
Multi-Task Learning: 
Models, Optimization and Applications

Linli Xu

University of Science and Technology of China

University of Science and Technology of China



Outline

• Introduction to multi-task learning (MTL): 
problem and models

• Multi-task learning with task-feature 
co-clusters

• Low-rank optimization in multi-task learning

• Multi-task learning applied to trajectory 
regression

2016/11/5 2



Multiple Tasks
Examination Scores Prediction1 (Argyriou et. al.’08)

School 1 - Alverno High School 

School 138 - Jefferson Intermediate School 

School 139 - Rosemead High School 

…

1The Inner London Education Authority (ILEA)

student-dependent school-dependent

student-dependent school-dependent

student-dependent school-dependent

Student 
id

Birth 
year

Previous 
score

… School
ranking

…

72981 1985 95 … 83% …

Student 
id

Birth 
year

Previous 
score

… School
ranking

…

31256 1986 87 … 72% …

Student 
id

Birth 
year

Previous 
score

… School
ranking

…

12381 1986 83 … 77% …

Exam 
score

?

Exam 
score

?

Exam 
score

?
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Learning Multiple Tasks

…

1st 
task

138th 
task

139th 
task

Student 
id

Birth 
year

Previous 
score

School
ranking

…

72981 1985 95 83% …

Student 
id

Birth 
year

Previous 
score

School
ranking

…

31256 1986 87 72% …

Student 
id

Birth 
year

Previous 
score

School
ranking

…

12381 1986 83 77% …

Exam 
Score

?

Exam 
Score

?

Exam 
Score

?

School 1 - Alverno High School 

School 138 - Jefferson Intermediate School 

School 139 - Rosemead High School 

Excellent

Excellent

Excellent

Learning each task independently
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Learning Multiple Tasks

…

1st 
task

138th 
task

139th 
task

……
Learn  tasks  simultaneously 
Model the task relationships

Student 
id

Birth 
year

Previous 
score

School
ranking

…

72981 1985 95 83% …

Student 
id

Birth 
year

Previous 
score

School
ranking

…

31256 1986 87 72% …

Student 
id

Birth 
year

Previous 
score

School
ranking

…

12381 1986 83 77% …

Exam 
Score

?

Exam 
Score

?

School 1 - Alverno High School 

School 138 - Jefferson Intermediate School 

School 139 - Rosemead High School 

Exam 
Score

?

Learning multiple tasks simultaneously
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Multi-Task Learning

• Different from single task 
learning

• Training multiple tasks 
simultaneously to exploit 
task relationships

Model 

Model 

Model Training DataTask 1

Training DataTask 2

Training DataTask m Training

… …Training

Training

Single Task Learning

Model 

Model 

Model Training DataTask 1

Training DataTask 2

Training DataTask m

… …Training

Multi-Task Learning
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Exploiting Task Relationships

Key challenge in multi-task learning:

Exploiting (statistical) relationships between the 
tasks so as to improve individual and/or overall 
predictive accuracy (in comparison to training 
individual models)!

2016/11/5 10



How Tasks Are Related?

• All tasks are related
– Models of all tasks are close to each other;

– Models of all tasks share a common set of features;

– Models share the same low rank subspace

• Structure in tasks
– clusters / graphs / trees

• Learning with outlier tasks
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Regularization-based Multi-Task Learning

We focus on linear models: 𝑌𝑖~𝑋𝑖𝒘𝑖

𝑋𝑖 ∈ ℝ𝑛𝑖×𝑑 , 𝑌𝑖 ∈ ℝ𝑛𝑖×1,𝑊 = [𝒘1, 𝒘2, … ,𝒘𝑚] ∈ ℝ𝑑×𝑚

Generic framework

min
𝑊
 

𝑖

𝐿𝑜𝑠𝑠 𝑊, 𝑋𝑖 , 𝑌𝑖 + 𝜆 𝑅𝑒𝑔(𝑊)

Impose various types of relations on tasks with 𝑅𝑒𝑔 𝑊

Learning

Task m

Dimension d
Sa

m
pl

e
n

m

..
. Sa

m
pl

e
n

2

Sa
m

pl
e

n
1

Feature Matrices X i

Task m

Sa
m

pl
e

n
m

..
. Sa

m
pl

e
n

2

Sa
m

pl
e

n
1

Target Vectors Y i

Task m
D

i m
en

sio
n

d

Model Matrix W
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How Tasks Are Related?

• All tasks are related
– Models of all tasks are close to each other;

– Models of all tasks share a common set of features;

– Models share the same low rank subspace

• Structure in tasks
– clusters / graphs / trees

• Learning with outlier tasks
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MTL Methods: Mean-Regularized MTL
Evgeniou & Pontil, 2004 KDD

Assumption: model parameters of all tasks are close to 
each other.

– Advantage: simple, intuitive, easy to implement 

– Disadvantage: too simple

Regularization

– Penalizes the deviation of each task from the mean

min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆 

𝑖=1

𝑚

𝑊 𝑖 −
1

𝑚
 

𝑠=1

𝑚

𝑊𝑠

2

2

2016/11/5 14



MTL Methods: Joint Feature Learning
Evgeniou et al. 2006 NIPS, Obozinski et. al. 2009 Stat Comput, Liu et. al. 2010 Technical Report

Assumption: models of all tasks share a common set of 
features

– Using group sparsity: ℓ1,𝑞-norm regularization

Regularization

– 𝑊 1,𝑞 =  𝑖=1
𝑑 𝒘𝑖 𝑞

– When 𝑞 > 1 we have group sparsity

min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆 𝑊 1,𝑞

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

Feature 7

……

Feature d

Task 1
Task 2

Task m……
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MTL Methods: Low-Rank MTL
Ji et. al. 2009 ICML 

Assumption: in high dimensional feature space, the 
linear models share the same low-rank subspace

Regularization - Rank minimization formulation
min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆 ∙ rank(𝑊)

– Rank minimization is NP-Hard for general loss functions

• Convex relaxation: nuclear norm minimization

min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆 𝑊 ∗

( 𝑊 ∗ : sum of singular values of 𝑊 )
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How Tasks Are Related?

• All tasks are related
– Models of all tasks are close to each other;

– Models of all tasks share a common set of features;

– Models share the same low rank subspace

• Structure in tasks
– clusters / graphs / trees

• Learning with outlier tasks
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MTL Methods: Clustered MTL
Zhou et. al. 2011 NIPS

Assumption: cluster structure in tasks - the models of 
tasks from the same group are closer to each other 
than those from a different group

Regularization - capture clustered structures

Improves
generalization
performance

capture cluster structures

min
𝑊,𝐹:𝐹𝑇𝐹=𝐼𝑘

𝐿𝑜𝑠𝑠 W + 𝛼 tr 𝑊𝑇𝑊 − tr 𝐹𝑇𝑊𝑇𝑊𝐹 + 𝛽 tr 𝑊𝑇𝑊
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Regularization-based MTL: 
Decomposition Framework

• In practice, it is too restrictive to constrain all 
tasks to share a single shared structure.

• Assumption: the model is the sum of two 
components  𝑊 = 𝑃 + 𝑄

– A shared low dimensional subspace and a task specific 
component (Ando and Zhang, 2005, JMLR)

– A group sparse component and a task specific sparse 
component (Jalali et.al., 2010, NIPS)

– A low rank structure among relevant tasks + outlier 
tasks (Gong et.al., 2011, KDD)
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How Tasks Are Related?

• All tasks are related
– Models of all tasks are close to each other;

– Models of all tasks share a common set of features;

– Models share the same low rank subspace

• Structure in tasks
– clusters / graphs / trees

• Learning with outlier tasks
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column-sparselow rank

MTL Methods: Robust MTL
Chen et. al. 2011 KDD

Assumption: models share the same low-rank subspace 
+ outlier tasks

𝑊 = 𝑃 + 𝑄

Regularization  

– 𝑃 ∗: nuclear norm

– 𝑄 2,1 =  𝑗=1
𝑚 𝒒:,𝒋 2

min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝛼 𝑃 ∗ + 𝛽 𝑄 2,1

Fe
at

u
re

s

outlier tasks

𝑄
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Summary So Far…

• All multi-task learning formulations discussed 
above can fit into the 𝑊 = 𝑃 + 𝑄 schema.

– Component 𝑃: shared structure

– Component 𝑄: information not captured by the 
shared structure
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Outline

• Introduction to multi-task learning (MTL): 
problem and models

• Multi-task learning with task-feature 
co-clusters

• Low-rank optimization in multi-task learning

• Multi-task learning applied to trajectory 
regression
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Recap: How Tasks Are Related?

• All tasks are related
– Models of all tasks are close to each other;

– Models of all tasks share a common set of features;

– Models share the same low rank subspace

• Structure in tasks
– clusters / graphs / trees

• Learning with outlier tasks
Task-level
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How Tasks are Related

• Existing methods consider the structure at a 
general task-level

• Restrictive assumption in practice:
– In document classification: different tasks may be 

relevant to different sets of words

– In a recommender system: two users with similar 
tastes on one feature subset may have totally different 
preference on another subset

2016/11/5 25



CoCMTL: MTL with Task-Feature 
Co-Clusters [Xu. et al, AAAI15]

• Motivation: feature-level groups

• Impose task-feature co-clustering structure with 
𝑅𝑒𝑔(𝑊)

task feature

clustering on the bipartite graph

2016/11/5 26



CoCMTL: Model

• Decomposition model: 𝑊 = 𝑃 + 𝑄
min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆1 Ω1 𝑃 + 𝜆2 Ω2(𝑄)
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CoCMTL: Model

• Decomposition model: 𝑊 = 𝑃 + 𝑄
min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆1 Ω1 𝑃 + 𝜆2 Ω2(𝑄)

Ω2 𝑄 =  𝑖=𝑘+1
min 𝑑,𝑚

𝜎𝑖
2(𝑄)

min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆1 tr(𝑃𝐿𝑃

𝑇) + 𝜆2  

𝑖=𝑘+1

min 𝑑,𝑚

𝜎𝑖
2(𝑄)

non-convex
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CoCMTL: Optimization

• We follow the Proximal Alternative Linear Method (PALM) to 
solve the non-convex problem.

,
min ( , ) ( ) ( )
P Q

h P Q g P f Q 

( , )h P Q

( ), ( )g P f Q

Formulation:

1 1 2 2
, ,

min ( ) ( ) ( )
W P Q

W P Q    

h(P,Q) f(Q)
: convex

: lower semi continuous

General Form

Specific Form
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CoCMTL: Results

School data: #Tasks 139, #Features 27, #Samples 15k
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• Multi-task learning with task-feature 
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• Low-rank optimization in multi-task learning

• Multi-task learning applied to trajectory 
regression
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Recap: Low-Rank MTL

Assumption: in high dimensional feature space, the linear 
models share the same low-rank subspace

Regularization - Rank minimization formulation
min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆 ∙ rank(𝑊)

– Rank minimization is NP-Hard for general loss functions

• Convex relaxation: nuclear norm minimization

min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆 𝑊 ∗

( 𝑊 ∗ : sum of singular values of 𝑊 )

2016/11/5 32



More on Nuclear Norm

Rank minimization formulation
min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆 ∙ rank(𝑊)

– rank 𝑊 = #non-zero singular values

– 𝑊 ∗ =  𝜎𝑖(𝑊) : sum of singular values

• Limitation of 𝑊 ∗
– Large singular values are penalized more heavily

– Large singular values are dominant in determining the 
properties of a matrix
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Idea: Weighted Nuclear Norm 
[Zhong et al, AAAI15; Xu et al, ICDM16]

min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆 

𝑖
𝑝𝑖𝜎𝑖(𝑊)

• Intuition: penalize large singular values less
– Non-descending weights 𝑝𝑖

• Reweighting strategy:
– Given current weights 𝒑 𝑘−1, solve for 𝑊𝑘−1

– Reweighting of 𝒑
• 𝑝𝑖
𝑘 =

𝑟

𝜎𝑖 𝑊
𝑘 +𝜖

1−𝑟, where 0 < 𝑟 < 1, 𝜖 > 0

• Each weight inversely proportional to the corresponding singular 
value

Non-convex
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Idea: Weighted Nuclear Norm

min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆 

𝑖
𝑝𝑖𝜎𝑖(𝑊)

min
𝑊
𝐿𝑜𝑠𝑠(𝑊) + 𝜆 

𝑖
𝜎𝑖 𝑊 + 𝜖

𝑟

𝑝𝑖
𝑘 =

𝑟

𝜎𝑖 𝑊
𝑘 + 𝜖 1−𝑟

→ rank 𝑊 when 𝜖 → 0, 𝑟 → 0Enhances low rank 
approximation
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Optimization: Proximal Operator

First-order approximation of 𝐿𝑜𝑠𝑠(𝑊), regularized by a proximal term

𝑃𝑡𝑘 𝑊,𝑊
𝑘 = 𝐿𝑜𝑠𝑠 𝑊𝑘 + 𝑊 −𝑊𝑘 , 𝛻𝐿𝑜𝑠𝑠 𝑊𝑘 +

𝑡𝑘

2
𝑊 −𝑊𝑘

2

Generate the sequence

𝑊𝑘 = argmin
𝑊

𝑡𝑘

2𝜆
𝑊 − 𝑊𝑘 −

1

𝑡𝑘
𝛻𝐿𝑜𝑠𝑠 𝑊𝑘

𝐹

2

+ 𝑝𝑘
𝑇
𝜎 𝑊

–  Non-convex proximal operator problem

–  Has closed form solution by exploiting structure of the weighted 
nuclear norm (unitarily invariant property)

36

Theorem. Suppose that 𝐴 = 𝑈Σ𝑉𝑇, then, 𝑊∗ = 𝑈𝐷 𝑥∗ 𝑉𝑇 is a global 
solution of the problem

min
𝑋

𝜇

2
𝑊 − 𝐴 𝐹

2 + 𝑝𝑇𝜎 𝑊

where 𝑥∗can be denoted as 𝑥∗ = max 𝜎 𝐴 −
1

𝜇
𝑝, 0



Optimization: Algorithm

Barzilai Borwein (BB) rule 

decrease the step size

reweighting strategy
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Convergence Analysis

• Critical points

• Sublinear convergence rate

Theorem. The sequence 𝑊𝑘 generated by the ISTRA algorithm makes the 
objective function monotonically decrease, and all accumulation points (i.e. 
the limit points of convergent subsequence in 𝑊𝑘 ) are critical points (i.e. 
0 belongs to the subgradients)

Theorem. Suppose that 𝑊𝑘 is the sequence generated by the ISTRA 
algorithm, and 𝑊∗ is an accumulation point of  𝑋𝑘 , then

min
0≤𝑘≤𝑛

𝑊𝑘+1 −𝑊𝑘
2
≤ 2 𝑔 𝑊0 − 𝑔 𝑊∗ /𝑛𝜏𝑡min
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Results
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• Multi-task learning applied to trajectory 
regression
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Trajectory Regression: Problem

Trajectory: 

A sequence of link (road segments), 
where any two consecutive links 
share an intersection 

Goal: 

Estimate the total travel time of an 
arbitrary trajectory
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Trajectory Regression: Problem

Given a set consisting of 𝑁 trajectory-cost pairs:
𝐷 ≡ {(𝒙𝑖, 𝑦𝑖)|𝑖 = 1,2, … ,𝑁}, 𝒙𝑖 ∈ ℝ𝑑

– Each feature of 𝒙𝑖 corresponds to a link — distance 
traveled along the link

Goal: Learn the weights 𝑤 ∈ ℝ𝑑 that encode the cost per 
distance unit for each link

Single task learning: min
𝒘
‖𝑌 − 𝑋𝒘‖ 2

2
+ 𝛽‖𝒘‖ 2

2

Cost

20min

Road 
Seg. 1

Road 
Seg. 2

Road 
Seg. 3

… Road 
Seg. d

5km 2km 1km … 0
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Trajectory Regression: Key Challenges

• Dynamic: costs of road segments are not static over 
time
– Cost of a road segment fluctuates smoothly most of the 

time

– Costs can be abruptly different between peak periods and 
off-peak periods

• Trajectories are extremely sparse
– A driving path spans just a small fraction of road segments

• Insufficient instances
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Trajectory Regression: Idea 
[Huang et al. ICDM14]

Dynamic trajectory regression in an MTL 
framework

– Divide 𝐷 into 𝑚 disjoint subsets ordered by time

– Multi-task learning framework: each time slot 
corresponds to a task
• leverage the inherent relations of tasks to enhance the 

predictive performance, especially when the data 
samples are insufficient

2016/11/5 45



Trajectory Regression

min
W
 
𝑖
𝐿𝑜𝑠𝑠 𝑊, 𝑋𝑖 , 𝑌𝑖 +λ 𝑅𝑒𝑔 𝑊 = min

𝑊
 
𝑖
𝑌𝑖 − 𝑋𝑖𝒘𝑖 + λ 𝑅𝑒𝑔 𝑊

𝑊 Structure in the trajectory regression problem 

• Global temporal smoothness: 
– Link costs change smoothly most of the time 

• Global spatial smoothness: 
– Costs are similar if the two corresponding links are close to 

each other

• Local temporal patterns: 
– Significant temporal changes in rush hours
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Trajectory Regression - Additive Model

min
W
 
𝑖
𝐿𝑜𝑠𝑠 𝑊, 𝑋𝑖 , 𝑌𝑖 +λ 𝑅𝑒𝑔 𝑊 = min

𝑊
 
𝑖
𝑌𝑖 − 𝑋𝑖𝒘𝑖 + λ 𝑅𝑒𝑔 𝑊

𝑊 = 𝑃 + 𝑄

• 𝑃:  models the global smoothness over links and time

• 𝑄: captures the local “outliers” including rush hours
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Trajectory Regression - Regularization

𝑊 = 𝑃 + 𝑄

• 𝑃:  models the global smoothness over links and 
time

• Global temporal smoothness

Ω1= 𝑡=1
𝑚 𝑃:,𝑡 −

1

𝑚
 𝑟=1
𝑚 𝑃:,𝑟

2

2
= 𝑡𝑟(𝑃𝐿1𝑃

𝑇) 𝐿1 = 𝐼 −
1

𝑚
𝟏𝟏′

• Enforces the columns of 𝑃 or the tasks to be similar with some 
discrepancy
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Trajectory Regression - Regularization

𝑊 = 𝑃 + 𝑄

• 𝑃:  models the global smoothness over links and 
time

• Global spatial smoothness

Ω2 =  𝑖,𝑗=1
𝑑 𝑆𝑖𝑗 𝑃𝑖,∶ − 𝑃𝑗,∶ 2

2
= 𝑡𝑟(𝑃𝑇𝐿2𝑃)

• 𝑆 measures the spatial closeness of links

• Costs are similar if the two corresponding links are close to each 
other
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Trajectory Regression - Regularization

𝑊 = 𝑃 + 𝑄

• 𝑄: captures the local “outliers” including rush hours

• Local significant temporal transitions
Ω3 = 𝑄 ∞,1

• 𝑍 ∞,1 =  𝑗 𝑍:,𝑗 ∞
, 𝑍:,𝑗 ∞

= max
𝑖
𝑍𝑖𝑗

• Enforces column sparsity to identify peak traffic

• The ℓ∞,1 norm is only influenced by the maximum elements of the 
nonzero columns — the cost of a trajectory is mostly decided by 
the link with highest cost during traffic peaks

• Leaves out the outliers — ROBUST
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Trajectory Regression - Model

min
𝑊
 

𝑖=1

𝑚

‖𝑌𝑖 − 𝑋𝑖𝒘𝑖‖2
2 + 𝜆1𝑡𝑟(𝑃𝐿1𝑃

𝑇) + 𝜆2𝑡𝑟(𝑃
𝑇𝐿2𝑃) + 𝜆3‖𝑄‖∞,1
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Trajectory Regression - Optimization

min
𝑊
 

𝑖=1

𝑚

‖𝑌𝑖 − 𝑋𝑖𝒘𝑖‖2
2 + 𝜆1𝑡𝑟(𝑃𝐿1𝑃

𝑇) + 𝜆2𝑡𝑟(𝑃
𝑇𝐿2𝑃) + 𝜆3‖𝑄‖∞,1

Convex problem, but non-trivial for optimization due to the ℓ∞,1 term

Proximal Method:

min
𝑊
𝐹 𝑊 + 𝑅(𝑊)  

𝐹 𝑊 = 𝐿 𝑊 + 𝜆1𝑡𝑟(𝑃𝐿1𝑃
𝑇) + 𝜆2𝑡𝑟(𝑃

𝑇𝐿2𝑃)

𝑅 𝑊 = 𝜆3‖𝑄‖∞,1

𝑃𝑟 = 𝑎𝑟𝑔min
𝑃

𝛾𝑟
2
𝑃 − 𝐶𝑃(𝑃𝑟−1) 𝐹

2 ,

𝑄𝑟 = 𝑎𝑟𝑔min
𝑄

𝛾𝑟
2
𝑄 − 𝐶𝑄(𝑄𝑟−1) 𝐹

2
+ 𝜆3‖𝑄‖∞,1

min
𝒒𝑖

1

2
𝒒𝑖 − 𝒄𝑖

2

2
+ 𝜆‖𝒒𝑖‖∞ min

𝒒𝑖
𝒄𝑖 −
1

2
𝒒𝑖 − 𝒄𝑖

2

2
+ 𝜆‖𝒒𝑖‖1

𝒄 = 𝑝𝑟𝑜𝑥𝑅 𝒄 + 𝑝𝑟𝑜𝑥𝑅∗ 𝒄
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Trajectory Regression - Results

• Suzhou Traffic Data

– Contains 59593 trajectory records of 4797 taxies from 7:00 
to 19:59 in urban area of Suzhou during the first week in 
March, 2012
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Summary

• Multi-task Learning (MTL)
– MTL is preferred when dealing with multiple related tasks 

with small number of training samples

– Key issue of MTL: Exploiting relationships among the tasks

• Optimization
– General formulations, classical algorithms apply

– Distributed optimization

• Applications
– Task relationships are specific to the nature of the problem
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