
Matrix	  Regression	  and	  Its	  Applica4ons	  
to	  Robust	  Face	  Recogni4on 

Jian Yang 
School of Computer Science and Engineering 
Nanjing University of Science and Technology 

模式计算与应用实验室 
Pattern Computing & Applications Lab 



PCA Lab, NJUST 

Outline � 

•  Background and Overview 

•  Nuclear Norm based Matrix Regression 

•  Extended Versions 
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Background: Challenges in face recognition  � 

illuminations occlusions 

Illumination & occlusion 
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Linear Regression � 
Linear regression model: 

•  Closed-form solution 

•  LR based Classification 
Y is a testing sample 
D is the dictionary (representation basis),  which is formed by 
a given set of samples with class labels  

min┬𝑥 ||Y−D𝑥||↓2↑2   

	   1(D D) D YT Tx −=



PCA Lab, NJUST 

Two Representation Schemes � 
Class sample based representation (LRC, PAMI 2010) 
•  Given a test sample, using the samples of each class to 

represent it.  
•  Using the class representation error to design a 

classification rule. 
Population sample based representation (CRC, ICCV 
2011) 
•  Given a test sample, using the samples of all classes to 

represent it.  
•  Using the class representation error (or representation 

coefficients) to design a classification rule •  I. Naseem, R. Togneri, M. Bennamoun, Linear Regression for Face Recognition, IEEE Trans. PAMI, 2010, 32(11): 2106- 2112. 
•  L. Zhang, M. Yang, and X. C. Feng. Sparse representation or collaborative representation which helps face recognition? In 

ICCV, 2011. 
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Regularized Linear Regression 

•  L2-norm Regularized Linear Regression 
   (Ridge Regression) 

•  Avoid overfitting 

•  Close-form solution 

min┬𝑥 ||Y−D𝑥||↓2↑2 + 𝜆||𝑥||↓2↑2   

1(D D ) D YT Tx λ −= + I

	  

 
Class 2 

Class 1 

x' y1 

x2 x1 x 

y2 
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Regularized Linear Regression � 
L1-norm Regularized Linear Regression  
(Sparse Representation) 

•  No close-form solution (many algorithms for solving it) 
•  Sparse Representation Classifier (SRC) 

 
 

min┬𝑥 ||Y−D𝑥||↓2↑2 + 𝜆||𝑥||↓1↑   
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The Role of Sparsity � 
Small dictionary Case 
•  Sparsity is unnecessary (L2 does as well as L1) 
 
Big dictionary (over-complete) Case 
•  Sparsity is necessary for Learning locality  

L. Zhang, M. Yang, and X. C. Feng. Sparse representation or collaborative representation which helps 
face recognition? In ICCV, 2011. 
Q. Shi, A. Eriksson, A. Hengel, C. Shen. Is face recognition really a compressive sensing problem? In 
CVPR 2011. 
R. Rigamonti, M. Brown and V. Lepetit. Are Sparse Representations Really Relevant for Image 
Classification? In CVPR 2011. 
J. Yang  et al., Beyond Sparsity: the Role of L1-optimizer in Pattern Classification, Pattern Recognition, 
45 (2012), pp. 1104-1118. 
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Error Characterization � 
•  L2-norm based error characterization 

   Optimal for noise with Gaussian distribution 

•  L1-norm based error characterization 

 
   Optimal for noise with Laplacian distribution  

min┬𝑥 ||Y−D𝑥||↓2↑2 + 𝜆||𝑥||↓1↑   

min┬𝑥 ||Y−D𝑥||↓1↑ + 𝜆||𝑥||↓1↑   

•  M. Yang, L. Zhang, J. Yang and D. Zhang, Robust sparse coding for face recognition, 
In CVPR, 2011. 
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Sparse Representation Classifier � 

min┬𝑥 ||Y−D𝑥||↓1↑ + 𝜆||𝑥||↓1↑   

min┬𝑤  ||Y− D 𝑤||↓2↑2 + 𝜆||𝑤||↓1↑   

D =[D,I] 𝑤=[x,e] 

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via 
sparse representation. IEEE Trans. PAMI, 31(2):210–227, 2009. 
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Robust regression 
Robust regression model 
     
     
 
 
 

min┬𝑥 𝜌↓𝜃 (Y−D𝑥)+ 𝜆||𝑥||↓𝑞↑𝑞   

where    𝜌↓𝜃 (Y−D𝑥)=∑𝑖↑▒𝜌( 𝑌↓𝑖 − 𝐷↓𝑖 𝑥)  

Commonly used M-estimators 
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Robust Sparse Representation Classifier � 

•  Model min┬𝑥 𝜌↓𝜃 (Y−D𝑥)+ 𝜆||𝑥||↓1↑   

min┬𝑥 ‖𝑊↑1/2  (Y−D𝑥)‖↓2↑2  + 𝜆||𝑥||↓1↑   

•  M. Yang, L. Zhang, J. Yang and D. Zhang, Regularized robust coding for face recognition, IEEE TIP, VOL. 22, NO. 5, 
MAY 2013 

•  R. He, W.S. Zheng, and B.G. Hu, Maximum correntropy criterion for robust face recognition, IEEE PAMI, vol. 33, no. 8, 
pp. 1561-1576, 2011. 

•  R. He, W.-S. Zheng, T. Tan, and Z. Sun. Half-quadratic based Iterative Minimization for Robust Sparse Representation. 
IEEE Trans. PAMI, 2014, 36(2): 261 -275. 
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Problems of 1D Error Characterization � 

•  Assume that e1, e2, …, em are independent and identically 
distributed (i.i.d.) 

•  Suitable for random-pixel noise 

•  Not suitable for the continuous occlusion   
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Outline � 

•  Background and Overview 

•  Nuclear Norm based Matrix Regression 

•  Extended Versions 
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Motivation 

•  Make full use of the 2D structure of error images 
•  Structured noise (e.g. local illumination changes 

and block occlusion) caused error image is low 
rank 

Error image Error image 
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Model � 
•  Given a set of n image matrices                      and an 

image matrix             . 
•  B is linearly represented by 

 

	   1, , p q
n R ×∈A AL

	   p qR ×∈B

	   1, , nA AL

	   1 1 2 2 , , n nx x x= + + + +B A A A EL

A(x) 

min rank(A( ) )
x

x −B

*
min A( )
x

x −B

21
2* 2

min A( )
x

λ− +x B x

*|| ||   ( )     ii
M Mσ= ∑

Nuclear norm of a matrix 
M  is the sum of its singular 
values: 
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Optimality of nuclear norm based 
error characterization � 

•  Optimality:  
The nuclear norm based error characterization is optimal if 
the structural noise matrix                     follows the 
generalized matrix variate Elliptical Distribution: 
 
 

( )A= −E B x

( ) ( )( )1/21
2exp Tf C tr= −E E E

2D case of the 
distribution 
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Advantages of nuclear norm based 
error characterization � 

•  Analysis from singular value distribution point of view 
Singular value based “second-order” sparseness is more 
effective than pixel based “first-order” sparseness for 
describing the structured noise (occlusions, illuminations etc.) 
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Advantages of nuclear norm based 
error characterization � 
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Essence of Nuclear norm based error 
characterization � 

•  De-correlation + L1 norm of the decorrelated Matrix 

•  U is formed by eigenvectors of        , which is exactly the 
PCA transformed matrix on image columns, so it can 
remove the correlation between rows.   

•  V is formed by eigenvectors of          , which is exactly 
the PCA transformed matrix on image rows, so it can 
remove the correlation between columns.   

11
|| || T= ΣA U AV*    =      

	   TAA

	   TA A

J. Yang, C. Liu, “Horizontal and Vertical 2DPCA-based Discriminant analysis for Face 
Verification on a Large-scale Database”, IEEE Trans. on Information Forensics and 
Security, 2007, 2(4), 781-792. 
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ADMM Algorithm for NMR  
•  The proposed model can be rewritten: 

•  The augmented Lagrangian function  is defined by 

YBxxY =−Α+ )(       ||||||||min 2
22

1
* tosubjectλ

( )( )2 21
* 22 2( , , ) || || || || +Tr ( ) || ( ) ||T

FL µ
µ λ= + − − + − −Y x Z Y x Z A x Y B A x Y B

),,(minarg1 ZxYx µLx

k =+

( )222
121

2 ||||||)()(||minarg xZYBxA λµ
µ +−+−= Fx

),,(minarg1 ZxYY
Y µL

k =+

( )21
2* ||)()(||||||minarg FZYBxAY

Y µ
µ −+−+=

Ridge regression 

Singular value shrinkage 
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ADMM Algorithm for NMR  � 
Singular value shrinkage operator 
•  Theorem: For a given         , let us define the singular 

value shrinkage operator 

•  Then  

	   0>τ

	   ( )1( ) diag {max(0, )} T
p r j j r q rDτ σ τ× ≤ ≤ ×= −Q U V

	   ( )21
* 2( ) argmin || || || ||FDτ τ= + −

Y
Q Y Y Q

•  J.F. Cai, E.J. Candès, Z. Shen, A singular value thresholding algorithm for matrix 
completion, SIAM Journal on Optimization, 2010 
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ADMM Algorithm for NMR  � 
•  The pipeline of ADMM for NMR  

Update x 
Solving Ridge Regression 

Update Y 
Solving Singular Value Thresholding 

Update Z 
Converge? 

No 
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ADMM Algorithm for NMR: Convergence   � 

Convergence Theorem  
•  If         , then the sequence              generated by ADMM 

converges to a saddle point              of the Lagrangian 
function. 

•  Convergence rate ADMM Algorithm can achieve a  
convergence rate of          . 

	   0µ > 	   ( ){ }, ,k k kY x Z

	   ( ){ }, ,k k kY x Z

	   ( )1/O k

Z. Lin, M. Chen, L. Wu, and Y. Ma. The Augmented Lagrange Multiplier Method for 
Exact Recovery of Corrupted Low-Rank Matrices. arXiv:1009.5055v2. 
B. He and X. Yuan. On non-ergodic convergence rate of Douglas-Rachford alternating 
direction method of multipliers, Optimization Online, Jan. 2012. 
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Fast ADMM Algorithm for NMR � 
 
•  Approximate NMR : (Convex à strong convex) 

•  The strong convex objective function terms ensure the 
optimal convergence rate  

•  Its solution is very close to that of NMR: 

2 21
* F 22min || || + || || + || ||        ( )subject toγ θ Α − =Y Y x x B Y
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Fast ADMM: Convergence rate  � 
•  Convergence rate Algorithm 2 can achieve a  

convergence rate of            .  ( )21 /O k
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NMR (Algorithm 1)
Fast NMR(Algorithm 2)

•  T. Goldstein, B. O’Donoghue, and S. Setzer. R. Baraniuk, Fast alternating direction optimization 
methods. Fast alternating direction optimization methods. SIAM Journal on Imaging 
Sciences, 2014, 7(3), 1588-1623. 
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Example: robust to illumination � 

B1 

B2 

NMR
11E

NMR
12E NMR

11B̂
NMR
12B̂

The residual images (left two) and reconstructed images (right two) of B1 using NMR 

 Testing and Training images of two classes of faces 
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Example: robust to illumination � 

4.54|||| 222 =RidgeE > 4.46|||| 221 =RidgeE  

02.11|||| *22 =NMRE < 34.11|||| *21 =NMRE  

Ridge
21E

Ridge
22E Ridge

21B̂ Ridge
22B̂

The residual images (left two) and reconstructed images (right two) of B2 using Ridge regression 

NMR
21E NMR

22E
NMR
21B̂ NMR

22B̂
The residual images (left two) and reconstructed images (right two) of B2 using NMR 
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Example: robust to occlusion � 

OI-3          NMR          Ridge-R               SR            Robust-R 

OI-4          NMR           Ridge-R              SR             Robust-R 

Two class of sample images from the AR database 
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NMR based Classifier � 
•  Similar to the strategy of SRC, we use the training 

samples of all classes to form the set of regressors. 

•  The decision rule is defined as: if                    ,  then B is 
assigned to Class l. 

2
22

1
* ||||||)(||minarg* xBxx λ+−Α=

x

( )
** *)(*)(||ˆˆ||)( xxBBB iiie δΑ−Α=−=

( ) min ( )l ii
e e=B B



PCA Lab, NJUST 

Experiment on the Extended Yale B  � 
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Experiment on the Extended Yale B  � 
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Experiment on the Extended Yale B  � 
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Experiment on the Extended Yale B  � 
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Experiment on the AR  � 
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Parameter Selection � 
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Comparison Running Time � 

Illustration of the average running time (second, in logs) of recognizing one testing sample 
for each method on the Extended Yale B database 
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Outline � 

•  Background and Overview 

•  Nuclear Norm based Matrix Regression 

•  Extended Versions 
   (1) Schatten p-norm based matrix regression  
   (2) Structured nuclear norm based matrix regression  
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(1) Schatten p-norm based matrix regression  � 

•  Schatten p-norm: 

•  It is nuclear norm when p=1, and is Frobenius norm when 
p=2. 

•  Schatten p-norm based matrix regression: 

{ }( )
1/min ,

1p

pl m p
iS i

σ
=

= ∑E

( ) 1
2min A

p

p q

qS
λ− +

x
B x x
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Optimality of Schatten p-norm based 
error characterization � 

•  Optimality:  
The Schatten p-norm based error characterization is optimal 
if the structural noise matrix                     follows the 
generalized matrix variate Power Exponential Distribution: 
 

( )A= −E B x

( ) ( )( )/21
2exp

pTf C tr= −E E E
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2D Power Exponential Distribution � 

p=1 

p=2/3 p=1/2 
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Optimality of Schatten p-norm based 
error characterization: an equivalence � 

•   The structural noise matrix                     follows the 
extended matrix variate Power Exponential Distribution: 

 

( )A= −E B x

( ) ( )( )/21
2exp

pTf C tr= −E E E

( ) ( )( )1
2exp Tf C tr= −Y Y Y

( ) /2 1pT
p

−
=W E E 1/2

p=Y EW

Equivalent to: Y follows matrix variate independent 
Gaussian distribution 
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Understanding Optimality from the linear 
transformation  �  1/2

p=Y EW

p=1 p=2/3 p=1/2 
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Understanding Optimality from the linear 
transformation  �  1/2

p=Y EW

p=1 p=2/3 p=1/2 
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Singular Value Function Thresholding � 

•  We focus on the case where  0<p<1, and Schatten p-norm is 
nonconvex 

•  Fortunately, when p=1/2 or 2/3, there is a close-form solution: 
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Reconstruction results � 
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Robustness to occlusions � 
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Robustness to illumination � 
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Outline � 

•  Background and Overview 

•  Nuclear Norm based Matrix Regression 

•  Extended Versions 
   (1) Schatten p-norm based matrix regression  
   (2) Structured nuclear norm based matrix regression  
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Motivations � 
•  How to deal with mixed noise? 

  

(a)                             (b) 

  

(c)                             (d) 
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Nuclear-L1 Norm Joint Regression  � 

•  Joint nuclear norm and L1 norm into one model 

•  The model degenerates to Robust PCA when x=0 
•  The model is effective for separate mixed noise 

( )
1

2 2 1 2 1 2* 1,
min ,   s.t.  +q

q
α β+ + − =

E x
E E x B A x E E

Original 
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Recognition results  � 

Cases LRC CRC SRC CESR RSC SSEC NMR DNL1R2 DNL1R1 
10% 99.6 100 99.8 94.7 100 93.4 99.8 100 100 
20% 88.8 97.1 93.6 91.7 99.3 81.8 94.3 99.8 100 
30% 63.8 75.0 67.5 76.8 89.9 48.0 79.4 98.2 98.9 
40% 41.9 50.7 46.1 53.1 58.1 17.1 51.8 85.5 87.7 
50% 17.8 24.1 28.1 22.1 23.7 7.5 27.6 50.2 52.4 

 

Extended Yale B: test images with different level of mixed noise 

Comparison with other methods 
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Go one step further: 
Structured nuclear norm based matrix regression  � 

•  Borrow the idea of structured sparsity to further extend 
the Nuclear-L1 Norm 

•  Define the structured nuclear norm 

•  Based on the norm, we can  
   build a new model: 
 

•  The model provides a general framework for regression 
based representation 

( )
* ,*0 1

i

i i
ij j
j

nd
i
j H H wi j
w

= =

Ω = =∑∑E E E

( )1, ,*
min ,   s.t.  M ,i

ij
j

H w
γ+ − =

x E
E x x L E

 Spatial Pyramid structure 
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Classification results � 

Structured 
sparsity 
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Conclusions and Future Efforts � 
Conclusions: 
•  We present nuclear norm based matrix regression and its 

variants 
•  Matrix regression is a simple but effective tool for robust 

face representation 
 
Future efforts: 
•  The model uses image based matching rule, which be 

further improved  
•  It is a shallow model, it is interesting to extend it to be a 

deep model via some techniques such as auto-encoder, 
etc. 
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