Feature-based Transfer Learning via Kernel Embedding of Distributions

Sinno Jialin Pan (Ph.D.)

Nanyang Assistant Professor School of Computer Science and Engineering Nanyang Technological University, Singapore

Transfer of Learning

A psychological point of view

- The study of dependency of human conduct, learning or performance on prior experience.
 - [Thorndike and Woodworth, 1901] explored how individuals would transfer in one context to another context that share similar characteristics

Transfer Learning

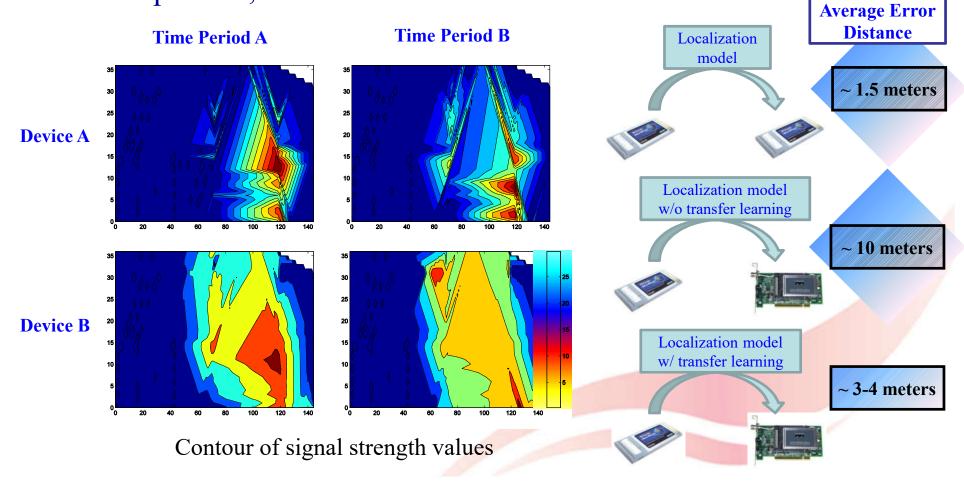
In the machine learning community

- The ability of a system to recognize and apply knowledge and skills learned in previous domains/tasks to novel tasks/domains, which share some commonality
- Given a target domain/task, how to identify the commonality between the domain/task and previous domains/tasks, and transfer knowledge from the previous domains/tasks to the target one?

Transfer learning for classification, and regression problems.	Transfer learning for reinforcement learning problems.
 [<u>Pan</u> and Yang, A Survey on Transfer Learning, IEEE TKDE 2010] [<u>Pan</u>, Transfer learning, Book Chapter 	 [Taylor and Stone, Transfer Learning for Reinforcement Learning Domains: A Survey, JMLR 2009]
2014]	

Applications

• <u>WiFi localization</u>: signal strength changes a lot over different time periods, or across different mobile devices.

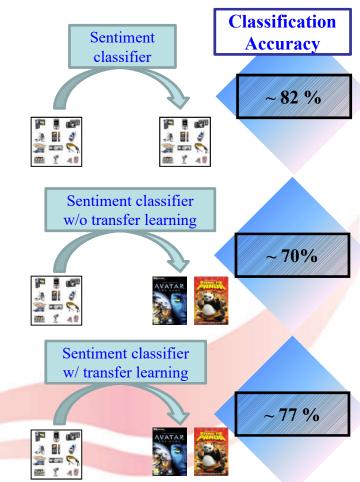


Applications (cont.)

• <u>Sentiment analysis:</u> users may use different sentiment words across different domains.

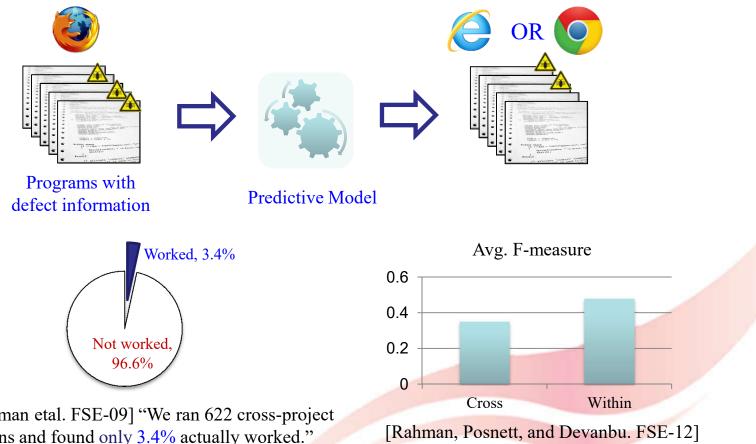
Electronics	Video Games
(1) Compact ; easy to operate; very good picture quality; looks sharp !	(2) A very good game! It is action packed and full of excitement. I am very much hooked on this game.
(3) I purchased this unit from Circuit City and I was very excited about the quality of the picture. It is really nice and sharp .	(4) Very realistic shooting action and good plots. We played this and were hooked .
(5) It is also quite blurry in very dark settings. I will never buy HP again.	(6) The game is so boring . I am extremely unhappy and will probably never buy UbiSoft again.

Product reviews on different domains



Applications (cont.)

Defect prediction: development processes can be very • different across different projects

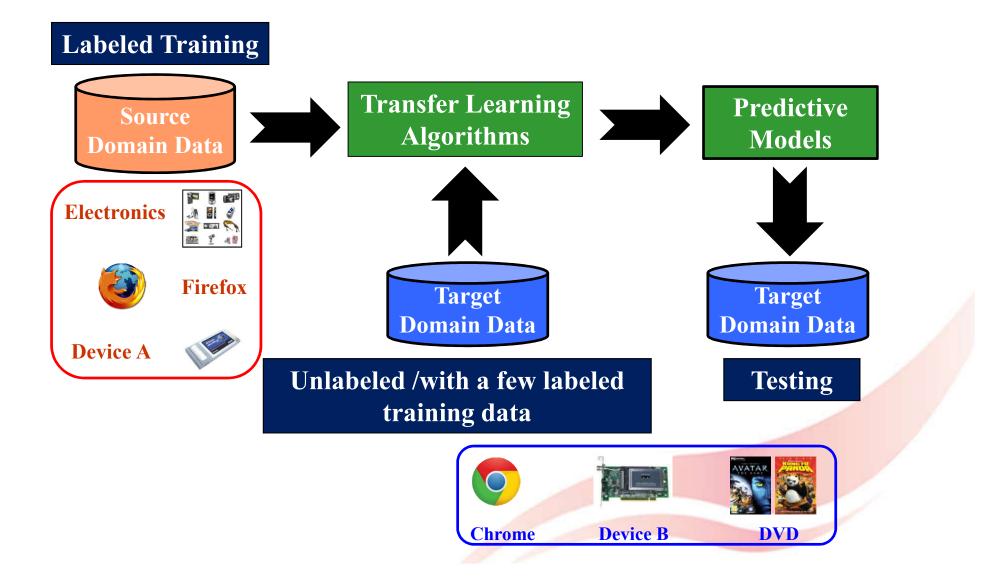


[Zimmerman etal. FSE-09] "We ran 622 cross-project predictions and found only 3.4% actually worked."

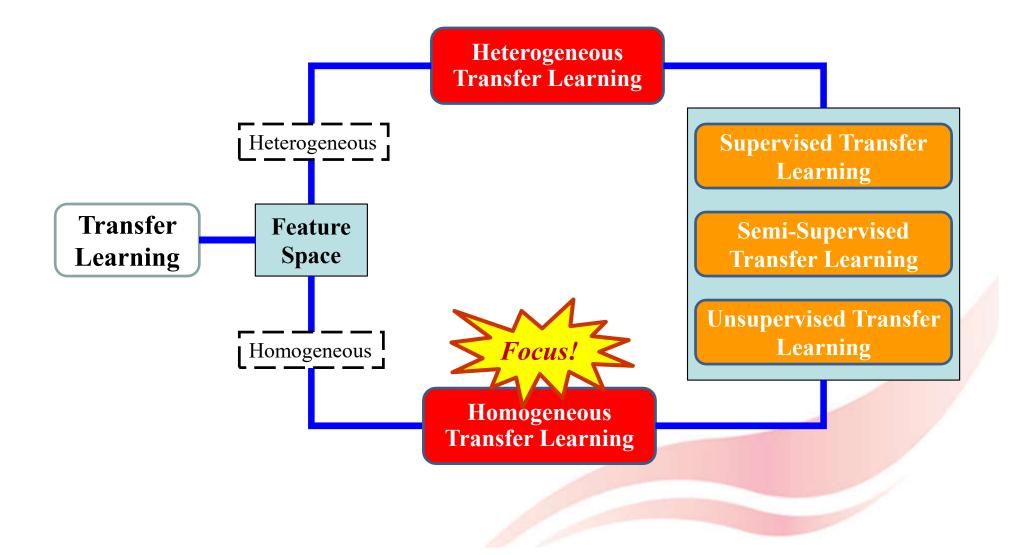
Why Models Perform Poor across Domains

- Fundamental assumption in machine learning: training and test data are assumed to be
 - Represented in the same feature space, AND
 - Follow the same data distribution
- Training and test data from different domains may be
 - Represented in different feature spaces, OR
 - Follow different data distributions

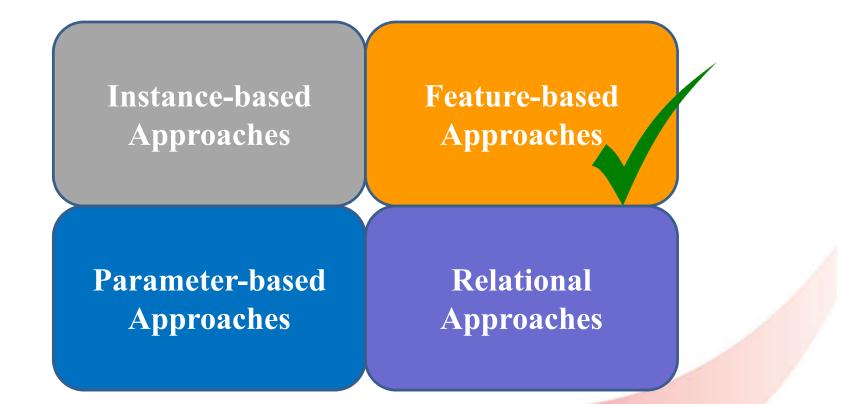
The Goal of Transfer Learning



Transfer Learning Settings



Transfer Learning Approaches



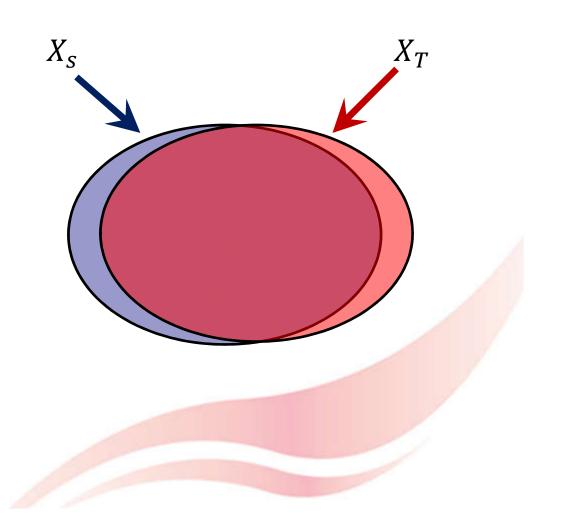
Instance-based Approaches

General Assumption

Source and target domains have a lot of overlapping features (domains share the same/similar support)

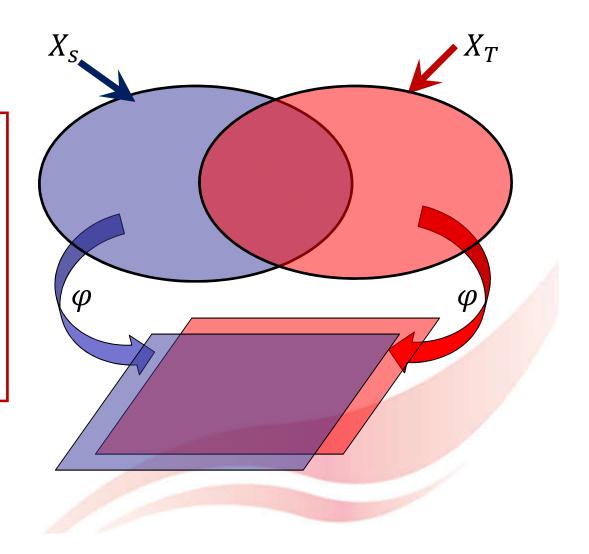
Motivation

Reweight source-domain labeled data to be reused for the target domain



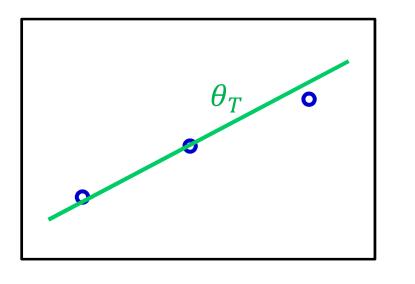
Feature-based Approaches

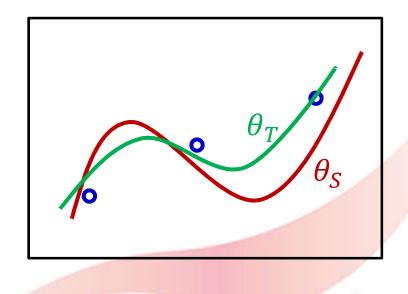
When source and target domains only have some overlapping features. (lots of features only have support in either the source or the target domain)



Parameter-based Approaches

• Motivation: A well-trained source model θ_S has captured a lot of structure from data. If two tasks are related, this structure can be transferred to learn a more precise target model θ_T with a few labeled data in the target domain

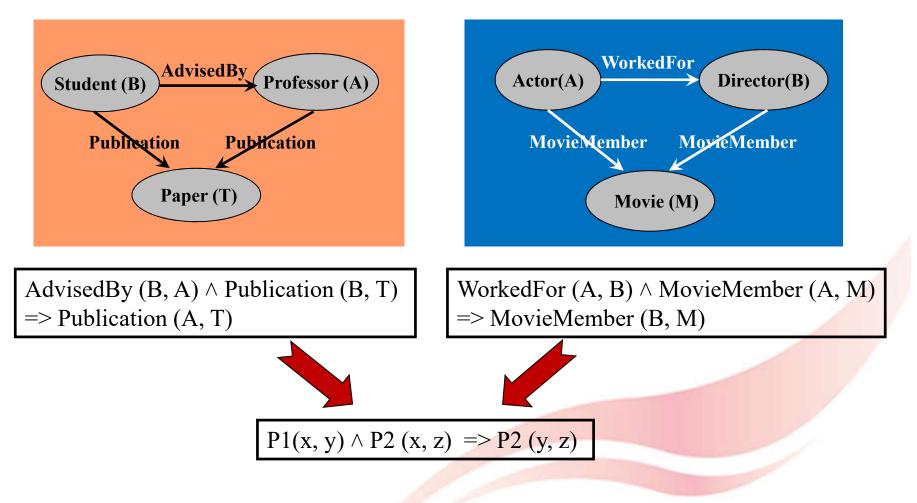




Relational Approaches

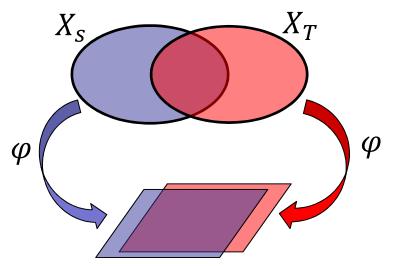
Academic domain (source)

Movie domain (target)



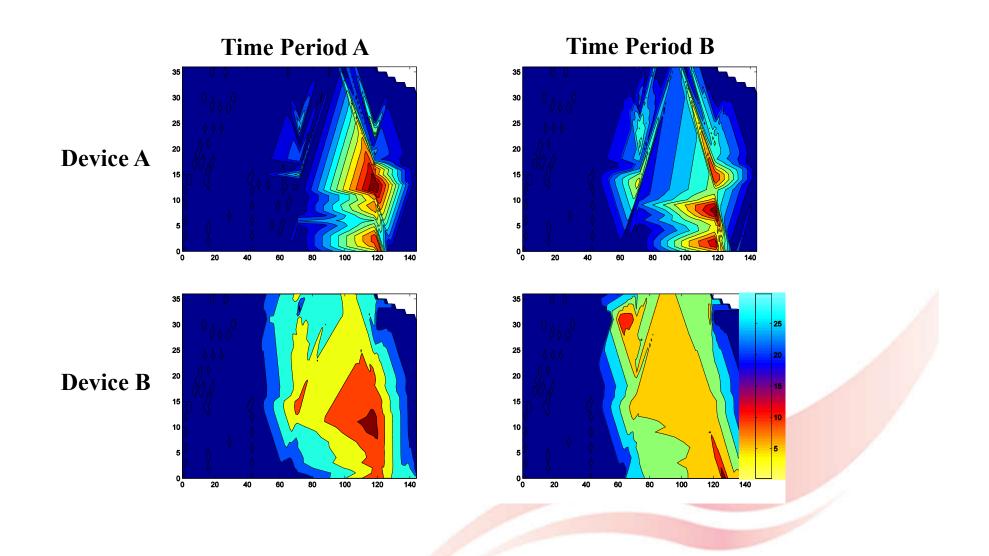
Feature-based Approaches (cont.)

How to learn φ ?



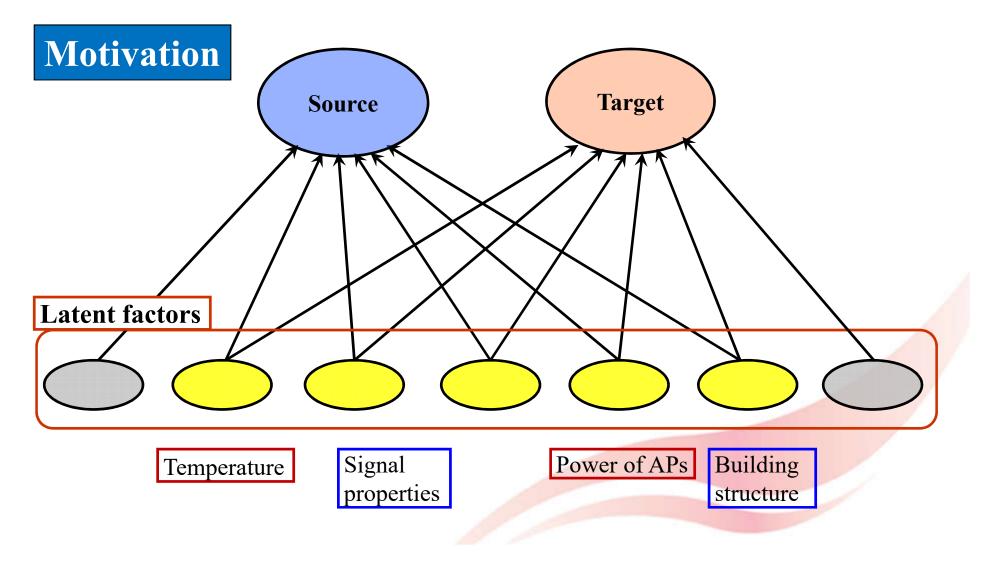
- <u>Solution 1</u>: Encode application-specific knowledge to learn the transformation, e.g., sentiment analysis
- <u>Solution 2</u>: General approaches to learning the transformation

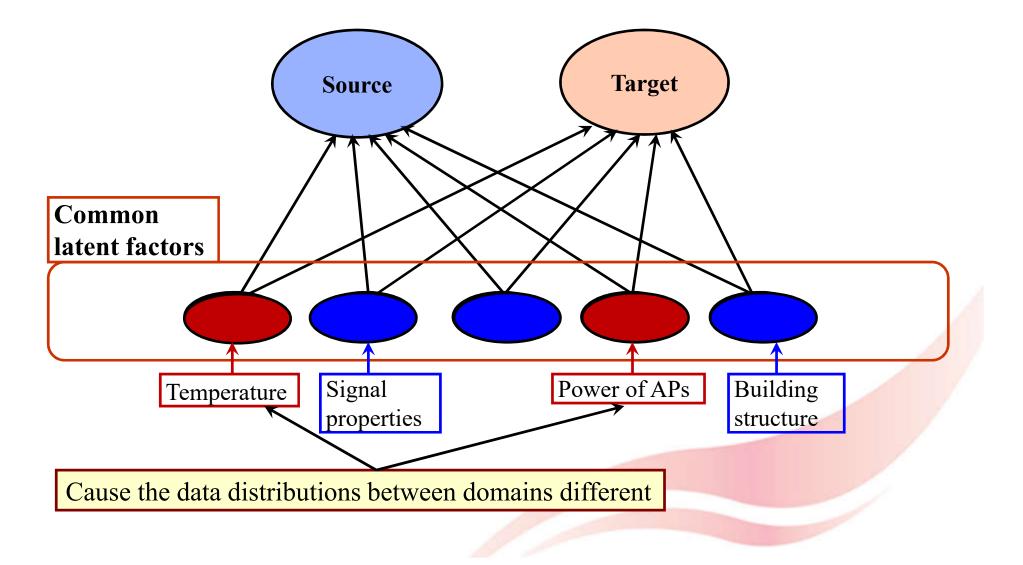
Developing General Approaches An illustrating Example

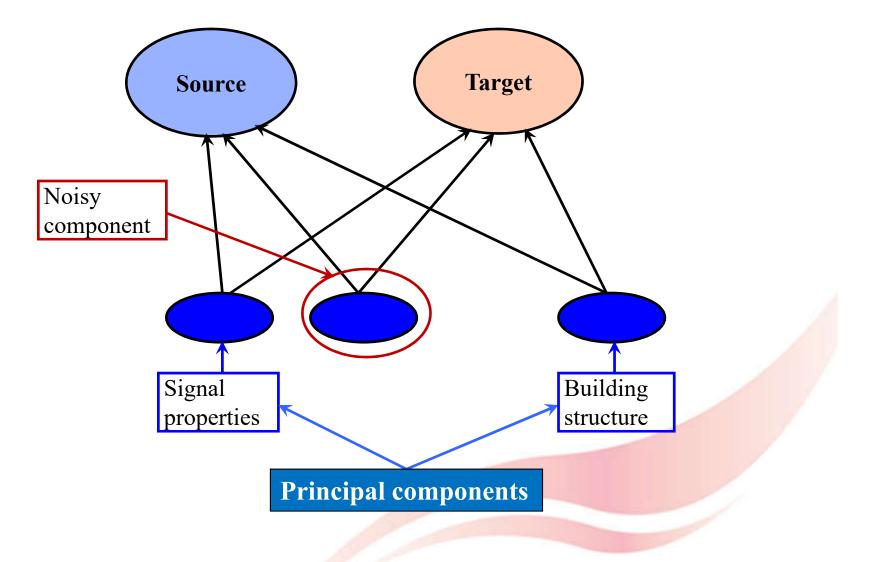


Learning Features via Kernel Embedding of Distributions

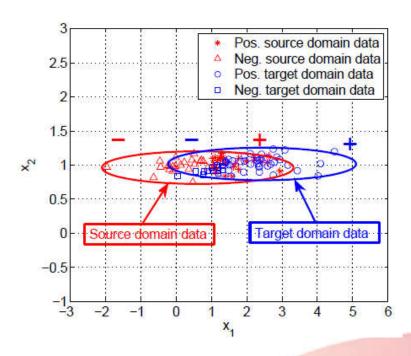
Transfer Component Analysis (TCA) [Pan et al., IJCAI-09, TNN-11]







• Learning φ by only minimizing distance between distributions may map the data onto noisy factors

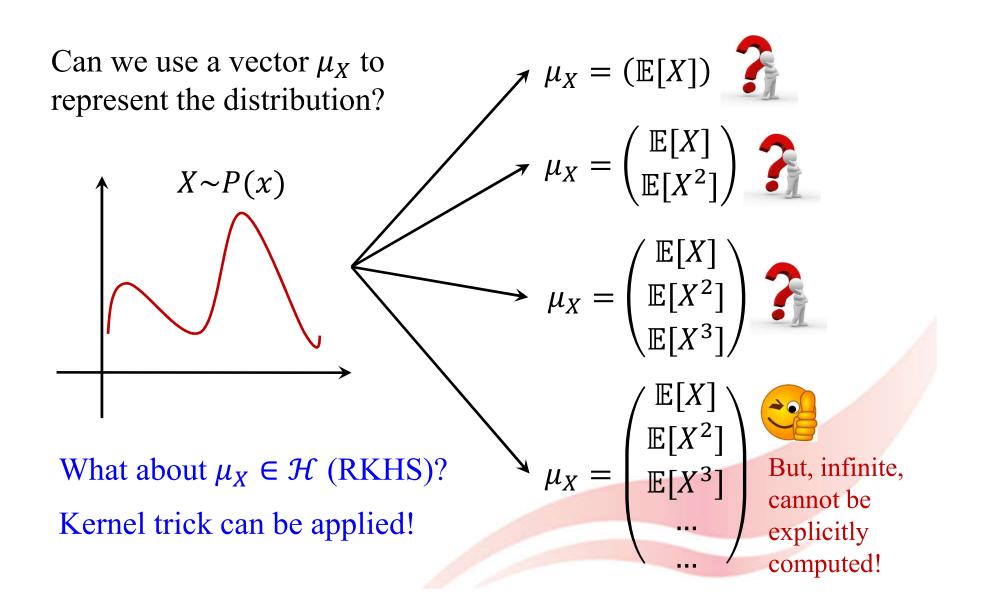


- <u>Main idea:</u> the learned φ should map the source domain and target domain data to a latent space spanned by the factors that reduce domain distance as well as preserve data structure
- <u>High level optimization problem</u>

$$\min_{\varphi} \left[\begin{array}{c} \text{Dist}(\varphi(X_S), \varphi(X_T)) + \lambda \Omega(\varphi) \\ \text{s.t. constraints on } \varphi(X_S) \text{ and } \varphi(X_T) \end{array} \right]$$

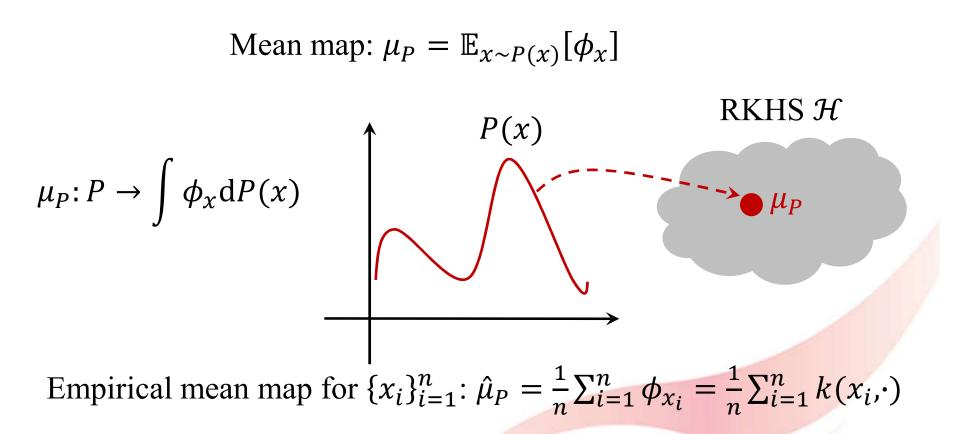
Maximum Mean Discrepancy (MMD)

Representing Distributions in RKHS



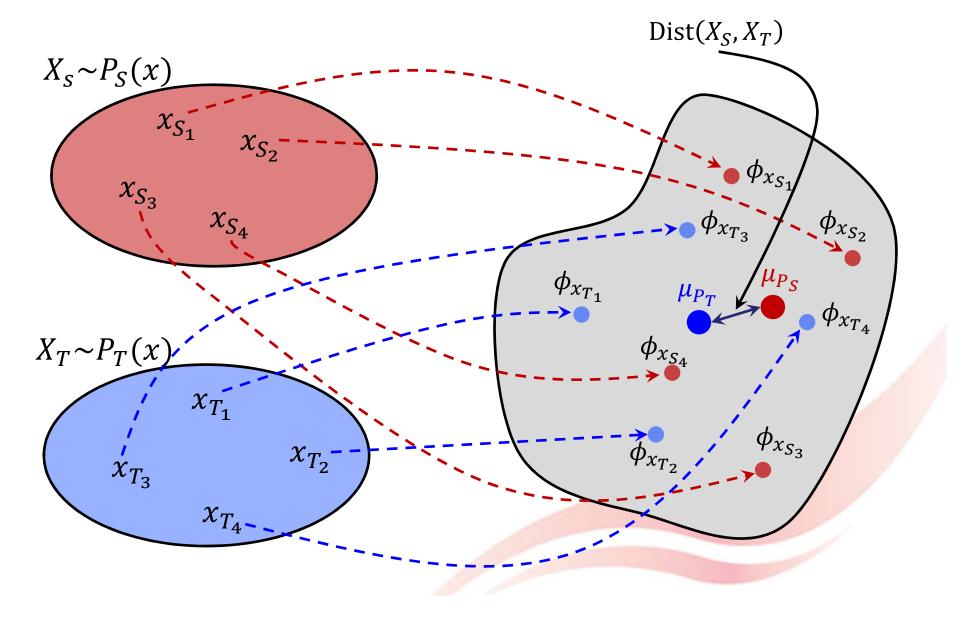
Mean Map in RHKS

Suppose $X \sim P(x)$, and denote $k(x, \cdot) = \phi_x$



[Berlinet and Thomas-Agnan 2004; Smola et al. ALT-07]

Mean Map in RHKS (cont.)



Distance Measure via MMD

 $\operatorname{Dist}(\varphi(X_{S}),\varphi(X_{T})) = \left\| \mathbb{E}_{x \sim P_{T}(x)} \left[\phi(\varphi(x)) \right] - \mathbb{E}_{x \sim P_{S}(x)} \left[\phi(\varphi(x)) \right] \right\|_{\mathcal{H}}$ $\approx \left\| \frac{1}{n_{T}} \sum_{i=1}^{n_{T}} \phi\left(\varphi(x_{T_{i}})\right) - \frac{1}{n_{S}} \sum_{i=1}^{n_{S}} \phi\left(\varphi(x_{S_{i}})\right) \right\|_{\mathcal{H}}$

Assume $\psi = \phi \circ \varphi$ be a RKHS with kernel $k(x_i, x_j) = \psi(x_i)^T \psi(x_i)$

$$\operatorname{Dist}(\varphi(X_{S}),\varphi(X_{T}))^{2} = \left\| \frac{1}{n_{T}} \sum_{i=1}^{n_{T}} \psi(x_{T_{i}}) - \frac{1}{n_{S}} \sum_{i=1}^{n_{S}} \psi(x_{S_{i}}) \right\|_{\mathcal{H}}^{2} = \operatorname{tr}(KL)$$
$$K = \begin{bmatrix} K_{S,S} & K_{S,T} \\ K_{T,S} & K_{T,T} \end{bmatrix} \qquad L_{ij} = \begin{cases} \frac{1}{n_{S}^{2}} & x_{i}, x_{j} \in X_{S} \\ \frac{1}{n_{T}^{2}} & x_{i}, x_{j} \in X_{T} \\ -\frac{1}{n_{S}n_{T}} & \operatorname{otherwise} \end{cases}$$

 $\min_{\varphi} \operatorname{Dist}(\varphi(X_S), \varphi(X_T)) + \lambda \Omega(\varphi)$

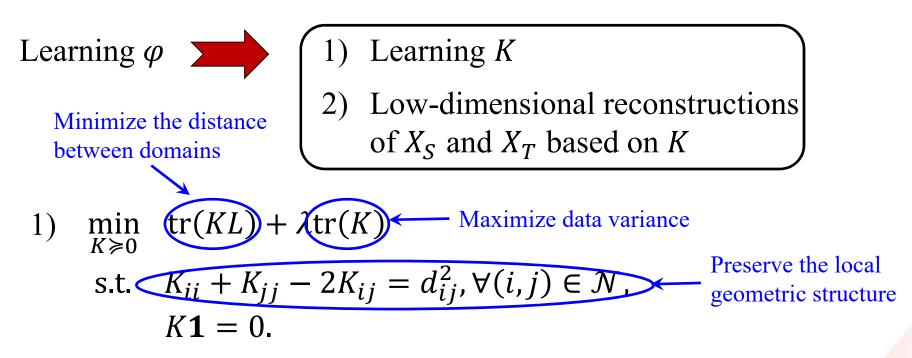
s.t. constraints on $\varphi(X_S)$ and $\varphi(X_T)$

 $\min_{\varphi} \operatorname{tr}(KL) + \lambda \Omega(\varphi)$

s.t. constraints on $\varphi(X_S)$ and $\varphi(X_T)$

- In general, the kernel function $k(\varphi(x_i), \varphi(x_j))$ can be a highly nonlinear function of φ that is unknown
- A direct optimization of minimizing the quantity w.r.t. φ may get stuck in poor local minima

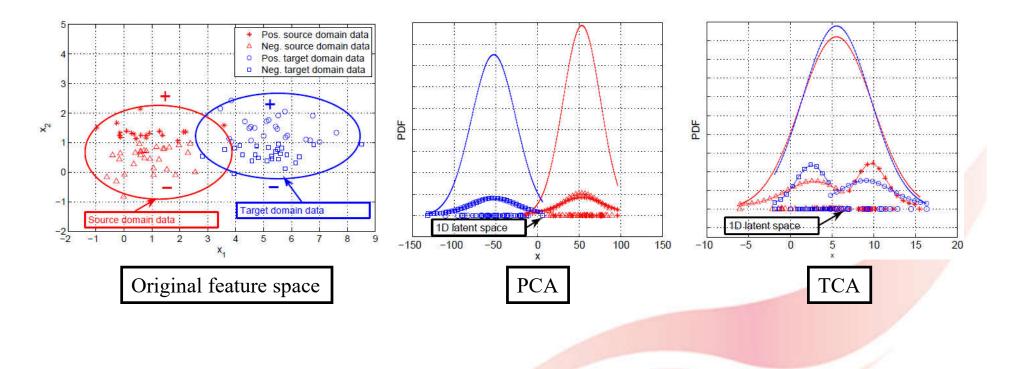
Solution I [Pan etal., AAAI-08]



- 2) Perform PCA on *K*
 - It is a SDP problem, expensive!
 - It is transductive, cannot generalize on unseen instances!
 - PCA is post-processed on the learned kernel matrix, which may potentially discard useful information

Solution II [Pan etal., IJCAI-09, IEEE TNN-11] Known, given by user Assume *K* be low-rank, then $K = \overline{K}WW^T\overline{K}$ $W \in \mathbb{R}^{(n_S + n_T) \times m}$ and $m \ll n_S + n_T$ Learning *K* Learning a low-rank matrix *W* Minimize distance between domains $\int tr(W^T \overline{K} L \overline{K} W)$ min $(\overline{K}WW^T\overline{K}L) \rightarrow \lambda tr(W^TW) \leftarrow Regularization term on W$ W s.t. $\overline{W^T}\overline{K}H\overline{K}W = I$ Maximize data variance Closed form solution for W^* : *m* leading eigenvectors of $(\overline{K}L\overline{K} + \lambda I)^{-1}\overline{K}H\overline{K}$

An illustrative example Latent features learned by PCA and TCA



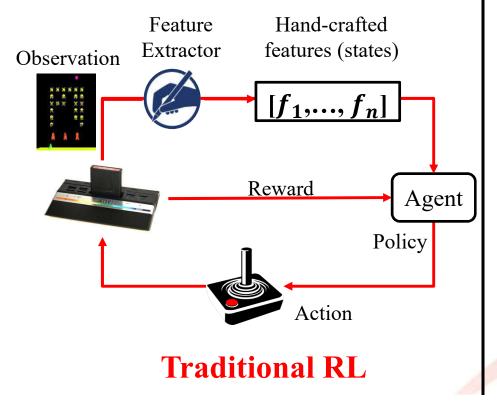
Future Direction

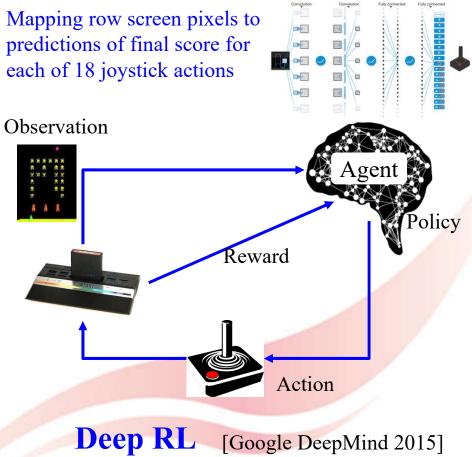
- Theoretical study beyond generalization error bound
 - Given a source domain and a target domain, determine whether transfer learning should be performed
 - For a specific transfer learning method, given a source and a target domain, determine whether the method should be used for knowledge transfer

Future Direction (cont.)

• Transfer learning for <u>deep reinforcement learning</u>

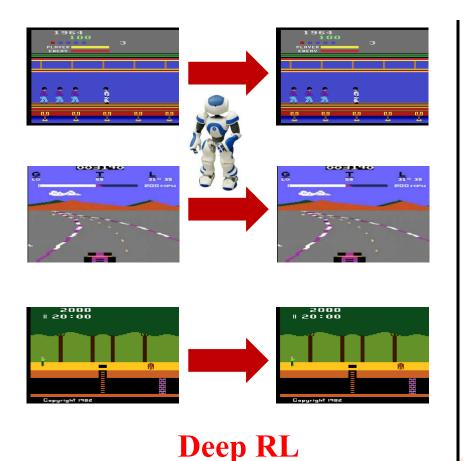
Mapping hand-crafted features (states) to final score for each of 18 joystick actions





Future Direction (cont.)

• Transfer learning for <u>deep reinforcement learning</u>



2000

Transfer Learning for Deep RL

Reference

- <u>**Pan</u>** and Yang, A Survey on Transfer Learning, IEEE TKDE 2010</u>
- <u>Pan</u>, Transfer learning, Data Classification: Algorithms and Applications (Chapter 21), 2014
- Taylor and Stone, Transfer Learning for Reinforcement Learning Domains: A Survey, JMLR 2009
- <u>**Pan**</u>, Kwok, and Yang, Transfer Learning via Dimensionality Reduction, AAAI 2008
- <u>Pan</u>, Tsang, Kwok, and Yang, Domain Adaptation via Transfer Component Analysis, IJCAI 2009, IEEE TNN 2011
- Alex Smola, Arthur Gretton, Le Song, and Bernhard Scholkopf, A Hilbert Space Embedding for Distributions, ALT 2007
- A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publisher 2004

Thank You!