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ADP - 1977

Adaptive dynamic programming

Approximate dynamic programming

Asymptotic dynamic programming

Neural dynamic programming

Adaptive critic designs

Dynamic

Programming

1953

RL - 1984

Reinforcement learning

Richard Sutton (1984) Temporal 

Credit Assignment in 

Reinforcement Learning 

(PhD thesis). University of 

Massachusetts.ADPRL

Curse-of-dimensionality - 1957

ADP for self-learning control
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Dynamic programming
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 Performance index (or cost to go)
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  is the control vector.
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Examples of utility functions
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D

B

C

A
Production output

Energy usage

Emissions

Tracking control errors

There are 

many similar 

examples in 

practice



Bellman Equation
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 According to Bellman’s principle of optimality, 



Issues with dynamic programming
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 Dynamic programming is applicable to 
problems that minimize/maximize a cost

 Applicable to many engineering problems

 Model-based

 Backward numerical process 

 Backward in time

 Unknown function J

 Computational complexity increases 
exponentially as the number of variables 

 Only suitable for small problems in practice

Curse of

dimensionality
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Adaptive dynamic programming
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Adaptive Dynamic Programming

Approximate Dynamic Programming

Asymptotic Dynamic Programming

Adaptive Critic Designs

Neurodynamic Programming

Reinforcement Learning

Relaxed Dynamic Programming

To find 
solutions for 

dynamic 
programming

ADP

RL



Adaptive dynamic programming
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Work done before 1997
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Paul Werbos

Prokhorov/Wunsch

Widrow et al.

“Punish/Reward: 
Learning with a 
Critic in Adaptive 
Threshold 
Systems,” IEEE 
Transactions on 
Systems, Man, 
and Cybernetics 
(1973)

“Advanced 
Forecasting 
Methods for 
Global Crisis 
Warning and 
Models of 
Intelligence,” 
General Systems 
Yearbook (1977)

“Adaptive Critic 
Designs,” IEEE 
Transactions on 
Neural Networks 
(1997)

Summarized 
all works 

before 1997.



Theoretical issues to be resolved
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Convergence

Optimality

Stability

There was no 
proof for the 
control 
algorithms to 
be stable.

Whether 
the training/ 
learning 
process will 
converge is an 
open question.

If it converges, 
as seen in 
many 
simulations, 
will it converge 
to the optimal 
function?



Workshops
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 Workshop on Learning and Approximate Dynamic Programming

 Sponsored by the NSF

 April 8-10, 2002, in Mexico

 29 researchers were invited

 Including Larry Ho, Warren Powell and Bernard Widrow

 Published a book: Handbook of Learning and

Approximate Dynamic Programming

 http://www.fulton.asu.edu/~nsfadp/



Workshops
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 Workshop on Approximate Dynamic Programming

 Sponsored by the NSF

 April 3-6, 2006, in Mexico

 42 researchers were invited

 Including Dimitri Bertsekas, Frank Lewis, and Paul Werbos

 Outreach to Mexican students and researchers

 http://www.fulton.asu.edu/~nsfadp/



Books by 2007
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1996

1998

2004

2007
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Bellman's principle of optimality
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Iterative adaptive dynamic programming
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Iterative adaptive dynamic programming
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Iterative adaptive dynamic programming
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Relaxed dynamic programming
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 Theorem due to Rantzer and his co-workers:

where
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 Rantzer et al.
“Relaxing Dynamic Programming,” 
IEEE Transactions on Automatic 
Control (2006)
and
IEE Proceedings - Control Theory 
and Applications (2006)

l

Proof of 
convergence

and optimality



Relaxed dynamic programming
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 Theorem due to Rantzer and his co-workers:

where

* *

1 1

1 1
1 1

(1 ) (1 )
ii i

J V J
 

  

    
          

* *

0

*

0

( ( , )) ( , )

J V J

J F x u U x u

 



  



0How to choose  V

*Restrictions on  and J U

*( , ) 0,  and ( , ) 0 only when ( ( , )) 0U x u U x u J F x u  

Large   slow convergence 

Usually 0 1 and 1   



Relaxed dynamic programming
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 Theorem due to Rantzer and his co-workers:
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Relaxed dynamic programming
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 In the theorem due to Rantzer and his co-workers:
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Iterative adaptive dynamic programming
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 Theorem due to Frank Lewis and his co-workers:

Al-Tamimi, Frank Lewis, Abu-Khalaf,

“Discrete-Time Nonlinear HJB Solution 
Using Approximate Dynamic 
Programming: Convergence Proof,” IEEE 
Transactions on Systems, Man, and 
Cybernetics – Part B (2008)

Proof of 
convergence

and optimality

 The limit  of the value function 
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Value iteration

Iterative adaptive dynamic programming

0 0 1 1 2 2 3V v V v V v V      

0i  1i  2i 



Iterative adaptive dynamic programming
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 Theorem due to Frank Lewis and his co-workers:

 The sequence { } is monotonically 

    non-decreasing. 
iV

*J
80k 

5k 

1k 



Iterative adaptive dynamic programming
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 In the theorem due to Frank Lewis and his co-workers:

0

1

 The sequence { } is monotonically 

    non-decreasing because of the choice ;

 From the th iteration, one obtains
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More books by 2013
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2010

2013

2013

2013



A New Book
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2016



 Bellman Equation: 

 Performance index (or cost to go)

Iterative adaptive dynamic programming
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Relaxed dynamic programming
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 Theorem due to Rantzer and his co-workers:

* *

1 1

1 1
1 1

(1 ) (1 )
ii i

J V J
 

  

    
          

1,  1   1,  1   1,  1  

* *

00 J V J   

Monotonically
non-decreasing

Monotonically
non-increasing



ADP for Self-Learning Control

Dynamic Programming

Adaptive Dynamic Programming

Iterative ADP

New Developments

Concluding Remarks



New developments
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Generalized policy iterationGeneral value iteration

Approximation errors

Local adaptive dynamic programming

Game theory

Reinforcement learning

ADP



Value iteration 
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①General value iteration
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②Generalized policy iteration
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②Generalized policy iteration
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6,1,9,3,5,7,5,4,1,3.iN 



③ADP with approximation errors
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 Considering NN approximation errors, 
realistic updates are

 Convergence result now becomes
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③ADP with approximation errors



④Local adaptive dynamic programming
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 Every update is required to be done for the 
whole state space: VI, GVI, PI, GPI.
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⑤Connections to reinforcement learning
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TD, TD( ), Q-learning, SARSA, Q( ), SARSA( ).  
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 Q-le ing

 

arn






SARSA, SARSA( ): On-policy

Q-learning, Q( ): Off-policy

 





   DHP, ADDHP 
   GDHP, ADGDHP 

 




 Evaluating one policy 

while 

Off-pol

followi

icy

ng 

 lea

anot

rning:

her. 

 1 1 1 ( , ) ( , ) max ( , ) ( , ) . i t t t t t t i t i t t
a

Q s a Q s a r Q s a Q s a   
    
 

 1 1 1 1 ( , ) ( , ) ( , ) ( , ) . i t t t t t t i t t i t tQ s a Q s a r Q s a Q s a       



⑤Connections to reinforcement learning
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HDP  TD
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Consider

Performance index (or cost to go)

Our goal is to find the control policy (player 1) 

and disturbance policy (player 2) so that
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⑥Game theory
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 Iterative algorithm based on ADP

 Convergence analysis + extensions to multiplayer games

 Linear systems and nonlinear systems
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⑥Game theory
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Concluding Remarks
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① ADP has a long history. Theoretical 

development started in the 1970s.

② Adaptive dynamic programming is a robust 

learning control approach.

③ It has a close relationship to reinforcement 

learning.  

④ Ultimate goal: To solve the curse of 

dimensionality – Need new ideas, to solve 

dynamic programming with less computation.
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