non-Convex Opt Models 

n  Low-Rank Matrix Recovery 

n  Can be tackled by alternating optimization 
n  Compare with the convex approximation: 

   Standard algorithms (e.g., proximal gradient) require
 an SVD per iteration 

n  Wide range of applications 

{‖𝐴(𝑋𝑌𝑇) − 𝑏‖𝐹2 + 𝑟(𝑋, 𝑌)}𝑋∈𝑅𝑚×𝑟 ,    𝑌∈𝑅𝑛×𝑟
min                           	
  

{‖𝐴(𝑍) − 𝑏‖𝐹2 + ‖𝑍‖∗}𝑍∈𝑅𝑚×𝑛
min         	
  



Structured Non-Convex Opt Models 

n  Non-negative Tensor Factorization 

n  Here,     is a tensor (multidimensional array) and    
 represents a particular tensor decomposition (e.g.,
 CANDECOMP/PARAFAC or Tucker) 

n  Can be tackled by block coordinate descent methods 
n  Applications in signal and image processing 

{‖𝑇 − 𝑋1 ∘ ⋯ ∘ 𝑋𝑛‖𝐹2 + 𝑟(𝑋1, … , 𝑋𝑛)}𝑋1,…,𝑋𝑛≥0
min               	
  

𝑇	
   ∘	
  



Structured Non-Convex Opt Models 

n  Principal Component Analysis 

n  Here,             and we aim at recovering the top    
 left singular vectors of     

n  A fundamental matrix computation problem with long
 history and numerous fast algorithms 

‖𝐴𝑇𝑋‖𝐹2𝑋∈𝑅𝑚×𝑛 :𝑋𝑇𝑋=𝐼
max                         	
  

𝑚 ≫ 𝑛	
   𝑛	
  
𝐴	
  



Analysis of Non-Convex Opt Problems 

n  In view of 
n  prevalence of structured non-convex optimization

 models 
n  availability of fast algorithms for solving them 

a natural question is to understand the
 convergence behavior of those algorithms 
n  convergence (rate) 
n  properties of the limit point 



Existing Analysis Approach 

n  Find conditions that guarantee fast convergence
 of certain algorithms to global optimum 
n  assumptions on data (e.g., RIP, incoherence, etc.)

 and initialization of the algorithms typically required 
n  need to understand the behavior of the non-convex

 objective function around the global optima 



Existing Analysis Approach 

n  Find conditions that guarantee fast convergence
 of certain algorithms to global optimum 
n  assumptions on data (e.g., RIP, incoherence, etc.)

 and initialization of the algorithms typically required 
n  need to understand the behavior of the non-convex

 objective function around the global optima 
n  focus of many recent efforts 

n  (matrix completion) Jain et al.’13, Hardt’14, Sun-Luo’15 
n  (dictionary learning) Agarwal et al.’14 
n  (PCA/SVD) Shamir’15 
n  … 



Existing Analysis Approach 

n  Use the ᴌojasiewicz inequality to study the
 convergence behavior of descent methods 
n  apply to a wide range of objective functions (convex

 or non-convex) and descent methods 
n  no assumptions on the data or initialization of the

 algorithms required 
n  typically can only establish convergence to stationary

 points 



Existing Analysis Approach 

n  Use the ᴌojasiewicz inequality to study the
 convergence behavior of descent methods 
n  apply to a wide range of objective functions (convex

 or non-convex) and descent methods 
n  no assumptions on the data or initialization of the

 algorithms required 
n  typically can only establish convergence to stationary

 points 
n  focus of this talk 



ᴌojasiewicz Inequality 

n  Let    be a real analytic function and     be one
 of its stationary points (i.e.,               ).  Then,
 there exist                            such that for all                
             ,  

n  Thus, the ᴌojasiewicz inequality gives local
 growth information around stationary points
 of  . 

n  The growth rate is determined by the

 ᴌojasiewicz exponent   . 

|𝑓(𝑦) − 𝑓(𝑥∗)|1−𝜃 ≤ 𝜂‖∇𝑓(𝑦)‖2	
  

𝑓	
   𝑥∗	
  
∇𝑓(𝑥∗) = 0	
  

𝛿, 𝜂 > 0, 𝜃 ∈ (0,1/2]	
  
𝑦 ∈ 𝐵(𝑥∗, 𝛿)	
  

𝑓	
  

𝜃	
  



ᴌojasiewicz Inequality: An Example 

n  Let               be given by                  and                  
     . Then,                 and  

for all          . 

‖𝑦‖2 = |𝑓(𝑦) − 𝑓(𝑥∗)|1−(1/2) ≤
1
2
‖∇𝑓(𝑦)‖2 = ‖𝑦‖2	
  

𝑓: 𝑅𝑛 → 𝑅	
  
𝑥∗ = 0	
   ∇𝑓(𝑥∗) = 0	
  

𝑓(𝑥) = ‖𝑥‖22	
  

𝑦 ∈ 𝑅𝑛 	
  



ᴌojasiewicz Inequality: Implications 

n  (Absil et al.’05) Suppose that a bounded
 sequence of iterates        satisfies 
n  Primary Descent: There exists           such that for

 sufficiently large    , 

n  Stationarity: For sufficiently large    , 

n  Safeguard: There exists           such that for
 sufficiently large    , 

{𝑥𝑘}	
  
𝜎 > 0	
  

𝑘	
  
𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘) ≤ −𝜎‖∇𝑓(𝑥𝑘)‖2‖𝑥𝑘+1 − 𝑥𝑘‖2	
  

𝑘	
  
[𝑓(𝑥𝑘+1) = 𝑓(𝑥𝑘)] ⇒ [𝑥𝑘+1 = 𝑥𝑘]	
  

𝜅 > 0	
  
𝑘	
  

‖𝑥𝑘+1 − 𝑥𝑘‖2 ≥ 𝜅‖∇𝑓(𝑥𝑘)‖2	
  



ᴌojasiewicz Inequality: Implications 

n  Then, together with the ᴌojasiewicz inequality,
 the sequence        converges to a stationary
 point     of   .   

{𝑥𝑘}	
  
𝑓	
  𝑥∗	
  



ᴌojasiewicz Inequality: Implications 

n  Then, together with the ᴌojasiewicz inequality,
 the sequence        converges to a stationary
 point     of   .   

n  Moreover, the convergence rate can be
 estimated as follows: 
n  (Sublinear convergence) If                   , then  

n  (Linear convergence) If              , then 

{𝑥𝑘}	
  

‖𝑥𝑘 − 𝑥∗‖2 = 𝑂)𝑘−𝜃/(1−2𝜃)/	
  

𝑓	
  𝑥∗	
  

𝜃 ∈ (0,1/2)	
  

𝜃 = 1/2	
  
‖𝑥𝑘 − 𝑥∗‖2 = 𝑒−𝑂(𝑘)	
  



ᴌojasiewicz Inequality: Discussion 

n  Many first-order methods for the unconstrained
 minimization of    generate iterates that satisfy
 the three properties. 

n  Real analytic functions include, e.g., all
 polynomials, regardless of their convexity. 

𝑓	
  



ᴌojasiewicz Inequality: Discussion 

n  Many first-order methods for the unconstrained
 minimization of    generate iterates that satisfy
 the three properties. 

n  Real analytic functions include, e.g., all
 polynomials, regardless of their convexity. 

n  However, the ᴌojasiewicz exponent is difficult to
 estimate, even for some simple   ! 
n  In fact, the exponent is not known in most cases. 

𝑓	
  

𝑓	
  



ᴌojasiewicz Inequality: Discussion 

n  (D’Acunto-Kurdyka’05) For a real polynomial               
           of degree         , we have 

n  This leads to very weak convergence rate result. 

𝜃 =
1

𝑑(3𝑑 − 3)𝑛−1
	
  

𝑓: 𝑅𝑛 → 𝑅	
   𝑑 ≥ 2	
  



ᴌojasiewicz Inequality: Discussion 

n  (D’Acunto-Kurdyka’05) For a real polynomial               
           of degree         , we have 

n  This leads to very weak convergence rate result. 

n  Question: For structured problems, could we get
 a sharp estimate of the ᴌojasiewicz exponent? 
n  This will lead to meaningful convergence rate results

 for a host of first-order methods. 

𝜃 =
1

𝑑(3𝑑 − 3)𝑛−1
	
  

𝑓: 𝑅𝑛 → 𝑅	
   𝑑 ≥ 2	
  



Orthogonality-Constrained QPs 

n  Consider the following problem (denoted OCQP): 

n  non-convex objective function and constraint 
n  includes the PCA formulation as special case, as 

 

Tr(𝑋𝑇𝐴𝑋𝐵)𝑋∈𝑅𝑚×𝑛 :𝑋𝑇𝑋=𝐼
min                         	
  

‖𝐴𝑇𝑋‖𝐹2 = Tr(𝑋𝑇𝐴𝐴𝑇𝑋)	
  



Orthogonality-Constrained QPs 

n  Consider the following problem (denoted OCQP): 

n  non-convex objective function and constraint 
n  includes the PCA formulation as special case, as 

n  The feasible set is known as the Stiefel manifold,
 denoted by            . 

n  The manifold structure allows us to utilize
 techniques from manifold optimization.  

 

Tr(𝑋𝑇𝐴𝑋𝐵)𝑋∈𝑅𝑚×𝑛 :𝑋𝑇𝑋=𝐼
min                         	
  

‖𝐴𝑇𝑋‖𝐹2 = Tr(𝑋𝑇𝐴𝐴𝑇𝑋)	
  

St(𝑚, 𝑛)	
  



Optimization on the Stiefel Manifold 

n  Instead of the usual gradient, we use the
 projected gradient, which is the usual gradient
 projected onto the tangent space to the
 manifold. 

n  For the Stiefel manifold, the projected gradient
 of                          is 𝑓(𝑋) = Tr(𝑋𝑇𝐴𝑋𝐵)	
  

grad  𝑓(𝑋) = 2𝐴𝑋𝐵 − 𝑋𝑋𝑇𝐴𝑋𝐵 − 𝑋𝐵𝑋𝑇𝐴𝑋	
  



Optimization on the Stiefel Manifold 

n  Instead of the usual gradient, we use the
 projected gradient, which is the usual gradient
 projected onto the tangent space to the
 manifold. 

n  For the Stiefel manifold, the projected gradient
 of                          is 

n  The set of stationary points is simply 

𝑓(𝑋) = Tr(𝑋𝑇𝐴𝑋𝐵)	
  
grad  𝑓(𝑋) = 2𝐴𝑋𝐵 − 𝑋𝑋𝑇𝐴𝑋𝐵 − 𝑋𝐵𝑋𝑇𝐴𝑋	
  

X = {𝑋 ∈ St(𝑚, 𝑛):grad  𝑓(𝑋) = 0}	
  



Optimization on the Stiefel Manifold 

n  The projected gradient allows us to treat (OCQP) 
like an unconstrained problem. 

n  (Schneider-Uschmajew’15) The convergence 
theorem of Absil et al.’05 carries over to the 
manifold setting if we replace the gradient in the 
ᴌojasiewicz inequality by the projected gradient. 



Optimization on the Stiefel Manifold 

n  The projected gradient allows us to treat (OCQP) 
like an unconstrained problem. 

n  (Schneider-Uschmajew’15) The convergence 
theorem of Absil et al.’05 carries over to the 
manifold setting if we replace the gradient in the 
ᴌojasiewicz inequality by the projected gradient. 

n  Can be used to establish convergence rate 
results for a host of retraction-based line-search 
methods. 



ᴌojasiewicz Inequality for (OCQP) 

n  (Liu-Wu-S.’15) There exist            such that for
 all                            with                 , 

|𝑓(𝑌) − 𝑓(𝑋∗)|1/2 ≤ 𝜂‖grad  𝑓(𝑌)‖𝐹 	
  
𝑌 ∈ St(𝑚, 𝑛), 𝑋∗ ∈ X	
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ᴌojasiewicz Inequality for (OCQP) 

n  (Liu-Wu-S.’15) There exist            such that for
 all                            with                 , 

n  The starting point of the proof is to show that
 every           can be factorized as            ,
 where columns of    (resp.   ) are eigenvectors
 of    (resp.   ).  

|𝑓(𝑌) − 𝑓(𝑋∗)|1/2 ≤ 𝜂‖grad  𝑓(𝑌)‖𝐹 	
  
𝑌 ∈ St(𝑚, 𝑛), 𝑋∗ ∈ X	
  

𝛿, 𝜂 > 0	
  
𝑌 ∈ 𝐵(𝑋∗, 𝛿)	
  

𝑃	
  
𝑋∗ ∈ X	
   𝑋∗ = 𝑃𝑄	
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ᴌojasiewicz Inequality for (OCQP) 

n  (Liu-Wu-S.’15) There exist            such that for
 all                            with                 , 

n  The starting point of the proof is to show that
 every           can be factorized as            ,
 where columns of    (resp.   ) are eigenvectors
 of    (resp.   ).  

n  The above inequality implies the linear
 convergence of any algorithm that satisfies
 primary descent, stationarity, and safeguard. 

|𝑓(𝑌) − 𝑓(𝑋∗)|1/2 ≤ 𝜂‖grad  𝑓(𝑌)‖𝐹 	
  
𝑌 ∈ St(𝑚, 𝑛), 𝑋∗ ∈ X	
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𝑌 ∈ 𝐵(𝑋∗, 𝛿)	
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   𝑋∗ = 𝑃𝑄	
  

𝑄	
  
𝐴	
   𝐵	
  



A Stiefel-SVRG for PCA 

n  The PCA formulation can be rewritten as 

where              are the columns of   . 
n  The structure of the problem motivates the 

design of an SVRG-type algorithm that works on 
the Stiefel manifold. 

min
𝑋∈𝑅𝑚×𝑛 :𝑋𝑇𝑋=𝐼

−Tr1𝑋𝑇 2
1
𝑁
5𝑎𝑖𝑎𝑖𝑇
𝑁

𝑖=1

8𝑋9	
  

𝐴	
  𝑎1, … , 𝑎𝑁 	
  



A Stiefel-SVRG for PCA 

n  Let                              .  Initialize                   . 
n  Outer loop 

n  set  
n  Inner loop 

n  sample                       uniformly at random 
n  compute 
n  project      onto tangent space at         
n  apply retraction to get  

n  set             , where                     is chosen uniformly 
at random 

𝑓𝑖(𝑋) = −Tr*𝑋𝑇𝑎𝑖𝑎𝑖𝑇𝑋-	
  

𝑖𝑘 ∈ {1,… ,𝑁}	
  
𝑔𝑘 = ∇𝑓𝑖𝑘 (𝑋𝑘−1) − ∇𝑓𝑖𝑘,𝑋-. + 𝜇1	
  

𝑔𝑘 	
   𝑋𝑘−1	
  
𝑋𝑘 	
  

𝑘 = 1,… , 𝑇	
  

𝑠 = 1,2, …	
  
𝑋"0 ∈ St(𝑚, 𝑛)	
  

𝑋" = 𝑋"𝑠−1, 𝜇) = ∇𝑓,𝑋"-, 𝑋0 = 𝑋"	
  

𝑋"𝑠 = 𝑋𝑘 	
   𝑘 ∈ {1,… , 𝑇}	
  



A Stiefel-SVRG for PCA 

n  Using the ᴌojasiewicz inequality, we can prove 
(Liu-Wu-S.’15) Stiefel-SVRG converges linearly in 

expectation. 



Conclusions 

n  Our work represents a very preliminary step 
towards understanding the ᴌojasiewicz 
exponents associated with structured non-
convex optimization problems. 

n  Many intriguing questions remain 
n  other structured non-convex (and non-smooth) 

models? 
n  implications on algorithm design? 

n  convergence to global optimum under the ᴌojasiewicz 
inequality-based framework? 



Thank You! 


