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Call for Papers 11 A 15 H &f&

The annual International Joint Conference on Neural Networks (IJCNN}) Is the flagship conference of the IEEE
Computatianal Intelligence Saciety and the International Neural Netwark Society. It covers a wide range of topics in the Follow Ust
field of neural networks, from biological neural network modeling to artificial neural computation.

Guidelines for Paper Submission 0
http:/Awww.ljenn.org/paper-submission LJCNN 2017
Important Dates ¥

« Speclal sesslon & competition proposals submisslon: September 15, 2016 1JCHN 2017

« Tutorlal and workshop proposal submission: October 15,2016 October 30, 2016

» Paper submission: Nevember 15, 2016

» Paper declslon notification: January 26, 2017

o Camera-ready submission; February 20, 2017 Sponsoring Organizations

Topics Covered

#\ INNS - International
Neural Network Society

NEURAL NETWORK MODELS




Honorary Chair
Shun'ichi Amari, RIKEN Brain Science Institute, Tokyo, Japan

General Chairs
Hidenori Kawamura, Hokkaido University, Sapporo, Japan
Jun Wang, City University of Hong Kong, Hong Kong

Advisory Chairs
Kunihiko Fukushima and Takeshi Yamakawa, Fuzzy Logic
Systems Institute, Fukuoka, Japan

Steering Chairs

Haibo He, University of Rhode Island, Kingston, USA
Derong Liu, University of Illinois — Chicago, Chicago, USA
Jun Wang, City University of Hong Kong, Hong Kong

Organizing Committee Chairs

Andrzej Cichocki, RIKEN Brain Science Insfitute, Tokyo,
Japan

Min Han, Dalian University of Technology, Dalian, China
Bao-Liang Lu, Shanghai Jiao Tong University, Shanghai,
China

Masahito Yamamoto, Hokkaido University, Sapporo, Japan

Program Chairs

Fengyu Cong, Dalian University of Technology, Dalian, China
Andrew C.-S. Leung, City University of Hong Kong, Hong
Kong

Qinglai Wei, CAS Institute of Automation, Beijing, China

Special Sessions Chairs
Long Cheng, CAS Insfitute of Automation, Beijing, China
Satoshi Kurihara, Univ. of Electro-Communications, Tokyo,
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§ )’ lnternanonal Symposium

Call for Papers  iic

1o © o
https://conference.cs.cityu.edu.hk/isnn/ Eﬁl

Sponsors/organizers: Hokkaido University and City University of Hong Kong
Technical co-sponsors: Asia Pacific Neural Network Society, [IEEE Computational
Intelligence Society, International Neural Network Society, and Japanese Neural
Network Society

Following the successes of previous events, the 14th International Symposium on Neural Networks (ISNN
2017) will be held in Sapporo, Hokkaido, Japan. Located in northern island of Hokkaido, Sapporo is the fourth
largest Japanese city and a popular summer/winter tourist venue. ISNN 2017 aims to provide a high-level
international forum for scientists, engineers, and educators to present the state of the art of neural network
research and applications in related fields. The symposium will feature plenary speeches given by world
renowned scholars, regular sessions with broad coverage, and special sessions focusing on popular topics.

Call for Papers and Special Sessions

Prospective authors are invited to contribute high-quality papers to ISNN 2017. In addition, proposals for
special sessions within the technical scopes of the symposium are solicited. Special sessions, to be organized
by internationally recognized experts, aim to bring together researchers in special focused topics. Papers
submitted for special sessions are to be peer-reviewed with the same criteria used for the contributed papers.
Researchers interested in organizing special sessions are invited to submit formal proposals to ISNN 2017. A
special session proposal should include the session title, a brief description of the scope and motivation,
names, contact information and brief biographical information of the organizers.

Topic Areas
Topics areas include, but not limited to, computational neuroscience, connectionist theory and cognitive
amrtonee mathematicral mndalitne of netiral cvetoerme netiradimante analicie metriraduimamie ot 7ation and
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CALL FOR PAPERS

The 24th International Conference on Neural Information Processing will be held i Guangzhou, China,
November 14-18, 2017. It 1s an annual event, organized since 1994 by the Asia Pacific Neural Network
Society (APNNS, previously APNNA).

Guangzhou is the capital and largest city of Guangdong province, People's Republic of China. Located
on the Pearl River, about 120 km (75 mi) north-northwest of Hong Kong and north-northeast of Macau,
Guangzhou 1s a key national transportation hub and trading port. It is one of the five National Central
Cities and holds sub-provincial administrative status. With a tropical climate, Guangzhou is warm all
year long, and November is the best month over the year to visit Guangzhou with comfortable weather.
There are so many snacks, delicious dim sum, great sea food and Cantonese cuisine. There 1s a great deal
of tourist sites in Guangzhou, such as Beijing Road Walking Street, Haizhu Square, Sun Yat-sen's
Memorial Hall, Yuexiu Park, Zhongxin Square, White Cloud Mountain, Canton Tower and so on.
ICONIP 2017 aims to provide a high-level international forum for scientists, researchers, educators,
industrial professionals, and students worldwide to present state-of-the-art research results, address new
challenges, and discuss trends in neural information processing and applications. [CONIP 2017 invites
scholars in all areas of neural network theory and applications, computational neuroscience, machine
learning and others. In addition to regular technical sessions with oral and poster presentations, the
conference program will include special sessions and tutorials on topics of current interest.
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Dynamic programming + Learning control

/ ADP - 1977

{ RL - 1984 A
Reinforcement learning

Richard Sutton (1984) Temporal
Credit Assignment in
Reinforcement Learning

(PhD thesis). University of

ADPRL
y -
:4[ADP for self-learning control ]7
/ )

University of Science and Technology School of Automation and Electrical Engineering

Adaptive dynamic programming
Approximate dynamic programming
Asymptotic dynamic programming
Neural dynamic programming
Adaptive critic designs




ADP for Self-Learning Control
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Dynamic programming

® Consider
X = F(Xk’uk)

- X, € X < R" is the state
— u, € Ac R” is the control vector.

® Performance index (or cost to go)
J (%) = Zyi_ku (%, U;)
=k

— U Is the given utility function
— y 1s the discount factor with 0 < ¥ <1
— Infinite horizon problems.

5 %‘:i —.
X / EBE KRG BILER 7
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Examples of utility functions

" Thereare
many similar
examples In

Emissions ﬁ
Tracking control errors 6

Production out

University of Science and Technology School of Automation and Electrical Engineering
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~ Bellman Equation
- ® Acco rding to Bellman’s principle of optimality,\\
J°(%) = nl:n{u (XU )+ 737 (X))}

—The optimal control u; at time k is the u,
that achieves this minimum, 1.e.,

: arg ”lin{U (X, U ) + 737 (X))}

REHRRG ORUFR 9
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Issues with dynamic programming

® Dynamic programming is applicable to
problems that minimize/maximize a cost

» Applicable to many engineering problems
» Model-based

® Backward numerical process

» Backward in time .
> Unknown function J J(%) =Y 7" U(x,u)
=K

Curse of
dimensionality

® Computational complexity increases
exponentially as the number of variables

» Only suitable for small problems in practice

‘ .
HEHLE KT BILER 10
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ADP for Self-Learning Control

— Adaptive Dynamic Programming

L

®
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Adaptive dynamic programming

Adaptive Dynamic Programming
> | ADP
Approximate Dynamic Programming

Asymptotic Dynamic Programming ]

:Adaptive Critic Designs ]

( : : To find
Neurodynamic Programming ] .

dynamic

Relaxed Dynamic Programming]

| :Reinforcement Learning ][ RL ]

k]
2
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Adaptlve dynamlc programmmg

Input layer . Hidden layer Output layer

Network G
Inputs Units

Layer B
Units
I|.'-. ¥,
LayercC

; “:ﬁf‘-:";"f: 'o O N

Network
Output

Generate U,

to minimize O U

Network Input
k to Unit Conn«nons

‘ Connections
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Work done before 1997

IO e e e i e e «

® Prokhorov/Wunsch §

“Adaptive Critic
Designs,” IEEE
Transactions on

Neural Networks
(1997)

@ PaulWerbos ¢

Widrowetal. § “Advanced

Forecasting ==
Methods for
Global Crisis
Warning and
Models of
Intelligence,”
General Systems
Yearbook (1977)

“Punish/Reward:
Learning with a
Critic in Adaptive
Threshold
Systems,” IEEE
Transactions on
Systems, Man,
and Cybernetics
(1973)

Summarized
all works
before 1997.

RELHUE LS BILFER 14
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Theoretical 1ssues to be resolved

}}} e {{{
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Optimality ]

8 Convergence § If it converges,
as seen in
many
simulations,

Stability

Whether
the training/

There was no

learnin -
proof for the processgwill will it converge
contr.ol converge is an to the optimal
algorithms to function?

be stable. open question.

HEHLE KT BILER 15
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Workshops

> S —
Workshop on Learning ¢

Sponsored by the N
April 8-10, 2002, in|

29 researchers were =

Including Larry Ho, i
Published a book: Handbook of Learnlng and

Approximate Dynamic Programming ::'&':R?SSK o
http://www.fulton.asu.edu/~nsfadp/ anD APPROXIMATE

DYNAMIC
PROGRAMMING

ﬂ? Q’Hi ‘% ﬁlﬁj]ﬂﬁ%ﬁn

University of Science and Technology School of Automation and Electrical Engineering




Workshops

) O, B B . «

«» Workshop on Approximate Dynamic Programming
Sponsored by the NSF
April 3-6, 2006, in Mexico
42 researchers were invited
Including Dimitri Bertsekas, Frank Lewis, and Paul \Werbos
Outreach to Mexican students and researchers
http://www.fulton.asu.edu/~nsfadp/

nEHL LT BILER 17
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Books by 2007

»
!

. Reinforcement
NEURO-DYNAMIC | _ .  Learning
PROGRAMMING [mm =

1096 | NURRISEE

FSTKLIS

@WILEY

HANDBOOK oFf | Approximate Dynamic
LEARNING Programming
AND A P p Rox I M AT E chard 3: 3ution and Andrew. ., Barto Solving the Curses of Dime g
DYNAMIC e .o AL
PROGRAMMING

2004

wEHEKRE BILER 18

University of Science and Technology School of Automation and Electrical Engineering



ADP for Self-Learning Control

Iterative ADP

L v

®
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~ Iterative adaptive dynamic programming

® Bellman's principle of optimality
J° (%) =min{U (%, u) +73 (%)} |7=1]

We will use a function V (x, ) to approximate J"(x, ).

® \We have
V(X,) = nain{U (X Uy ) +V (X))

‘ .
HEHLE KT BILER 20
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_Iterative adaptive dynamic programming

® We need to solve for V(x, ) from
V(%) = minU (%, U) +V (%)}
® Considering an(algebraic equation |
X = f(X),
we can solve this equation by iterative method
Xig = T(X) — X, =T(x,)

starting from any initial value x,, if the above
Iterative process Is convergent.

O
wEHEKLE BILFER 21
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Iterative adaptive dynamic programming

»

- &

® \We can do the same for V (x,) from
V(%) =minfU (%, ) +V (X0}
to use
Vi (6) = mingU (. U,) +V, ()}

starting from any initial function V,(-), if the above
Iterative process Is convergent. We can get

V.. (%) = rTJin{U (X U ) +V (%,0) )

‘ .
HEHLE KT BILER 22
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Summary

® The solution of
J *(Xk) = rra:n{U (X, U )+J *(Xk+1)}1

can be obtained from
Via(X) = rrl]:n{U (X, U) +Vi(X,0) )

starting from any initial function V,(-).
@ |[f this iterative process is convergent. We can get

V(%) = nain{U (X Ue) +V_ (%) )

@
EBE KRG BILER

University of Science and Technology School of Automation and Electrical Engineering
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Relaxed dynamic programming

® Theorem due to Rantzer and his co-workers:

a—1

1

where

+ .
@+ p)

J V. <

0<al <V, <B)
J°(F(x,u)) < pU(x,u)

Proof of
convergence
and optimality

1+ 'B__ll. J’
- @+p)
/Rantzer et al.

“Relaxing Dynamic Programming,”
IEEE Transactions on Automatic

Control (2006)

and
IEE Proceedings - Control Theory

\and Applications (2006)

J

LB RE BLER

University of Science and Technology School of Automation and Electrical Engineering
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Relaxed dynamic programming

® Theorem due to Rantzer and his co-workers:

1+ 271 1y ey <|1e £ |y

- @) - @)

where

0<al <V, <BJ’ [Howto choose VO]

Usually 0 < x <land g > 1

J7(F(x,u)) < pU(x,u) [Restrictions onJ” and U]

U(x,u) =0, and U(x,u) =0 only when J"(F(x,u)) =0
Large p — slow convergence

5 of —.
| ; R E B A KY BIHER

University of Science and Technology School of Automation and Electrical Engineering
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Relaxed dynamic programming

® Theorem due to Rantzer and his co-workers:

1

a—1

+ .
@+ p)

*

J V. <

1

-1

+ .
A+ p)

* a<l

LB RE BLER
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Relaxed dynamic programming

® In the theorem due to Rantzer and his co-workers:

1+ 271 1y ey <|1e £ |y
- Q+p) - Q+p)
where

0<al <V, < B)

[Rantzer suggested to choose V, = O]

= a=0

5 o‘: —.—
X / E PR KRE BIER 27
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Iterative adaptive dynamic programming

® Theorem due to Frank Lewis and his co-workers:

— The limit V_(x, ) of the value function

sequence {V. } exists;

— 1MV, (x,) =V, (%) = 3" (%,);

- !irgvi(xk) =u"(X,).

Proof of
convergence
and optimality

/AI-Tamimi, Frank Lewis, Abu-KhaIaf,\
“Discrete-Time Nonlinear HJB Solution
Using Approximate Dynamic
Programming: Convergence Proof,” IEEE

E BB KRE BIUFER

University of Science and Technology School of Automation and Electrical Engineering

Transactions on Systems, Man, and
\Cybernetics — Part B (2008) /
28




Iterative adaptive dynamic programming

»

- &

® Choose the initial value function as V,(-) = 0.

® Fori1=0,12,..., solve the control law as
Vi (Xk) =alg ﬁlin {U (Xk , uk) "‘Vi (Xk+1)}1

and update the value funtion as
Via (X)) =U (%, vi (%)) + Vi (F (X, v (X,)).

\ ) \ ) \ )

| Value i1teration |

HEHLE KT BILER 29
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Iterative adaptive dynamic programming

® Theorem due to Frank Lewis and his co-workers:
— The sequence {V. } is monotonically

non-decreasing.

I\ )

k =80
S k=5

k =1

/

) — ) ——————————
wE ML KRG BINER 30
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Iterative adaptive dynamic programming

® In the theorem due to Frank Lewis and his co-workers:

— The sequence {V. } is monotonically
non-decreasing because of the choice V, = 0;

— From the i1th 1teration, one obtains
v. and V...

‘ .
HEHLE KT BILER 31
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Automation and Control
Enginearing Series

Reinforcement Learning
and Dynamic Programming
Using Function Approximators

2010 K

Lucian Busoniu
Robert Babuska
Bart De Schutter

Damien Ernst

Huaguang Zhang
Derong Liu
Yanhong Luo
Ding Wang

Adaptive Dynamic
Programming e
for Control

Algorithms and Stability

2013

——zuna Vrabie, Kyriakos G.
Vamvoudakis and Frank L. Lewis
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A N eW B OO k Derong Liu, Qinglai Wei, Ding Wang,

Xiong Yang, Hongliang L1

»

2016
Adaptive Dynamic Programming
with Applications in Optimal
Control

October 10, 2016
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Iterative adaptive dynamic programming

® Bellman Equation:
J *(Xk) = rrl}in{u (X Uy ) +7J *(Xk+1)}

are for y =1.

® Performance index (or cost to go) [I\/Iost results ]

J04) =37 U ()

REBUE KT BILER 34
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Relaxed dynamic programming

® Theorem due to Rantzer and his co-wor

14 - i}J*svi s{1+ p-1 i]]*
1+p7) L+p7)

Monotonically
non-decreasing

Monotonically
“~._ hon-increasing

LB RE BLER

a>1 pg>1

35
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ADP for Self-Learning Control

— New Developments

®
nEHERE BIUFR
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New developments

General value iteration o o Generalized policy iteration

o Approximation errors

Reinforcement learning o o Local adaptive dynamic programming

@
EBUBERE BIUFR 37
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»

Value Iteration

® Value 1teration can be used to solve
J' (%) = nain{U (%, U) + 37 (X))

Choose the initial value function as V,(-) = 0.

Fori=0,12,..., solve the control law as
V(%) =arg n]:n {U (X, U) +V, (Xk+1)}1

and update the value funtion as
Via (%) =U (X, Vi (%) + Vi (F (%, Vi (%),

First, calculate

vy (X, ) =arg ”l‘J:” {U (X, uy) + Vo (Xe,1) }-
Fori=0,1,2,..., do value function update
V(%) = rrl:n U (X, U) +Vi, (X))

and policy improvement
V(%) =arg nl:n {U (X, U) +V, (Xk+1)}

=arg rrlljin{U (X, ) + Vi (F (X u )}

=U (Xk’Vi—l(Xk )) +Vi_1(F (Xk1vi—1(Xk)))

E BB KRE BIUFER

University of Science and Technology School of Automation and Electrical Engineering
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@ General value iteration

»

® The initial value function V, can be chosen as:

Vo(Xk) — XkTPoXk VO(Xk) = \P(Xk)
— P, Is positive definite — positive semidefinite

First, calculate
Vo(X%, ) =arg ”Jin {U (X Uy ) +V0(Xk+1)}'
Fori1=0,12,..., do value function update

Vi (%) = min{U (X, ) + Vi (Xe0)f =U 04 Vs 6)) + Vi (F (%, Vi (%))

and policy improvement
v;(x,) =argmin{U (x,,u,) +V,(X.,)} =argmin{U (x,,u,) +V;(F (X, u,)}.

@
EBE KRG BILER
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- ® General value iteration

® The initial value function V, can be chosen as:

Vo(xk) — XkTPoXk VO(Xk) = LP(Xk)
— P, 1s positive definite — positive semidefinite

© IfV, <V, thenV. <V, forall I

1+1

© IfV, 2>V, thenV, >V, forall I

1+1

The monotonicity of {V,} depends on
the relationaship between V, and V..

V, =0 = monotonically non-decreasing;
V,=0¥,0>0largeand ¥ >0 =

6-ADP: _ :
monotonically non-decreasing.
()
EME KRG BILER 40
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@ General value iteration

}}} e {{{

V,=0Y¥,0>0largeand ¥ >0 =
monotonically non-decreasing.

&d-ADP:

VeV, ={¥(x): ¥>0and Iv(x,)

[P (F (x,,v(x)) < ¥(x))

© Value function update
Vi(%) = rrl]:n {U (Xi» Uy ) +Vi—1(Xk+1)}
=U (%, Vi (%)) + Vi (F (X, v (X))
IS more likely to obtain a non-increasing sequence.

‘ .
nEHELE BILER 41
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Policy Iteration

@® Policy Iiteration can be used to solve
J *(Xk) = nain{U (Xk ’ uk) +J *(Xk+1)}'

Choose an initial value function. Calculate
V,(x, ) =arg nl:n {U (X, u) + Vo (Xe,1) }-

Fori=0,1,2,..., do value function update
V(X )= rTJ:n U (X, u) +Vi (X))

=U (invi—l(xk )) +Vi_1(F (Xk’Vi—l(Xk )))
and policy improvement
Vi (Xk) = al‘g rrllj:n {U (Xk y uk) +Vi (Xk+1)}

= arg nlin{U (X, Uy ) + Vi (F (%, u )}

Value iteration

E BB KRE BIUFER

University of Science and Technology School of Automation and Electrical Engineering

Choose an initial admissible control law

Vo(X,). | Stable + cost function is finite.
Fori=12,..., do policy evaluation

Vi(% ) =U (X, Vi1 (X)) + Vi (F (X5 Vi (X))
and policy improvement

v,(X,) =arg n]in {U (X, U ) +V, (Xk+1)}

=arg n]in{U (X, Uy ) + Vi (F (X, u )}

Policy iteration

42



Policy Iteration

@® Policy Iiteration can be used to solve
J *(Xk) = nain{U (Xk ’ uk) +J *(Xk+1)}'

Choose an initial admissible control law

VO(Xk)'

Fori=12,..., do policy evaluation

Vi(%) =U (%, Vit (X)) + Vi (F (X, Vi1 (X))
and policy improvement

( . . - -
Require infinite number
_of iterations to evaluate!

Vv.(x, ) =arg ITLljin {U (X, U)+V, (Xk+1)}

= arg rrlin{U (X, U ) +V; (F (X, u,) -

@
EBE KRG BILER

University of Science and Technology School of Automation and Electrical Engineering
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@ Generalized policy iteration

»> e -- e e e e K

Choose an initial admissible control law v_;, (X, ).
Construct V, from v _,, using
Vo (%) = U (X%, Vi) (X)) +Vo (F (X, vy (X))
and calculate v, by
Vo (%) = arg min{U (X, U) Vo (X.a) } = arg min U (x,, U ) +Vo (F (%, U ) -

Vi,ji (Xk) =U (Xk’vi—l(xk)) +Vi,ji—1(F(Xk’Vi—l(xk)))1 ji =12 e Ni’
to obtain V;(x,) :Vi,Ni (%) with Vi,O(Xk+1) =V (%)
For each I, do policy improvement

Vi (Xk) =arg I’Tlin {U (Xk ’ uk) +Vi (Xk+1)} =arg ”lin {U (Xk’uk) +Vi (F (Xk ’ uk)}'

F hi,i=12,..., doN -st li luati
or each i, i o N.-step policy evaluation [Ni 1= VIJ
I

N=-00 = P

‘ .
HEBE KRG BILER 44
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@ Generalized policy iteration

lterative value function
lterative value function

LNi =6,1,9,3,5,7,5,4,1,3.

80

3 », S T
& Ry at A
e IR
v

lterative value function
lterative value function

O
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@ADP Wlth apprOX|mat|on errors.

® Considering NN approximation errors,
realistic updates are

V(%) =argmin{U (x,, ) +Vi(F (%, u))} +77,(x)

a (%) = U (X, 06)) + V4 (F (%, V(X)) +77, (X, )

|+1

® Convergence result now becomes

plo’ (o -1) p o'(5-1)],-
V.(x)<o 1+JZ_1: (51D (54D J7(x,)

V, <537, J7(f(x,u)) < pU(x,u)

()
HEBE KRG BILER 46
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@ ADP with approximation errors

® The result becomes )
imVi(x,) =V, (x) < o| 1+ 27D 157(x )

1-p(c-1)_
,0 Finite neighborhood
of the optimal solution
where

\Z(Xk) <o Li(%)
L' (Xk) = rTl]Jin {U (Xk ’ uk) +\7i—1(xk+1)}

‘ .
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@ Local adaptive dynamic programming

»> - &

® Every update Is required to be done for the
whole state space: VI, GVI, Pl, GPI.

© Partition state space

© At each iteration step, only update in one of the
subspaces L.

[ Asynchronous ADP J

‘ .
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® Connections to reinforcement learning

® TD, TD(4), Q-learning, SARSA, Q(1), SARSA(A).

® ADP:

- HDP < TD | — DHP, ADDHP
— ADHDP < Q-learning — GDHP, ADGDHP

® SARSA, SARSA(A): On-policy
Qi+1(st1at) — Qt(st,at) + a[rt+1 + ?/Qi (St+1’ at+1) _Qi (St’at)]-
Q-learning, Q(A): Off-policy
Qua(12) = Q(51,8) + | 1 + 7 Max {Q(5.,,2)} ~Qu(s,,a) |

® Off-policy learning: Evaluating one policy
while following another.

‘ .
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® Connections to reinforcement learning

® HDP < TD

© InTD (TD(A) as well):

Via(s) =Vi(s,) + alr.; + Vi(s,1) —Vi(s)]
[Target — OldValue]|

© In model-free HDP, critic network training
by minimizing:

E=[U w1 TV (Xk+1) -V, (Xk )]
\ ] |\ J
|

Training target To be trained

5 %5 —.—
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© Game theory

PP e J .\ - &K
saddle point
® Consider solution or the
Nash
X, = F(X)+g(x)u, +h(x )w, equilibrium

® Performance index (or cost to go)
V (X U W) = D 1xQx; + U Ru, — 7w w, |
=K

® Our goal is to find the control policy (player 1)
and disturbance policy (player 2) so that
J7(%,) = min max{V (X,,u,,w, )}

K K

‘ .
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»

© Game theory

® |terative algorithm based on ADP
V; (%) = min max {x/Qx, + Uy Ru, —° W/,

K k

£V, (F () +9(x)U, +h(x)w, )}
0 (%) = _% R—lgT(Xk) aViX(Xk+1)

1 oV. (X,
W 05) =7 () Ker)
k+1

® Convergence analysis + extensions to multiplayer games

® Linear systems and nonlinear systems
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ADP for Self-Learning Control

4
.

®
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Concludmg Remarks

— €&
A\ \ |

@ ADP has a long hlstory Theoretlcal
development started in the 1970s.

@ Adaptive dynamic programming Is a robust
learning control approach.

@ It has a close relationship to reinforcement
learning.

@ Ultimate goal: To solve the curse of
dimensionality — Need new Iideas, to solve
dynamic programming with less computation.

@
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For more information

® derongliu@foxmail.com
® http://www.derongliu.org
® 13810670526
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For more information

® derongliu@foxmail.com
® http://www.derongliu.org
® 13810670526
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