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ADP - 1977

Adaptive dynamic programming

Approximate dynamic programming

Asymptotic dynamic programming

Neural dynamic programming

Adaptive critic designs

Dynamic

Programming

1953

RL - 1984

Reinforcement learning

Richard Sutton (1984) Temporal 

Credit Assignment in 

Reinforcement Learning 

(PhD thesis). University of 

Massachusetts.ADPRL

Curse-of-dimensionality - 1957

ADP for self-learning control
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Dynamic programming
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 Consider

 Performance index (or cost to go)

  is the state

  is the control vector.
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Examples of utility functions
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D

B

C

A
Production output

Energy usage

Emissions

Tracking control errors

There are 

many similar 

examples in 

practice



Bellman Equation
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 According to Bellman’s principle of optimality, 



Issues with dynamic programming
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 Dynamic programming is applicable to 
problems that minimize/maximize a cost

 Applicable to many engineering problems

 Model-based

 Backward numerical process 

 Backward in time

 Unknown function J

 Computational complexity increases 
exponentially as the number of variables 

 Only suitable for small problems in practice

Curse of

dimensionality
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Adaptive dynamic programming
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Adaptive Dynamic Programming

Approximate Dynamic Programming

Asymptotic Dynamic Programming

Adaptive Critic Designs

Neurodynamic Programming

Reinforcement Learning

Relaxed Dynamic Programming

To find 
solutions for 

dynamic 
programming

ADP

RL



Adaptive dynamic programming
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Work done before 1997
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Paul Werbos

Prokhorov/Wunsch

Widrow et al.

“Punish/Reward: 
Learning with a 
Critic in Adaptive 
Threshold 
Systems,” IEEE 
Transactions on 
Systems, Man, 
and Cybernetics 
(1973)

“Advanced 
Forecasting 
Methods for 
Global Crisis 
Warning and 
Models of 
Intelligence,” 
General Systems 
Yearbook (1977)

“Adaptive Critic 
Designs,” IEEE 
Transactions on 
Neural Networks 
(1997)

Summarized 
all works 

before 1997.



Theoretical issues to be resolved
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Convergence

Optimality

Stability

There was no 
proof for the 
control 
algorithms to 
be stable.

Whether 
the training/ 
learning 
process will 
converge is an 
open question.

If it converges, 
as seen in 
many 
simulations, 
will it converge 
to the optimal 
function?



Workshops
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 Workshop on Learning and Approximate Dynamic Programming

 Sponsored by the NSF

 April 8-10, 2002, in Mexico

 29 researchers were invited

 Including Larry Ho, Warren Powell and Bernard Widrow

 Published a book: Handbook of Learning and

Approximate Dynamic Programming

 http://www.fulton.asu.edu/~nsfadp/



Workshops
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 Workshop on Approximate Dynamic Programming

 Sponsored by the NSF

 April 3-6, 2006, in Mexico

 42 researchers were invited

 Including Dimitri Bertsekas, Frank Lewis, and Paul Werbos

 Outreach to Mexican students and researchers

 http://www.fulton.asu.edu/~nsfadp/
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1996

1998

2004

2007
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1( ) min{ ( , ) ( )}.

Bellman's principle of optimality

We will use a function ( ) to approximate ( ).
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Iterative adaptive dynamic programming
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1

1

( ) min{ ( , ) ( )}.

( ),
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Considering an algebraic equation

we can solve this equation by iterative meth
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Iterative adaptive dynamic programming
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Iterative adaptive dynamic programming



Summary 
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Relaxed dynamic programming
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 Theorem due to Rantzer and his co-workers:

where
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 Rantzer et al.
“Relaxing Dynamic Programming,” 
IEEE Transactions on Automatic 
Control (2006)
and
IEE Proceedings - Control Theory 
and Applications (2006)

l

Proof of 
convergence

and optimality



Relaxed dynamic programming
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 Theorem due to Rantzer and his co-workers:
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Relaxed dynamic programming
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 Theorem due to Rantzer and his co-workers:
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Relaxed dynamic programming
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 In the theorem due to Rantzer and his co-workers:

where
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Iterative adaptive dynamic programming
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 Theorem due to Frank Lewis and his co-workers:

Al-Tamimi, Frank Lewis, Abu-Khalaf,

“Discrete-Time Nonlinear HJB Solution 
Using Approximate Dynamic 
Programming: Convergence Proof,” IEEE 
Transactions on Systems, Man, and 
Cybernetics – Part B (2008)

Proof of 
convergence

and optimality
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Iterative adaptive dynamic programming
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 Theorem due to Frank Lewis and his co-workers:

 The sequence { } is monotonically 

    non-decreasing. 
iV

*J
80k 

5k 
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Iterative adaptive dynamic programming
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 In the theorem due to Frank Lewis and his co-workers:

0

1

 The sequence { } is monotonically 

    non-decreasing because of the choice ;

 From the th iteration, one obtains
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More books by 2013
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2010

2013

2013

2013



A New Book
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2016



 Bellman Equation: 

 Performance index (or cost to go)

Iterative adaptive dynamic programming
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Relaxed dynamic programming
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 Theorem due to Rantzer and his co-workers:

* *
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Monotonically
non-decreasing

Monotonically
non-increasing
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New developments
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Generalized policy iterationGeneral value iteration

Approximation errors

Local adaptive dynamic programming

Game theory

Reinforcement learning

ADP



Value iteration 
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0The  value function  can be choinitia senl  as:V

 

 

0 0 1

1 1 1 1 1

First, calculate

For 0,1,2,...,  do value fu

( ) arg min ( , ) ( ) .

( ) min ( , ) ( ) ( , ( )) ( ( , ( )))

( ) arg mi

nction update

and policy improvement

n ( ,

k

k

k

k k k k
u

i k k k i k k i k i k i k
u

i k k
u

v x U x u V x

V x U x u V x U x v x V F x v

v U

i

x

x x u



    

 

   





   1) ( ) arg min ( , ) ( ( , ) .
k

k i k k k i k k
u

V x U x u V F x u  

T

0 0

0

( )

  is positive definite
k k kV x x P x

P





①General value iteration

0( ) ( )

 positive semidefinite
k kV x x 





 

0 1

The monotonicity of  depends on 
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0The  value function  can be choinitia senl  as:V
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①General value iteration

-ADP:



0 , 0 large and 0  

monotonically non-decreasing.

V       
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①General value iteration

-ADP:
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Policy iteration 
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Policy iteration can be used to sol
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Policy iteration 
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②Generalized policy iteration
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②Generalized policy iteration
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1iN 
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③ADP with approximation errors
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 Considering NN approximation errors, 
realistic updates are

 Convergence result now becomes
1
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  
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i k k k i k k

u

i k k i k i k i k
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 

  ( )i kx
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0 ,  ( ( , )) ( , )V J J f x u U x u  
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 The result becomes

if

where

*( 1)ˆlim ( ) ( ) 1 ( )
1 ( 1)

i k k k
i

V x V x J x
 


 




 
     

1
1







 

 1 1

ˆ ( ) ( )

ˆ( ) min ( , ) ( )
k

i k i k

i k k k i k
u

V x x

x U x u V x



 

 

  

Finite neighborhood 

of  the optimal solution

③ADP with approximation errors



④Local adaptive dynamic programming
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 Every update is required to be done for the 
whole state space: VI, GVI, PI, GPI.

0 1

0

Partition state space

    j

x x x x x

j

L L L L






     

At each iteration step, only update in one of the 

subspaces .j

xL

Asynchronous ADP



⑤Connections to reinforcement learning
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TD, TD( ), Q-learning, SARSA, Q( ), SARSA( ).  

ADP:
   HDP 
   ADHDP 

 TD
 Q-le ing

 

arn






SARSA, SARSA( ): On-policy

Q-learning, Q( ): Off-policy

 





   DHP, ADDHP 
   GDHP, ADGDHP 

 




 Evaluating one policy 

while 

Off-pol

followi

icy

ng 

 lea

anot

rning:

her. 

 1 1 1 ( , ) ( , ) max ( , ) ( , ) . i t t t t t t i t i t t
a

Q s a Q s a r Q s a Q s a   
    
 

 1 1 1 1 ( , ) ( , ) ( , ) ( , ) . i t t t t t t i t t i t tQ s a Q s a r Q s a Q s a       



⑤Connections to reinforcement learning
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HDP  TD

1 1 1

In TD (TD( ) as well):

  ( ) ( ) [ ( ) ( )]i t i t t i t i tV s V s r V s V s



      

[Target OldValue]

1 1

In model-free HDP, critic network training 

  

by mi

[ ( ) (

nimizi g:

]

n

)k i k i kE U V x V x   

Training target To be trained
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Consider

Performance index (or cost to go)

Our goal is to find the control policy (player 1) 

and disturbance policy (player 2) so that

1 ( )( ) ( )   k k k k k kx f x x hg xu w   

 2( , , )  k k k i i i i

i k

i iV x u w x Qx u wRu w


  



 

*

0 0( ) min max{ ( , , )}
k k

k k
u w

J x V x u w

saddle point 

solution or the 

Nash 

equilibrium

⑥Game theory
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 Iterative algorithm based on ADP

 Convergence analysis + extensions to multiplayer games

 Linear systems and nonlinear systems



 

2 T

1

( ) min max

                ( ) ( ) ( )

k k

i k k k k k k k
u w

i k k k k k
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V f x g x u h x w

 



  

  

1 T 1

1
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2
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k
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u x R g x

x

 




 

2 T 1

1

( )1
( ) ( )    

2

i k
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k

V x
w x h x

x
  






⑥Game theory
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Concluding Remarks
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① ADP has a long history. Theoretical 

development started in the 1970s.

② Adaptive dynamic programming is a robust 

learning control approach.

③ It has a close relationship to reinforcement 

learning.  

④ Ultimate goal: To solve the curse of 

dimensionality – Need new ideas, to solve 

dynamic programming with less computation.
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