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Transfer of Learning
A psychological point of view

* The study of dependency of human conduct, learning
or performance on prior experience.

— [Thorndike and Woodworth, 1901] explored how
individuals would transfer in one context to another context
that share similar characteristics




Transfer Learning

In the machine learning community

* The ability of a system to recognize and apply knowledge and
skills learned 1n previous domains/tasks to novel
tasks/domains, which share some commonality

* Given a target domain/task, how to identify the commonality
between the domain/task and previous domains/tasks, and
transfer knowledge from the previous domains/tasks to the

target one?

Transfer learning for classification, and
regression problems.

 [Pan and Yang, A Survey on Transfer
Learning, IEEE TKDE 2010]

« [Pan, Transfer learning, Book Ghapter
2014]

Transfer learning for reinforcement
learning problems.
* [Taylor and Stone, Transfer Learning for

Reinforcement Learning Domains: A
Survey, JMLR 2009]




Applications

« WiFi localization: signal strength changes a lot over different

time periods, or across different mobile devices.

Time Period A Time Period B Localization

Average Error

Distance

model

R S

. .

25
Device A =

Localization model
w/o transfer learning

Device B
Localization model

w/ transfer learning

0
60 80 100 120 140 0 20 40 60 80 100 120 140

Contour of signal strength values N\ ,5

~1.5 meters

y
meters

~ 3-4 meters




Applications (cont.)

« Sentiment analysis: users may use different sentiment words
across different domains.
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Applications (cont.)

« Defect prediction: development processes can be very
different across different projects
e x@

Programs with
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[Zimmerman etal. FSE-09] “We ran 622 cross-project i gain

predictions and found only 3.4% actually worked.” [Rahman, Posnett, and Devanbu. FSE-12]



Why Models Perform Poor across Domains

* Fundamental assumption in machine learning:
training and test data are assumed to be
— Represented in the same feature space, AND
— Follow the same data distribution

* Training and test data from different domains may be
— Represented in different feature spaces, OR
— Follow different data distributions



The Goal of Transfer Learning
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Transfer Learning Settings
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Transfer Learning Approaches

Instance-based Feature-based
Approaches Approaches

*

Parameter-based Relational
Approaches Approaches




Instance-based Approaches

General Assumption

Source and target domains
have a lot of overlapping
features (domains share
the same/similar support)

Reweight source-domain
labeled data to be reused
for the target domain
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Feature-based Approaches

X, X;

When source and target
domains only have some
overlapping features. (lots
of features only have
support 1n either the source

or the target domain)




Parameter-based Approaches

* Motivation: A well-trained source model 85 has captured a lot
of structure from data. If two tasks are related, this structure
can be transferred to learn a more precise target model 6 with
a few labeled data in the target domain




Relational Approaches

Academic domain (source)
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Feature-based Approaches (cont.)

-

e Solution 1: Encode application-specific knowledge to
learn the transformation, e.g., sentiment analysis

. Solu?d: General approaches to learning the

How to learn ¢?

¢

transigrmation




Developing General Approaches

An 1llustrating Example

Time Period A

Device A

DeviceB °




Learning Features via Kernel Embedding of

Distributions

Transfer Component Analysis (TCA) [Pan et al., IICAI-09, TNN-11]
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Transter Component Analysis (cont.)
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Transter Component Analysis (cont.)
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Transfer Component Analysis (cont.)

* Learning ¢ by only minimizing distance between distributions
may map the data onto noisy factors

3 . . . . .
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Transfer Component Analysis (cont.)

* Main idea: the learned ¢ should map the source domain and
target domain data to a latent space spanned by the factors that
reduce domain distance as well as preserve data structure

* High level optimization problem

min {Dist( (Xs), ¢ (X7)|+ 12(¢)
s.t.| constraints on @ (Xs) and @ (X;)

Maximum Mean Discrepancy (MMD)



Representing Distributions in RKHS

Can we use a vector py to uy = (E[X]) ?
represent the distribution? s
E[X]
A X~P(x) Hx = (IE[XZ'> ?
E[X]
uy = | E[X?] ?
E[X3]
>
E[X] \ N
What about uy € H (RKHS)? ux = | g [Xg] But, infinite,
, _ cannot be
Kernel trick can be applied! \ / explicitly

computed!



Mean Map in RHKS

Suppose X~P(x), and denote k(x,") = ¢,

Mean map: pp = Eyp(y) |y ]

>
g
P

=
—

pp: P —>jqudP(x) . @ Up

. . 1 1
Empirical mean map for {x;};=: fip = = = Gy, = ;Z?:l k(x;i,)

[Berlinet and Thomas-Agnan 2004; Smola et al. ALT-07]



Mean Map in RHKS (cont.)

Dist(X, X7)

XS~PS(x)




Distance Measure via MMD

Dist(p(Xs), (X)) = [|Expr(a[(9@))] = Expgin [ (0],
1 nr 1 ns
~ n—T; ¢ (‘P(xTi)) - n_S; ¢ (‘P(xSi))

Assume 1 = ¢ o ¢ be a RKHS with kernel k(x;, x;) = ¥ (x) T (x;)

H

1 & 1< i
. 2
DlSt((p(XS); (P(XT)) = ||7’l—z l/)(xTi) _ n_z lp(xSi) — tr(KL)
T =1 S =1 o
(1
— XX € Xs
_ [Kss KS,T] T;S
- KT,S KT,T LU = < n_2 Xl',Xj = XT
T
— - otherwise
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Transter Component Analysis (cont.)

min  Dist(p(Xs), 9 (X7)) + A0(9)
s.t. constraints on @(Xs) and ¢ (X;)

l

min tr(KL) + AQ(¢)
7

s.t. constraints on @ (Xs) and @ (X;)

* In general, the kernel function k(¢ (x;), ¢(x;)) can be a
highly nonlinear function of ¢ that 1s unknown

* A direct optimization of minimizing the quantity w.r.t. @
may get stuck 1n poor local minima



Solution I [pan eral., AAAT-08]

Learning ¢ ‘ fl) Learning K A
L . 2) Low-dimensional reconstructions
Minimize the distance
between domains \_ of Xs and X1 based on K )
1) min _|_ Maximize data variance
K0 p the local
Y, — reserve the loca
S't'(ii_l_ ij B 2Kij — dij' V(l,]) ED E geometric structure
K1 = 0.

2) Perform PCA on K

* [tis a SDP problem, expensive!
[t s transductive, cannot generalize on unseen instances!

* PCA i1s post-processed on the learned kernel matrix, which may
potentially discard useful information




Solution 11 [Pan erai., 15CAI-09, IEEE TNN-11]

Known, given by user

Assume K be low-rank, then K = KWWK

W € RMsTr)XM gnd m < ng + np

Learning K ‘ Learning a low-rank matrix W

Minimize distance

between domains N tr(W' KLKW)

4

mmi/n @WWTR L) /1 Regularization term on W
s.t. @ HKW =)<-— Maximize data variance

Closed form solution for W™:
m leading eigenvectors of (KLK + AI)"*KHK




Transfer Component Analysis (cont.)

An illustrative example

Latent features learned by PCA and TCA
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Future Direction

* Theoretical study beyond generalization error bound

— Given a source domain and a target domain, determine
whether transfer learning should be performed

— For a specific transfer learning method, given a source and
a target domain, determine whether the method should be
used for knowledge transfer



Future Direction (cont.)

* Transfer learning for deep reinforcement learning

Mapping hand-crafted features (states) to Mapping row screen pixels to =
final score for each of 18 joystick actions predictions of final score for P AP0\ é
cach of 18 joystick actions . =
Feature Hand-crafted -
Observation EXtractor features (states) Observation

@_' [f15.-0s fnl

Reward :I Agent l

Polic
I é y

Traditional RL Deep RL [Google DeepMind 2015]

Action




Future Direction (cont.)

* Transfer learning for deep reinforcement learning

Deep RL Transfer Learning for Deep RL
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