
自适应动态规划最优控制方法

刘德荣

1

2016年11月6日

北京科技大学
University of Science

and Technology Beijing

自动化学院
School of Automation

and Electrical Engineering

11月15日截稿

1月1日截稿

5月份截稿

大会总主席：
刘德荣

Dynamic programming + Learning control

5

ADP - 1977

Adaptive dynamic programming

Approximate dynamic programming

Asymptotic dynamic programming

Neural dynamic programming

Adaptive critic designs

Dynamic

Programming

1953

RL - 1984

Reinforcement learning

Richard Sutton (1984) Temporal

Credit Assignment in

Reinforcement Learning

(PhD thesis). University of

Massachusetts.ADPRL

Curse-of-dimensionality - 1957

ADP for self-learning control

ADP for Self-Learning Control

Dynamic Programming

Adaptive Dynamic Programming

Iterative ADP

New Developments

Concluding Remarks

Dynamic programming

7

 Consider

 Performance index (or cost to go)

 is the state

 is the control vector.

n

k

p

k

x X R

u A R

  

  

(,) k k kx F x u

() (,) i k

k i i

i k

J x U x u








 is the discount factor wit

 is the given utility function

 Infinite horizo

h

n prob ms

0

le

U

 











Examples of utility functions

8

D

B

C

A
Production output

Energy usage

Emissions

Tracking control errors

There are

many similar

examples in

practice

Bellman Equation

9

0x
kx 1kx  Nx

*

ku*

0u *

1ku 

* *

1() min{ (,) ()}.
k

k k k k
u

J x U x u J x  

*

* *
1

The optimal control at time is the

 that achieves this minimum, i.e.,

 arg min{ (,) ()}.
k

k k

k k k k
u

u k u

u U x u J x 



 

12kk+1

 According to Bellman’s principle of optimality,

Issues with dynamic programming

10

 Dynamic programming is applicable to
problems that minimize/maximize a cost

 Applicable to many engineering problems

 Model-based

 Backward numerical process

 Backward in time

 Unknown function J

 Computational complexity increases
exponentially as the number of variables

 Only suitable for small problems in practice

Curse of

dimensionality

() (,) i k

k i i

i k

J x U x u








ADP for Self-Learning Control

Dynamic Programming

Adaptive Dynamic Programming

Iterative ADP

New Developments

Concluding Remarks

Adaptive dynamic programming

12

Adaptive Dynamic Programming

Approximate Dynamic Programming

Asymptotic Dynamic Programming

Adaptive Critic Designs

Neurodynamic Programming

Reinforcement Learning

Relaxed Dynamic Programming

To find
solutions for

dynamic
programming

ADP

RL

Adaptive dynamic programming

1313

1k kQ J 

ku

kQ

kx
 Generate
to minimize

k

k

u

Q

Model-free HDP

Work done before 1997

14

Paul Werbos

Prokhorov/Wunsch

Widrow et al.

“Punish/Reward:
Learning with a
Critic in Adaptive
Threshold
Systems,” IEEE
Transactions on
Systems, Man,
and Cybernetics
(1973)

“Advanced
Forecasting
Methods for
Global Crisis
Warning and
Models of
Intelligence,”
General Systems
Yearbook (1977)

“Adaptive Critic
Designs,” IEEE
Transactions on
Neural Networks
(1997)

Summarized
all works

before 1997.

Theoretical issues to be resolved

15

Convergence

Optimality

Stability

There was no
proof for the
control
algorithms to
be stable.

Whether
the training/
learning
process will
converge is an
open question.

If it converges,
as seen in
many
simulations,
will it converge
to the optimal
function?

Workshops

16

 Workshop on Learning and Approximate Dynamic Programming

 Sponsored by the NSF

 April 8-10, 2002, in Mexico

 29 researchers were invited

 Including Larry Ho, Warren Powell and Bernard Widrow

 Published a book: Handbook of Learning and

Approximate Dynamic Programming

 http://www.fulton.asu.edu/~nsfadp/

Workshops

17

 Workshop on Approximate Dynamic Programming

 Sponsored by the NSF

 April 3-6, 2006, in Mexico

 42 researchers were invited

 Including Dimitri Bertsekas, Frank Lewis, and Paul Werbos

 Outreach to Mexican students and researchers

 http://www.fulton.asu.edu/~nsfadp/

Books by 2007

18

1996

1998

2004

2007

ADP for Self-Learning Control

Dynamic Programming

Adaptive Dynamic Programming

Iterative ADP

New Developments

Concluding Remarks

20

*

*

*

1() min{ (,) ()}.

Bellman's principle of optimality

We will use a function () to approximate ().

k
k k k k

u

k k

J x U

V x

x u J

J x

x  

1() min{

We

(,) ()

h v

}.

a e

k
k k k k

u
V x U x u V x  

1 

Iterative adaptive dynamic programming

21

1

1

() min{ (,) ()}.

(),

We need to solve for () from

Considering an algebraic equation

we can solve this equation by iterative meth

 ()

od

starting from a

ny ini

()

t

k
k k

u

k

k k

i i

V x U x u V x

x f x

x f x x f

V

x

x



  

 



 

0ial value , if the above

iterative process is convergent.

x

Iterative adaptive dynamic programming

22

1

0

1

1

() min{ (,) ()}

() min{ (,) ()}

starting from any initial f

We can do the same for

u

 () from

to use

, if the above

iterative process is convergent. We can

nction)

get

(

k

k

k k k k
u

i k k k i

k

k
u

V x U x u V x

V x U x u

V x

V x

V

V



 

 







1() min{ (,) ()}
k

k k k k
u

x U x u V x   

Iterative adaptive dynamic programming

Summary

23

* *

1() min{ (

The solution of

can be obt

,) ()},

ained from

k
k k k k

u
J x U x u J x  

1 1

1

0

If this iterat

starting from any initial function ()

ive pr

 () min{ (,) ()},

 () min{ (,)

ocess is convergent. We can get

()}

.

.

k

k

i k k k i k
u

k k k k
u

V

V x U x u V x

V x U x u V x

 

  











Relaxed dynamic programming

24

 Theorem due to Rantzer and his co-workers:

where

* *

1 1

1 1
1 1

(1) (1)
ii i

J V J
 

  

    
          

* *

0

*

0

((,)) (,)

J V J

J F x u U x u

 



  

 Rantzer et al.
“Relaxing Dynamic Programming,”
IEEE Transactions on Automatic
Control (2006)
and
IEE Proceedings - Control Theory
and Applications (2006)

l

Proof of
convergence

and optimality

Relaxed dynamic programming

25

 Theorem due to Rantzer and his co-workers:

where

* *

1 1

1 1
1 1

(1) (1)
ii i

J V J
 

  

    
          

* *

0

*

0

((,)) (,)

J V J

J F x u U x u

 



  



0How to choose V

*Restrictions on and J U

*(,) 0, and (,) 0 only when ((,)) 0U x u U x u J F x u  

Large slow convergence 

Usually 0 1 and 1   

Relaxed dynamic programming

26

 Theorem due to Rantzer and his co-workers:

* *

1 1

1 1
1 1

(1) (1)
ii i

J V J
 

  

    
          

* upper bound lower bound iJ V

1i  3i  30i 

1

1







Relaxed dynamic programming

27

 In the theorem due to Rantzer and his co-workers:

where

* *

1 1

1 1
1 1

(1) (1)
ii i

J V J
 

  

    
          

* *

00 J V J   

0Rantzer suggested to choose 0V 

 0 

Iterative adaptive dynamic programming

28

 Theorem due to Frank Lewis and his co-workers:

Al-Tamimi, Frank Lewis, Abu-Khalaf,

“Discrete-Time Nonlinear HJB Solution
Using Approximate Dynamic
Programming: Convergence Proof,” IEEE
Transactions on Systems, Man, and
Cybernetics – Part B (2008)

Proof of
convergence

and optimality

 The limit of the value function
 seq

l

()

im () ()

uence { } exists;

() ;

k

i k
i

k k

i

V x

xx V J

V

xV
















lim () (). i k k
i

v x u x




29

 

0

1

1

() 0.

() ar

Choose the value function as

For 0,1,2,..., solve the control l

g min (,) (

in

)

aw as

and

iti

 up

al

da

,

() (, (

te the

)) (

 va

(

lue funti

, (

on

)).

as

k
i k k k i k

u

i k k i k i k i k

V

v x U x u V x

V x U x v x V F

i

x v x





 

 







Value iteration

Iterative adaptive dynamic programming

0 0 1 1 2 2 3V v V v V v V      

0i  1i  2i 

Iterative adaptive dynamic programming

30

 Theorem due to Frank Lewis and his co-workers:

 The sequence { } is monotonically

 non-decreasing.
iV

*J
80k 

5k 

1k 

Iterative adaptive dynamic programming

31

 In the theorem due to Frank Lewis and his co-workers:

0

1

 The sequence { } is monotonically

 non-decreasing because of the choice ;

 From the th iteration, one obtains

 and .

0

i

i

i

V

i

v

V

V 







More books by 2013

32

2010

2013

2013

2013

A New Book

33

2016

 Bellman Equation:

 Performance index (or cost to go)

Iterative adaptive dynamic programming

34

* *

1() min{ (,) ()}
k

k k k k
u

J x U x u J x  

() (,) i k

k i i

i k

J x U x u







*J *J

Most results
are for 1. 









 

1  1 

Relaxed dynamic programming

35

 Theorem due to Rantzer and his co-workers:

* *

1 1

1 1
1 1

(1) (1)
ii i

J V J
 

  

    
          

1, 1   1, 1   1, 1  

* *

00 J V J   

Monotonically
non-decreasing

Monotonically
non-increasing

ADP for Self-Learning Control

Dynamic Programming

Adaptive Dynamic Programming

Iterative ADP

New Developments

Concluding Remarks

New developments

37

Generalized policy iterationGeneral value iteration

Approximation errors

Local adaptive dynamic programming

Game theory

Reinforcement learning

ADP

Value iteration

38

* *

1

0

() min{ (,) ()}.

()

Value iteration can be used to solve

Choose the value functioniniti al . 0as

k
k k k k

u
J x U x u J x

V

 

 

 1

1

() arg min (,) ()

For 0,1,2,..., solve the control law as

and update the value funtion

,

()

 as

(, ()) ((, ()).

k
i k k k i k

u

i k k i k i k i k

v x U x u V x

V x U x v x V F x v x

i







 



  

 

0 0 1

1 1

1 1 1

First, calculate

For 0,1,2,..., do value f

() arg min (,) () .

() min (,)

unction update

and polic

()

y improveme

 (, ()) ((, ()))

() arg

nt

k

k

k k k k
u

i k k k i k
u

k i k i k i k

i k

v x U x u V x

V x U x u V x

U x v x V F x v

v x

i

x



 

  

 

 

 





 

 

1min (,) ()

 arg min (,) ((,) .

k

k

k k i k
u

k k i k k
u

U x u V x

U x u V F x u



 

39

0The value function can be choinitia senl as:V

 

 

0 0 1

1 1 1 1 1

First, calculate

For 0,1,2,..., do value fu

() arg min (,) () .

() min (,) () (, ()) ((, ()))

() arg mi

nction update

and policy improvement

n (,

k

k

k

k k k k
u

i k k k i k k i k i k i k
u

i k k
u

v x U x u V x

V x U x u V x U x v x V F x v

v U

i

x

x x u



    

 

   





   1) () arg min (,) ((,) .
k

k i k k k i k k
u

V x U x u V F x u  

T

0 0

0

()

 is positive definite
k k kV x x P x

P





①General value iteration

0() ()

 positive semidefinite
k kV x x 



 

0 1

The monotonicity of depends on

the relationaship between and .
iV

V V

0

0

0 monotonically non-decreasing;

, 0 large and 0

monotonically non-decreasing.

V

V  

 

     

40

0The value function can be choinitia senl as:V
T

0 0

0

()

 is positive definite
k k kV x x P x

P




0() ()

 positive semidefinite
k kV x x 



0 1 1

0 1 1

If , then for all .

If , then for all .

i i

i i

V V V V i

V V V V i





 

 

①General value iteration

-ADP:

0 , 0 large and 0

monotonically non-decreasing.

V       

41

①General value iteration

-ADP:





() : 0 and ()

 s.t. ((, ())) ()

x k k

k k k

x v x

F x v x x

     

  

 1 1

1 1 1

() (,) ()

 (,

min

non-increasing sequ

Val

()) ((

ue function update

is more likely to obtai enc

, (

n

)

 .

)

a e

k
i k k k i k

u

k i k i k i k

V x U x u V x

U x v x V F x v x

 

  

 

 

Policy iteration

42

* *

1

Policy iteration can be used to sol

() min{ (,) ()}

v

.

e

k
k k k k

u
J x U x u J x  

 

 

0 0 1

1

1

1

1

1

Choose an value function. Calculate

For 0,1,2,..., do value

() arg min (,) () .

() min (,) ()

 (, ()) ((,

ini

 function upda

tial

te

and p

()))

k

k

k k k k
u

k k k ki i

i

u

k i k k i k

v x U x u V x

x U x u x

U x v x F x v x

V V

V

i





 





 

 

 



 

 

1() arg min (,) ()

 arg min (,) (

olicy improveme

(

nt

,) .

k

k

i k k k i k
u

k k i k k
u

v x U x u V x

U x u V F x u

 

 

 

0

1

1 1() (, ())

i

((, ()))

() arg min (,) ()

 arg mi

Choose an

For 1,2,..., do policy evaluation

and policy improvem

nitial admissible control

en

(

l

)

n

t

.

aw

k

k

k

i k k k i k k

k k

i i

i k i k
u

u

v v

v

V x U x x V F x x

v x

x U x u V x

U

i

 



 

 





 (,) ((,) .k k i k kx u V F x u

Stable + cost function is finite.

Value iteration

Policy iteration

Policy iteration

43

* *

1

Policy iteration can be used to sol

() min{ (,) ()}

v

.

e

k
k k k k

u
J x U x u J x  

 

0

1

1 1() (, ())

Choose an i

(

nitial

(, ()))

() arg min (,)

 admissible control law

For

()

 1,2,..., do policy evaluation

and policy improvement

(

).

arg min

k

k

i k k ki i k k

k k k

k

k

i

i i
u

u

V x U x x V F x x

v

x U x u V

i

v

v x

U

v

x

 



 

 





 (,) ((,) .k k i k kx u V F x u

Require infinite number

of iterations to evaluate!

 

(1)

0 (1)

(1) (1)0 0

0

0 00 1

().

 () (, ()) ((, ()))

() arg min (,

initial admissib

) () arg mi

Choose le control laan

Construct from using

and calculate by

,) ((

n (

w

k k

k k k k k

k k k k k k
u u

k

k

V x U x x V F x x

v

x U x u V x U x u V

v v

v F

x

x

v

V v









 

    

, , 1

, ,0 1 1 1

1 1

For each , 1,2,..., do

to obtain with

For each , do

,) .

() (, ()) ((, ())), 1,2,..., ,

 () () () ()

-step

 po

 policy

licy im

 evaluat

p

o

r

i

.

o

n

i i

i

k

i j k k k i j k k

i

i i i i

i k i N k i k i k

u

V x U x x V F x x j

i i N

i

N

V x V x V x V

v

x

v  

 





 





 

   1() arg min (,) () arg min (,)

vemen

()

t

(, .
k k

k k k i k k k i k k
u u

i x U x u V x U x u V F x uv    

44

②Generalized policy iteration

1 VI

 PI

i

i

N

N

 

  

②Generalized policy iteration

45

1iN 

20iN 

3,4,4,1,2,2,3,3,2,4.iN 

6,1,9,3,5,7,5,4,1,3.iN 

③ADP with approximation errors

46

 Considering NN approximation errors,
realistic updates are

 Convergence result now becomes
1

*

1

(1) (1)ˆ () 1 ()
(1) (1)

j j i ii

i k kj i
j

V x J x
     


 





  
   

  


()i kx 

1

ˆˆ () arg min (,) ((,))

() (, ()) ((, ()))

k
i k k k i k k

u

i k k i k i k i k

v x U x u V F x u

V x U x v x V F x v x

 

  ()i kx

* *

0 , ((,)) (,)V J J f x u U x u  

47

 The result becomes

if

where

*(1)ˆlim () () 1 ()
1 (1)

i k k k
i

V x V x J x
 


 




 
     

1
1







 

 1 1

ˆ () ()

ˆ() min (,) ()
k

i k i k

i k k k i k
u

V x x

x U x u V x



 

 

  

Finite neighborhood

of the optimal solution

③ADP with approximation errors

④Local adaptive dynamic programming

48

 Every update is required to be done for the
whole state space: VI, GVI, PI, GPI.

0 1

0

Partition state space

 j

x x x x x

j

L L L L






     

At each iteration step, only update in one of the

subspaces .j

xL

Asynchronous ADP

⑤Connections to reinforcement learning

49

TD, TD(), Q-learning, SARSA, Q(), SARSA().  

ADP:
 HDP
 ADHDP

 TD
 Q-le ing

arn






SARSA, SARSA(): On-policy

Q-learning, Q(): Off-policy





 DHP, ADDHP
 GDHP, ADGDHP




 Evaluating one policy

while

Off-pol

followi

icy

ng

 lea

anot

rning:

her.

 1 1 1 (,) (,) max (,) (,) . i t t t t t t i t i t t
a

Q s a Q s a r Q s a Q s a   
    
 

 1 1 1 1 (,) (,) (,) (,) . i t t t t t t i t t i t tQ s a Q s a r Q s a Q s a       

⑤Connections to reinforcement learning

50

HDP TD

1 1 1

In TD (TD() as well):

 () () [() ()]i t i t t i t i tV s V s r V s V s



      

[Target OldValue]

1 1

In model-free HDP, critic network training

by mi

[() (

nimizi g:

]

n

)k i k i kE U V x V x   

Training target To be trained

51

Consider

Performance index (or cost to go)

Our goal is to find the control policy (player 1)

and disturbance policy (player 2) so that

1 ()() () k k k k k kx f x x hg xu w   

 2(, ,) k k k i i i i

i k

i iV x u w x Qx u wRu w


  



 

*

0 0() min max{ (, ,)}
k k

k k
u w

J x V x u w

saddle point

solution or the

Nash

equilibrium

⑥Game theory

52

 Iterative algorithm based on ADP

 Convergence analysis + extensions to multiplayer games

 Linear systems and nonlinear systems



 

2 T

1

() min max

 () () ()

k k

i k k k k k k k
u w

i k k k k k

V x x Qx u Ru w w

V f x g x u h x w

 



  

  

1 T 1

1

()1
() ()

2

i k
i k k

k

V x
u x R g x

x

 




 

2 T 1

1

()1
() ()

2

i k
i k k

k

V x
w x h x

x
  






⑥Game theory

ADP for Self-Learning Control

Dynamic Programming

Adaptive Dynamic Programming

Iterative ADP

New Developments

Concluding Remarks

Concluding Remarks

54

① ADP has a long history. Theoretical

development started in the 1970s.

② Adaptive dynamic programming is a robust

learning control approach.

③ It has a close relationship to reinforcement

learning.

④ Ultimate goal: To solve the curse of

dimensionality – Need new ideas, to solve

dynamic programming with less computation.

For more information

55

 derongliu@foxmail.com

 http://www.derongliu.org

 13810670526

For more information

56

 derongliu@foxmail.com

 http://www.derongliu.org

 13810670526

