
Large Scale Nonparametric
Tensor Analysis

MLA, Nanjing, 2015

Zenglin Xu
http://smilelab.uestc.edu.cn
Big Data Research Center

University of Electronic Science & Technology of China

大数据挖掘与推理研究所
Ø 异构多源大数据处理与建模
实时数据处理、多源数据处理、时间空间数据分析、复杂网络数据分析、

金融大数据建模、媒体大数据建模、医学大数据建模、移动大数据建模

Ø 大数据智能计算与分析技术
分布式大数据查询技术、机器学习算法研究、分布式机器学习、随机化算

法与在线学习、社会网络分析、推荐系统、深度学习算法

Ø 大数据分布式计算模型与系统
大数据机器学习平台研究、面向行业应用（如医疗、教育、安全、移动数

据）的大数据分析与学习平台设计等

Ø 大数据知识表示与推理技术研究
大型本体知识库构建方法和本体映射等知识深层理解的关键处理算法、知

识的深层表示、知识图谱、大型知识库上逻辑推理机制和机器学习

Ø 特聘教授/特聘副教授/讲师

Ø 在职和专职博士后／研究助理

Ø 博士生/硕士生

中组部“青年千人计划”入选者徐增林教授团队，因科研和教学工作需要，面
向海内外诚聘优秀青年学者加盟。团队的研究着重于机器学习、统计学习、
数据挖掘技术及其在社会网络分析、医学图像处理、空间安全数据分析、自
然语言处理、神经信息学等方面的应用。
http://smilelab.uestc.edu.cn/index.php?title=HOME

Join Us

Outline

Ø Motivation

Ø Multilinear tensor decomposition

Ø Nonparametric nonlinear tensor models

Ø Large scale models

Big Data is Everywhere &
Data have multiple persectives

5

Tensor data: facial expressions

Drug

Tensor data: fMRI

Text

Activities of brain regions
time at different time points

Discover the interactions
of different regions

Tensor data: dynamic networks

Yi,j,k: 1 if node i is linked to node j
at time k; 0 otherwise.

Who will be your friends on
facebook tomorrow?

people

pe
op

le

Tensor data: drug responses

Drug

Pa
tie

nt
s

Medicines

Yi,j,k: the value of the k-th
biomarker (i.e., cell population) for
the j-th patient after taking the i-th
medicine

Predict drug response

Goals

Ø Predict unknown elements (e.g., drug
response and network interactions)

Ø Identify latent multi-aspect groups
(communities)

Outline

• Motivation

• Multilinear tensor
decomposition

• Nonparametric nonlinear tensor
models

• Large scale models

Classical Tucker decomposition
Generalization of matrix factorization

PARAFAC

Sun et al. 2008

3D case:

loading matricescore tensor

PARAFAC (canonical polyadic
decomposition) (CPD))

loading matrices
diagonal
core tensor

PARAFAC vs. Tucker
Decomposition

• Pros

• Less prune to overfitting

• Faster computation

• Cons

• Less representation power

Limitations

Ø Complete

Ø Continuous

Ø Multi-linear

Outline

Ø Motivation

Ø Multilinear tensor decomposition

Ø Nonparametric nonlinear tensor models

Ø Large scale models

Tensor-variate Gaussian
Processes

Sparse latent Gaussian
processes on tensors

Why Gaussian Process?

Ø Bayesian methods

Ø Graphical model

Ø Non-parametric methods

Bayesian Methods
Ø The Bayesian approach treats the parameters themselves

as random variables having distributions:

1. Beliefs about our parameter values θ --- encoded in the
prior distribution P(θ).

2. Treating the parameters θ as random variables --- the
likelihood of data X as a conditional probability: P(X|θ).

3. Update our beliefs about θ based on the data by
obtaining P(θ|X), the posterior distribution.

Graphical Model

Ø A graphical model is a probabilistic
model (Probabilistic Graphical Model,
or PGM for short) for which a graph denotes
the conditional dependence structure
between random variables.

Markov Random Field Bayesian Network

Nonparametric Classification

Non-parametric Regression

Nonparametric Bayesian Methods

Examples

Ø Dirichlet Process/Chinese Restaurant Process

Ø Latent class models - often used in the clustering
context

Ø Beta Process/Indian Buffet Process

Ø Latent feature models

Ø Gaussian Process

Ø Regression

Ø Today we focus on the Gaussian Process!

Gaussian Process

Ø A Gaussian process is a stochastic process whose
realizations consist of random values associated with
every point in a range of times (or of space) such that
each such random variable has a normal distribution.

Ø Gaussian processes (GPs) extend multivariate Gaussian
distributions to infinite dimensionality.

Ø Formally, a Gaussian process generates data located
throughout some domain, such that any finite subset of
the range follows a multivariate Gaussian distribution.

An example of Gaussian Process

Ø Given {x_i, y_i}, predict |

Ø Gaussian noise model

Ø Covariance function

An example of Gaussian Process

Ø Covariance Matrix

Ø Joint distribution – Normal distribution

An example of Gaussian Process

Ø Predictive distribution

Ø Mean

Ø Variance

Our Solutions: Infinite Tucker
Decomposition

Sparse latent Gaussian
processes on tensors

Element is characterized by

Latent sparse GP on tensors
Pa

tie
nt

s

Medicines

Sparse loading vector in latent
medicine groups

Sparse loading vector in latent
patient groups

Sparse loading vector in latent
biomarker groups

Separate covariance for each
dimension

Pa
tie

nt
s

Medicines

Nonlinear relationship
between medicines i and r

-Separate covariance/kernel
function for each dimension

-The more similar loading
vectors, the larger the
covariance function value

GP on tensors

Ø GP on a tensor:
stochastic process in an
infinite tensor space

Ø Evaluations of GP on
any tensor of finite size
is a tensor-valued
Gaussian distribution

Tensor

Predict unknown tensor elements

1) Based on observed data, estimate loading vectors:

Pa
tie

nt
s

Medicines

2) Compute weights (similarities) between
unknown and observed elements:

3) Predict the unknown element:

Simple illustration:

Graphical model representation

Observed data

Latent tensor

Sparse loading
vectors

Gaussian for continuous data
Probit for binary data
Possion for count data

Similarly, sample and

Unknown
data

Benefits

Yan, Xu & Qi, 2011; Xu, Yan & Qi 2011; Xu, Yan & Qi 2015

Ø Handle binary and missing data

Ø Discover block/group structures

Ø Avoid overfitting: adaptive
nonparametric model complexity

Ø Model prediction uncertainty

Ø Incorporate additional side information

Algorithm: Variational EM

Iterations

Marginal likelihood

Variational
approximatio

n

Algorithm: explore model structures

Direct computation:
Matrix inversion

Example:

by

Kronecker product operation:

Properties:

Eigen-decomposition
If then

Properties:

Properties of Kronecker product

Property:

Reduced computational complexity

Direct computation Using the new
theorem and trace
properties

Example:

2D case: GP stochastic
blockmodels

ØUndirected networks
(friend relationships and
protein-protein
interactions)

Ø Represented by symmetric
adjacent matrices

Yan, Xu & Qi, UAI 2011; Xu, Yan & Qi AAAI
2011

NIPS authors

2D: Coauthor networks

Co-authorship dataset: co-authorship links from100 authors who
have the largest number of co-authors from NIPS 1-17.

Comparison methods

Ø CANDECOMP/PARAFAC (CP)
Ø Tucker decomposition (TD)
Ø None-Negative CP (NCP)
Ø High Order Singular Value Decomposition (HOSVD)
Ø Weighted CP (WCP)

Implemented by the tensor matlab toolbox
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/

Enron emails (3D)

Ø Enron dataset: emails from
senior management of
Enron before its
bankruptcy in 2001.

Ø 3D tensor representation:
Sender-Recipient-Subject

Ours

A
re

a
U

nd
er

 C
ur

ve

Xu, Yan & Qi， ICML 2012，TPAMI 2015

Digg (4D)

• Digg dataset: Social news from digg.com

• 4D tensor representation: user-news-keywords-category

Ours
A

re
a

U
nd

er
 C

ur
ve

Outline

Ø Motivation

Ø Multilinear tensor decomposition

Ø Nonparametric nonlinear tensor
models

Ø Large scale models

Limitations of InfTucker

Ø Zero and nonzero imbalance

Ø Needs improvement in discovering latent cluster
structures

Ø Scalability issue (expensive computation on the
Kronecker-product of the covariance matrices)

Tensor-variate Gaussian Process

Solutions

Ø Latent cluster structure

Ø Dirichlet Process Mixture(DPM) prior (Zhe, Xu, Zhu&Qi,
AISTATS 2015)

Ø Scalablility

Ø Online learning (Zhe, Xu, Zhu& Qi, AISTATS 2015)

Ø Distributed Computing (Zhe et al., Submitted to AAAI 2016)

Ø Sparsity of tensor data (imbalanced non-zero entries)

Ø Random function (Zhe et al., Submitted to AISTATS 2016)

Local GP
Ø Slice array into many subarrays

Ø Rewrite the latent GP as：

...
...

Dirichlet Process Mixtures Priors

Ø Assign DPM prior over latent factors to
capture an undetermined number of latent
clusters

Where

Stick-breaking construction of DPM
Cluster assignments

Closeness to cluster center

Ø The joint probability of DPM model

Where

Inftucker with Dirichlet Process
Mixtures Priors

Local sub-tensors

Sample a sub-tensors and conduct Inftucker

Evaluation(1)

Ø Missing value prediction

Ø Binary datasets: Digg(581*124*48) and Enron(203* 203*200)

Ø One continuous dataset: Alog(200*100*200)

Enron(www.cs.cmu.edu/ .̃/enron/)
Digg(digg.com)

Ours_u, Ours_w, and Ours_G refer to our method based on the uniform,
weighted, and grid sampling strategies, respectively

Evaluation(2)

Ø Latent cluster discovery

Ø Test on synthetic tensor of size(100*100*100)

Ø Subarray size (10*10*10)

Estimated cluster structures in Mode 1

Evaluation(3)

Ø Latent cluster discovery

Ø Test on synthetic tensor of size(100*100*100)

Ø Subarray size (10*10*10)

Evaluation(4)
Ø Large multiway array analysis

Ø DBLP, of size (10K*200*10K), contain 0.001%
nonzero elements

Ø ACC, of size (3K*150*30K) ,0.009% nonzero
elements

DBLP((http://dblp.uni-trier.de/xml/)

Distributed Bayesian Nonlinear
Tensor Decomposition(1)

Ø Sample from tensor-variate GPs based on local latent
factors

...
...

Distributed Bayesian Nonlinear
Tensor Decomposition(2)

Ø To stochastic gradient descent to optimize and , we
slice as:

Ø The joint probability of our model is:
Only depends on the
corresponding subfactors,
which can be computed
efficiently.

Distributed Bayesian Nonlinear
Tensor Decomposition(3)

Ø Algorithm implemented on HADOOP

Ø Estimating the group-specific latent factor via
MAPPER

Ø Estimating the latent factor

We randomly shuffle the subarrays in Yn and sequentially
process each subarray. For each subarray Ynt, we have the
update: ˜Un =

˜Un + ⌘@gnt(˜Un). The gradient @gnt(˜Un)

has a form similar to that of the expected log joint probability
with respect to global latent factors U in InfTucker. We omit
the detailed equation here and refer the detail to the paper
of InfTucker [Xu et al., 2012]. The SGD optimization for
each ˜Un is implemented by a MAP task in the MAPREDUCE
system.

Estimating the parent latent factors U via REDUCER

Given { ˜U1, . . . , ˜UN}, the expected log join-
t probability as a function of U is f(U) =PN

n=1

PK
k=1 logN (

˜U(k)
n |U(k),�I). Setting this gradient to

zero, we have the simple update for U : U(k)
=

1
N

˜U(k)
n . We

implement this step in the REDUCE step of MAPREDUCE.

4.3 Algorithm complexity

The time complexity to analyse a subarray is O(

PK
k=1 m

3
k +

mkm) where mk is the dimension of model k and m =QK
k=1 mk is the total number of entries. When we set identi-

cal mk for all k, the time complexity becomes O(m(1+ 1
K)

).
Given L subarrays and N MAPPER nodes, the time complex-
ity for each MAPPER node is O(

L
Nm(1+ 1

K)
), nearly linear

in the number of elements in each small subarray. For com-
parison, the time complexity of InfTucker is O(

PK
k=1 m

3
k +

mkm) where mk is the dimension of the k-th mode of the
whole array and m =

QK
k=1 mk. If any mk is large, then

InfTucker is computationally too expensive to be practical.
Regarding space complexity, our model only needs to s-

tore one small subarray and its covariance matrices in each
MAPPER node via streaming, and and keep latent factors ma-
trices in both MAPPER nodes and REDUCER node, thus, the
space complexity is O(m +

PK
k=1 m

2
k +mkrk) where rk is

the number of latent factors in mode k. By contrast, the s-
pace complexity of InfTucker is O(m+

PK
k=1 m

2
k +mkrk)

because it needs to store the whole array and the covariance
matrices for all modes in the main memory of a single com-
puter. This makes it infeasible for large data.

4.4 Strategies for sampling subarrays

Here we discuss three ways to generate subarrays used in our
training. To optimize the performance of MAPREDUCE, we
make these subarrays in the same size to ensure that the work
load is balanced across MAPPER nodes. To achieve this, we
investigated three strategies. i) Uniform sampling. This is
the simplest method: we just uniformly sample a set of index-
es of size mk, for each mode k, to define a subarray. To make
multiple subarrays, we just repeat this process so that each
subarray has the same size. ii) Weighted sampling. This
strategy aims to let each subarray contain roughly the same
number of nonzero elements (so that no subarray contains all
zeros). In other words, we sample each nonzero element with
the equal chance. This strategy is the same as the first one but
with a critical difference: instead of sampling a set of indexes
uniformly for each mode, we sample these indexes based on
weights of the corresponding array slices. The weight of an

array slice is defined as the number of nonzero elements in the
slice. Due to the weighted sampling, the numbers of nonzero
elements in different subarrays are similar to each other. A
slice with a large weight contains rich information; for ex-
ample, for the two-dimensional case, a slice corresponds to a
network node and the large weight means that this node has
many connections to other nodes. The weighted sampling s-
trategy naturally gives more weights to these important slices
(nodes). iii) Grid sampling. It ensures the coverage of
every element of the whole array. Specifically, we first ran-
domly permute the indexes in each mode, then partition the
permuted indexes into multiple segments with the same size,
and repeat this process for each mode to generate a grid. In
this grid, each (hyper-)cube contains a subarray. We can re-
peat this process to generate more subarrays.

4.5 Predicting array entries by bagging

To predict the values of unknown entries, the global GP mod-
el needs to infer the posterior distribution of the whole latent
array. For large arrays, this inference is computationally pro-
hibitive. To overcome this hurdle, we apply a bagging strate-
gy which learns the prediction by simply aggregating predic-
tions on a collection of small subarrays. Because our mod-
el can quickly provide predictions on the small subarrays,
it achieves fast final predictions. Note that Bagging [Hastie
et al., 2001] has been widely used to improve prediction ac-
curacy for many machine learning methods such as neural
networks and decision trees. For the proposed model, we first
generate subarrays and find their corresponding latent factors,
then use them to learn predictive means of the unknown el-
ements following the GP prediction algorithm in InfTucker
(but on the subsets here), and finally aggregate the predic-
tive means by averaging. As we sample subarrays from the
whole array, our prediction can be viewed as nonparametric
bootstrap prediction [Fushiki et al., 2005].

5 Related work

Multidimensional array decomposition has been an impor-
tant research problem in a number of literatures, such as
[Shashua and Hazan, 2005a; Chu and Ghahramani, 2009;
Sutskever et al., 2009; Acar et al., 2011; Hoff, 2011; Yang
and Dunson, 2013; Rai et al., 2014]. The majority of these
works are based on multilinear factorization schemes. De-
spite their successful applications in many areas, they lack
the flexibility of modeling complex or nonlinear interactions
embedded in data. Therefore it is natural to exploit nonpara-
metric modelling and develop nonlinear tensor decomposi-
tion approaches. InfTucker [Xu et al., 2012] is such a model
based on Gaussian process. However, the global GP assump-
tion in InfTucker severely restricts its scalability and makes it
infeasible for real world applications. To improve the scala-
bility of nonlinear tensor factorization, we have adopted a re-
laxed local Gaussian process assumption instead. Following
the divide-and-conquer strategy, our model splits the whole
array into many small subarrays and modelling each subar-
ray by a local GP, and therefore enables efficient parallel or
online learning of the model.

The training of local GPs is not new, for example, [Ras-
mussen and Ghahramani, 2002] proposed an infinite GP mix-

We randomly shuffle the subarrays in Yn and sequentially
process each subarray. For each subarray Ynt, we have the
update: ˜Un =

˜Un + ⌘@gnt(˜Un). The gradient @gnt(˜Un)

has a form similar to that of the expected log joint probability
with respect to global latent factors U in InfTucker. We omit
the detailed equation here and refer the detail to the paper
of InfTucker [Xu et al., 2012]. The SGD optimization for
each ˜Un is implemented by a MAP task in the MAPREDUCE
system.

Estimating the parent latent factors U via REDUCER

Given { ˜U1, . . . , ˜UN}, the expected log join-
t probability as a function of U is f(U) =PN

n=1

PK
k=1 logN (

˜U(k)
n |U(k),�I). Setting this gradient to

zero, we have the simple update for U : U(k)
=

1
N

˜U(k)
n . We

implement this step in the REDUCE step of MAPREDUCE.

4.3 Algorithm complexity

The time complexity to analyse a subarray is O(

PK
k=1 m

3
k +

mkm) where mk is the dimension of model k and m =QK
k=1 mk is the total number of entries. When we set identi-

cal mk for all k, the time complexity becomes O(m(1+ 1
K)

).
Given L subarrays and N MAPPER nodes, the time complex-
ity for each MAPPER node is O(

L
Nm(1+ 1

K)
), nearly linear

in the number of elements in each small subarray. For com-
parison, the time complexity of InfTucker is O(

PK
k=1 m

3
k +

mkm) where mk is the dimension of the k-th mode of the
whole array and m =

QK
k=1 mk. If any mk is large, then

InfTucker is computationally too expensive to be practical.
Regarding space complexity, our model only needs to s-

tore one small subarray and its covariance matrices in each
MAPPER node via streaming, and and keep latent factors ma-
trices in both MAPPER nodes and REDUCER node, thus, the
space complexity is O(m +

PK
k=1 m

2
k +mkrk) where rk is

the number of latent factors in mode k. By contrast, the s-
pace complexity of InfTucker is O(m+

PK
k=1 m

2
k +mkrk)

because it needs to store the whole array and the covariance
matrices for all modes in the main memory of a single com-
puter. This makes it infeasible for large data.

4.4 Strategies for sampling subarrays

Here we discuss three ways to generate subarrays used in our
training. To optimize the performance of MAPREDUCE, we
make these subarrays in the same size to ensure that the work
load is balanced across MAPPER nodes. To achieve this, we
investigated three strategies. i) Uniform sampling. This is
the simplest method: we just uniformly sample a set of index-
es of size mk, for each mode k, to define a subarray. To make
multiple subarrays, we just repeat this process so that each
subarray has the same size. ii) Weighted sampling. This
strategy aims to let each subarray contain roughly the same
number of nonzero elements (so that no subarray contains all
zeros). In other words, we sample each nonzero element with
the equal chance. This strategy is the same as the first one but
with a critical difference: instead of sampling a set of indexes
uniformly for each mode, we sample these indexes based on
weights of the corresponding array slices. The weight of an

array slice is defined as the number of nonzero elements in the
slice. Due to the weighted sampling, the numbers of nonzero
elements in different subarrays are similar to each other. A
slice with a large weight contains rich information; for ex-
ample, for the two-dimensional case, a slice corresponds to a
network node and the large weight means that this node has
many connections to other nodes. The weighted sampling s-
trategy naturally gives more weights to these important slices
(nodes). iii) Grid sampling. It ensures the coverage of
every element of the whole array. Specifically, we first ran-
domly permute the indexes in each mode, then partition the
permuted indexes into multiple segments with the same size,
and repeat this process for each mode to generate a grid. In
this grid, each (hyper-)cube contains a subarray. We can re-
peat this process to generate more subarrays.

4.5 Predicting array entries by bagging

To predict the values of unknown entries, the global GP mod-
el needs to infer the posterior distribution of the whole latent
array. For large arrays, this inference is computationally pro-
hibitive. To overcome this hurdle, we apply a bagging strate-
gy which learns the prediction by simply aggregating predic-
tions on a collection of small subarrays. Because our mod-
el can quickly provide predictions on the small subarrays,
it achieves fast final predictions. Note that Bagging [Hastie
et al., 2001] has been widely used to improve prediction ac-
curacy for many machine learning methods such as neural
networks and decision trees. For the proposed model, we first
generate subarrays and find their corresponding latent factors,
then use them to learn predictive means of the unknown el-
ements following the GP prediction algorithm in InfTucker
(but on the subsets here), and finally aggregate the predic-
tive means by averaging. As we sample subarrays from the
whole array, our prediction can be viewed as nonparametric
bootstrap prediction [Fushiki et al., 2005].

5 Related work

Multidimensional array decomposition has been an impor-
tant research problem in a number of literatures, such as
[Shashua and Hazan, 2005a; Chu and Ghahramani, 2009;
Sutskever et al., 2009; Acar et al., 2011; Hoff, 2011; Yang
and Dunson, 2013; Rai et al., 2014]. The majority of these
works are based on multilinear factorization schemes. De-
spite their successful applications in many areas, they lack
the flexibility of modeling complex or nonlinear interactions
embedded in data. Therefore it is natural to exploit nonpara-
metric modelling and develop nonlinear tensor decomposi-
tion approaches. InfTucker [Xu et al., 2012] is such a model
based on Gaussian process. However, the global GP assump-
tion in InfTucker severely restricts its scalability and makes it
infeasible for real world applications. To improve the scala-
bility of nonlinear tensor factorization, we have adopted a re-
laxed local Gaussian process assumption instead. Following
the divide-and-conquer strategy, our model splits the whole
array into many small subarrays and modelling each subar-
ray by a local GP, and therefore enables efficient parallel or
online learning of the model.

The training of local GPs is not new, for example, [Ras-
mussen and Ghahramani, 2002] proposed an infinite GP mix-

Evaluation(1)

Ø Missing value prediction

Ø Binary datasets: Digg1(581*124*48) , Digg2(22*109*330*30) a

Ø Enron(203* 203*200)

Ours_u, Ours_w, and Ours_G refer to our method based on the uniform, weighted, and grid
sampling strategies, respectively

Evaluation(2)

Ø Running time and prediction accuracy

Ø NELL, of size (10K*20K*10K), contain 0.001% nonzero elements

Ø ACC, of size (3K*150*30K) ,0.009% nonzero elements

Distributed Flexible Nonlinear
Tensor Decomposition(1)

Ø Sparse Tensor (nonzero imbalance)

Ø The Kronecker product between the covariance matrices
are calculated over all the modes.

Ø Many zero elements are meaningless. Biased prediction
will be caused if using them.

Distributed Flexible Nonlinear
Tensor Decomposition(2)

Ø Our model

Ø For each tensor entry , we
construct an input as following:

(2)U

(1)U
(3)U=

Distributed Flexible Nonlinear
Tensor Decomposition(3)

Ø Our model

Ø We assume that there is an underlying function :

Ø For any set of tensor entries : ,
the are distributed according to a
multivariate Gaussian distribution with mean 0 and
covariance decided by ：

Where

Distributed Flexible Nonlinear
Tensor Decomposition(4)

Ø Our model

Ø By assigning a standard normal prior over the latent
factors , we get the joint probability:

(2)U

(1)U
(3)U=

Distributed Flexible Nonlinear
Tensor Decomposition(5)

Ø Binary model

Ø For binary data, an augmented variables
has been introduced:

Ø Then the joint model for binary data is :

Evaluation(1)

Ø Missing value prediction

Ø Binary datasets: and Enron(203* 203*200), NellSmall(295* 170*94)

Ø Continuous dataset: AdClick(80*100*100), Alog(200*100*200)

Mean Square Error (The lower the better) Area Under Curve (The higher the better)

Evaluation(2)

Ø Scalability with regard to the Number of Machines

Ø DBLP, of size (10K*20K*10K), contain 0.001% nonzero elements

Ø ACC, of size (3K*150*30K) , 0.009% nonzero elements

Evaluation(3)

Ø Large multiway array analysis

Ø DBLP, size (10K*200*10K), 0.001% nonzero elements

Ø ACC, size (3K*150*30K) , 0.009% nonzero elements

Ø NELL, size (20K*12.3K*280), 0.0001% nonzero elements

Mean Square Error (The lower the better) Area Under Curve (The higher the better)

Evaluation(4)
Ø Click-Through-Rate Prediction

Ø Online ads click log from a major Internet company--four mode
tensor (user, advertisement, publisher, page-section).

Ø Size of the extracted tensors for the three days:
179K*81K*35*355, 167K*78K*35*354, 213K*82K *37*354

CTR prediction accuracy on the first three days of May 2015. ”1-2”means using May 1st’s data for
training and May 2nd’s data for testing; similar are ”2-3”and ”3-4”.

Summary

Methods Priors/Constraints

SVD Minimize MSE

NMF

PPCA Gaussian priors on

Sparse PPCA Laplace prior on

GP-LVM
Marginalization of with

Gaussian prior

Latent Eigen Model Gaussian priors on

Infinite Relational Model CRPs on , Bern on

MMSB LDAs on

SMGB GPs on

Tucker No constraints

CP Diagonal matrix

Nonnegative CP non-negativity constraints

InfTucker (GP on tensors) GPs on

Latent factors

Interaction matrix

Interaction tensor

Membership matrix

Membership matrix

Loading matrix

Methods Priors/Constraints

SVD Minimize MSE

NMF

PPCA Gaussian priors on

Sparse PPCA Laplace prior on

GP-LVM
Marginalization of with

Gaussian prior

Latent Eigen Model Gaussian priors on

Infinite Relational Model CRPs on , Bern on

MMSB LDAs on

SMGB GPs on

Tucker No priors

CP Diagonal matrix

Nonnegative CP non-negativity constraints

InfTucker (GP on tensors) GPs on

Probabilistic matrix and tensor models
Ø Pros:

Ø High prediction accuracy

Ø Sparsity: easy to interpret

Ø Model selection or non-parametric Bayes: e.g., learn
the number of latent groups and hyperparameters

Ø Handling missing data

Ø Various noise types: continuous, binary, counts

Ø Improve the scalability:

Ø Potentially high computational cost: require clever
inference algorithms

Ø Parallel computing or online learning

Acknowledgements

• 成员：教师： 4名
博士/硕士研究生：14名

• 网址： http://smilelab.uestc.edu.cn/index.php?title=HOME

My fellow colleagues/students of
SMILE Lab (Statistical Machine
Intelligence & LEarning Lab) @

UESTC

My co-authors: Alan(Yuan) Qi, Shandian Zhe, Feng Yan

IE
EE

Pr
oo

f

XU ET AL.: BAYESIAN NONPARAMETRIC MODELS FOR MULTIWAY DATA ANALYSIS 13

[21] N. D. Lawrence, “Gaussian process latent variable models for996

visualisation of high dimensional data,” in Proc. NIPS, 2004.997

[22] N. D. Lawrence and M. I. Jordan. “Semi-supervised learning via998

gaussian processes,” in Proc. NIPS, 2005.999

[23] N. D. Lawrence and R. Urtasun, “Nonlinear matrix factorization1000

with Gaussian processes,” in Proc. 26th Annu. ICML, Montreal,1001

QC, Canada, 2009, pp. 601–608.1002

[24] J. R. Lloyd, P. Orbanz, Z. Ghahramani, and D. M. Roy,1003

“Random function priors for exchangeable arrays with appli-1004

cations to graphs and relational data,” in Proc. NIPS, 2012,1005

pp. 1007–1015.1006

[25] D. J. C. MacKay, “Bayesian interpolation,” Neural Comput., vol. 4,1007

no. 3, pp. 415–447, 1992.1008

[26] K. Miller, T. Griffiths, and M. Jordan, “Nonparametric latent fea-1009

ture models for link prediction,” in Advances in Neural Information1010

Processing Systems, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.1011

Williams, and A. Culotta, Eds. 2009, pp. 1276–1284.1012

[27] J. Paisley and L. Carin, “Hidden markov models with stick1013

breaking priors,” IEEE Trans. Signal Process., vol. 57, no. 10,1014

pp. 3905–3917, Oct. 2009.1015

[28] K. Palla, D. A. Knowles, and Z. Ghahramani, “An infinite latent1016

attribute model for network data,” in Proc. 29th ICML, Edinburgh,1017

U.K., 2012.1018

[29] I. Porteous, E. Bart, and M. Welling, “Multi-HDP: A non-1019

parametric Bayesian model for tensor factorization,” in Proc. 22nd1020

AAAI, 2008.1021

[30] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for1022

Machine Learning. Cambridge, MA, USA: MIT Press, 2006.1023

[31] Y. Saatci, “Scalable inference for structured Gaussian process1024

models,” PhD thesis, Univ. Cambridge, Cambridge, U.K., 2011.1025

[32] M. Schmidt. “Graphical Model Structure Learning with L1-1026

Regularization,” PhD thesis, UBC, Vancouver, BC, Canada, 2010.1027

[33] A. Shashua and T. Hazan, “Non-negative tensor factorization1028

with applications to statistics and computer vision,” in Proc. 22nd1029

ICML, Bonn, Germany, 2005.1030

[34] T. A. Snijders and K. Nowicki, “Estimation and prediction for1031

stochastic blockmodels for graphs with latent block structure,” J.1032

Classif., vol. 14, no. 1, pp. 75–100, 1997.1033

[35] M. E. Tipping and C. M. Bishop, “Probabilistic principal com-1034

ponent analysis,” J. Roy. Statist. Soc. B-Statist. Methodol., vol. 61,1035

no. 3, pp. 611–622, 1999.1036

[36] L. Tucker, “Some mathematical notes on three-mode factor anal-1037

ysis,” Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.1038

[37] F. Yan, Z. Xu, and Y. Qi, “Sparse matrix-variate Gaussian process1039

blockmodels for network modeling,” in Proc. 27th Conf. UAI, 2011,1040

pp. 745–752.1041

[38] Y. Yang and D. Dunson, “Bayesian conditional tensor factoriza-1042

tions for high-dimensional classification,” J. Roy. Statist. Soc. B,1043

2013.AQ9
1044

[39] K. Yu, W. Chu, S. Yu, V. Tresp, and Z. Xu, “Stochastic relational1045

models for discriminative link prediction,” in Proc. NIPS, 2007.1046

[40] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal1047

compressive sensing and internet traffic matrices,” in Proc. Annu.1048

Conf. SIGCOMM, New York, NY, USA, 2009, pp. 267–278.1049

Zenglin Xu (M’07) received the Ph.D. degree 1050

in computer science and engineering from the 1051

Chinese University of Hong Kong, Hong Kong. 1052

He is currently a Post-Doctoral Researcher at 1053

Purdue University, West Lafayette, IN, USA. 1054

Before that, he was with Cluster of Excellence 1055

at Saarland University of Max Planck Institute for 1056

Informatics, Saarbruecken, Germany. His current 1057

research interests include machine learning and 1058

its applications in information retrieval, health 1059

informatics, and social network analysis. He is a 1060

member of IEEE. 1061

Feng Yan is a Research Scientist at Facebook 1062

Inc. He received the B.S. degree in mathemat- 1063

ics and physics from the School of Science, 1064

Tsinghua University, China, and the Ph.D. 1065

degree from Purdue University, West Lafayette, 1066

IN, USA, in 2012. His current research inter- 1067

ests include probabilistic graphical models, non- 1068

parametric Bayesian methods, and large-scale 1069

learning. 1070

1071

Yuan Qi received the Ph.D. degree from 1072

Massachusetts Institute of Technology (MIT), 1073

Cambridge, MA, USA, in 2005 and was a Post- 1074

Doctoral Researcher at MIT from 2005 to 2007. 1075

In 2007, he joined Purdue University, West 1076

Lafayette, IN, USA, as an Assistant Professor of 1077

Computer Science and Statistics. Prof. Qi is the 1078

recipient of the A. Richard Newton Breakthrough 1079

Research Award from Microsoft Research in 1080

2008, the Interdisciplinary Award from Purdue 1081

University in 2010, and the NSF CAREER award 1082

in 2011. 1083

◃ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib. 1084

Questions?

