

The 14th China Workshop on Machine Learning and Applications 第十四届中国机器学习及其应用研讨会

2016年11月4~6日 南京大学 南京

Multi-Task Learning: Models, Optimization and Applications

Linli Xu

University of Science and Technology of China



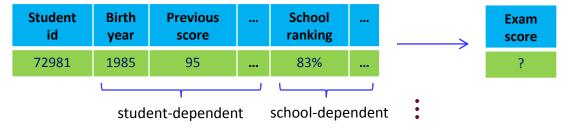
Outline

- Introduction to multi-task learning (MTL): problem and models
- Multi-task learning with task-feature co-clusters
- Low-rank optimization in multi-task learning
- Multi-task learning applied to trajectory regression

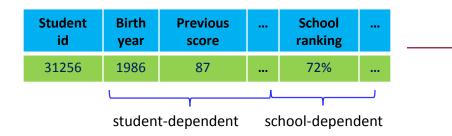
Multiple Tasks

Examination Scores Prediction¹ (Argyriou et. al.'08)

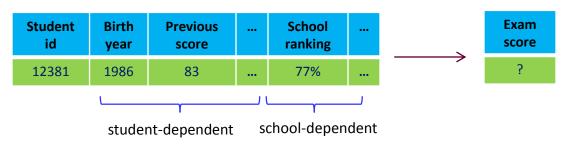
School 1 - Alverno High School



School 138 - Jefferson Intermediate School

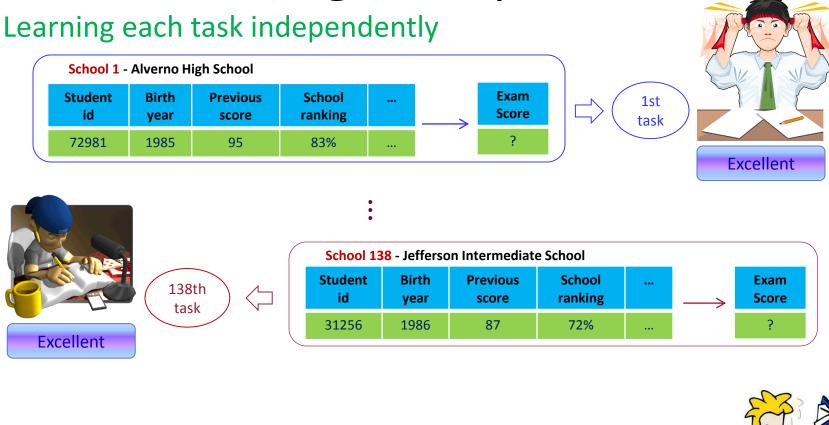


School 139 - Rosemead High School



¹The Inner London Education Authority (ILEA) 2016/11/5

Learning Multiple Tasks

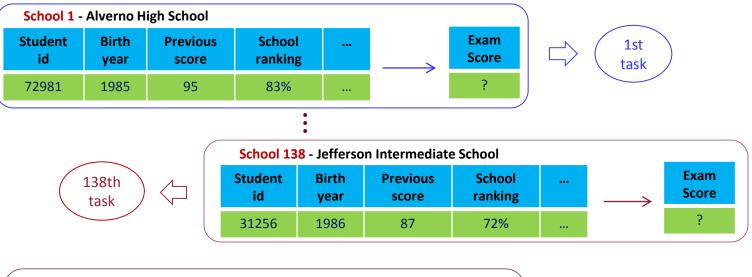


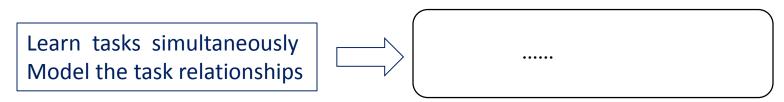
n Previous	School			E
score	ranking		\rightarrow	Exam Score
5 83	77%			?
E	6 83	5 83 77%	5 83 77%	5 83 77%

139th task

Learning Multiple Tasks

Learning multiple tasks simultaneously



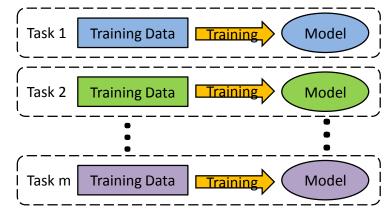


Multi-Task Learning

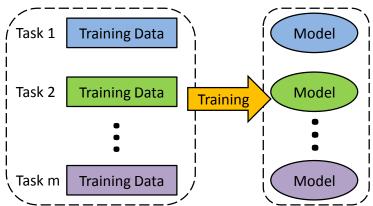
• Different from single task learning

 Training multiple tasks simultaneously to exploit task relationships

Single Task Learning



Multi-Task Learning



Exploiting Task Relationships

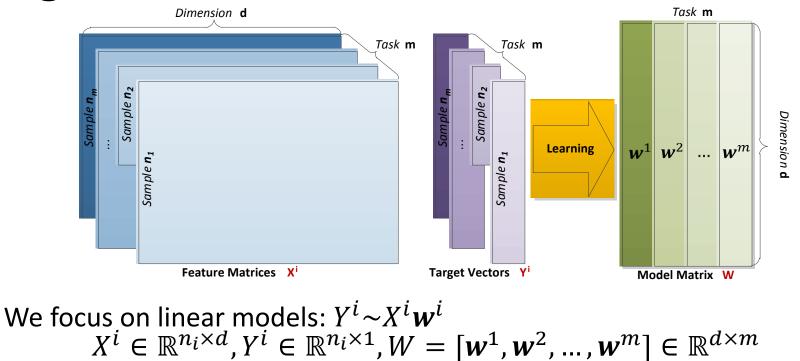
Key challenge in multi-task learning:

Exploiting (statistical) relationships between the tasks so as to improve individual and/or overall predictive accuracy (in comparison to training individual models)!

How Tasks Are Related?

- All tasks are related
 - Models of all tasks are close to each other;
 - Models of all tasks share a common set of features;
 - Models share the same low rank subspace
- Structure in tasks
 - clusters / graphs / trees
- Learning with outlier tasks

Regularization-based Multi-Task Learning



Generic framework

$$\min_{W} \sum_{i} Loss(W, X^{i}, Y^{i}) + \lambda Reg(W)$$

Impose various types of relations on tasks with Reg(W)2016/11/5

How Tasks Are Related?

• All tasks are related

- Models of all tasks are close to each other;
- Models of all tasks share a common set of features;
- Models share the same low rank subspace
- Structure in tasks
 - clusters / graphs / trees
- Learning with outlier tasks

MTL Methods: Mean-Regularized MTL

Evgeniou & Pontil, 2004 KDD

<u>Assumption</u>: model parameters of all tasks are close to each other.

- Advantage: simple, intuitive, easy to implement
- Disadvantage: too simple

Regularization

Penalizes the deviation of each task from the mean

$$\min_{W} Loss(W) + \lambda \sum_{i=1}^{m} \left\| W^{i} - \frac{1}{m} \sum_{s=1}^{m} W^{s} \right\|_{2}^{2}$$

MTL Methods: Joint Feature Learning

Evgeniou et al. 2006 NIPS, Obozinski et. al. 2009 Stat Comput, Liu et. al. 2010 Technical Report

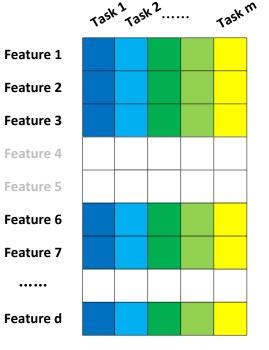
<u>Assumption</u>: models of all tasks share a common set of features

– Using group sparsity: $\ell_{1,q}$ -norm regularization

Regularization

- $\|W\|_{1,q} = \sum_{i=1}^{d} \|w_i\|_q$
- When q > 1 we have group sparsity

 $\min_{W} Loss(W) + \lambda \|W\|_{1,q}$



MTL Methods: Low-Rank MTL

Ji et. al. 2009 ICML

<u>Assumption</u>: in high dimensional feature space, the linear models share the same low-rank subspace

Regularization - Rank minimization formulation $\min_{W} Loss(W) + \lambda \cdot \operatorname{rank}(W)$ - Rank minimization is *NP-Hard* for general loss functions

 Convex relaxation: nuclear norm minimization min Loss(W) + λ ||W||_{*} (||W||_{*} : sum of singular values of W)

How Tasks Are Related?

- All tasks are related
 - Models of all tasks are close to each other;
 - Models of all tasks share a common set of features;
 - Models share the same low rank subspace
- Structure in tasks
 - clusters / graphs / trees
- Learning with outlier tasks

MTL Methods: Clustered MTL

Zhou et. al. 2011 NIPS

<u>Assumption:</u> cluster structure in tasks - the models of tasks from the same group are closer to each other than those from a different group

Regularization - capture clustered structures

$$\min_{W,F:F^T F=I_k} Loss(W) + \alpha \left[tr(W^T W) - tr(F^T W^T W F) \right] + \beta tr(W^T W)_{\text{Improves}}$$

capture cluster structures

Improves generalization performance

Regularization-based MTL: Decomposition Framework

- In practice, it is too restrictive to constrain all tasks to share a single shared structure.
- Assumption: the model is the sum of two components W = P + Q
 - A shared low dimensional subspace and a task specific component (Ando and Zhang, 2005, JMLR)
 - A group sparse component and a task specific sparse component (Jalali et.al., 2010, NIPS)
 - A low rank structure among relevant tasks + outlier tasks (Gong et.al., 2011, KDD)

How Tasks Are Related?

- All tasks are related
 - Models of all tasks are close to each other;
 - Models of all tasks share a common set of features;
 - Models share the same low rank subspace
- Structure in tasks
 - clusters / graphs / trees
- Learning with outlier tasks

MTL Methods: Robust MTL

Chen et. al. 2011 KDD

Assumption: models share the same low-rank subspace + outlier tasks

column-sparse

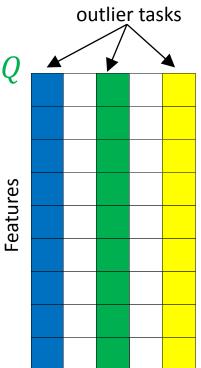
W = P + Q

Regularization

- $\|P\|_*$: nuclear norm
- $\|Q\|_{2,1} = \sum_{j=1}^{m} \|\boldsymbol{q}_{:,j}\|_{2}$

$$\min_{W} Loss(W) + \frac{\alpha \|P\|_*}{\alpha \|P\|_*} + \beta \|Q\|_{2,1}$$

low rank



Summary So Far...

- All multi-task learning formulations discussed above can fit into the W = P + Q schema.
 - Component *P*: shared structure
 - Component Q: information not captured by the shared structure

Outline

- Introduction to multi-task learning (MTL): problem and models
- Multi-task learning with task-feature co-clusters
- Low-rank optimization in multi-task learning
- Multi-task learning applied to trajectory regression

Recap: How Tasks Are Related?

• All tasks are related

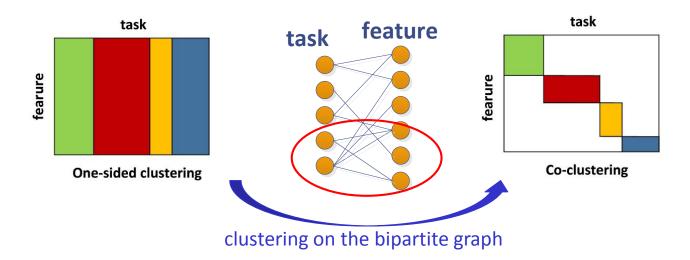
- Models of all tasks are close to each other;
- Models of all tasks share a common set of features;
- Models share the same low rank subspace
- Structure in tasks
 - clusters / graphs / trees
- Learning with outlier tasks

How Tasks are Related

- Existing methods consider the structure at a general task-level
- Restrictive assumption in practice:
 - In document classification: different tasks may be relevant to different sets of words
 - In a recommender system: two users with similar tastes on one feature subset may have totally different preference on another subset

CoCMTL: MTL with Task-Feature Co-Clusters [Xu. et al, AAAI15]

• Motivation: feature-level groups



 Impose task-feature co-clustering structure with *Reg(W)*

CoCMTL: Model

• Decomposition model: W = P + Q $\min_{W} Loss(W) + \lambda_1 \Omega_1(P) + \lambda_2 \Omega_2(Q)$

Global Similarities:
$$\Omega_1(P) = \sum_{i=1}^m \left\| p^i - \frac{1}{m} \sum_{j=1}^m p^j \right\|_2^2 = tr(PLP^T)$$

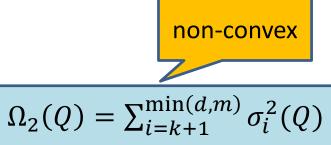
Group Specific Similarities:

K-means Clustering with Spectral Relaxation: $\min_{H^{T}H=I} \left\{ tr(Z^{T}Z) - tr(H^{T}Z^{T}ZH) \right\}$ - Z: data matrix. - H: indicating matrix. - H: indicating matrix. $Z = \begin{pmatrix} 0 & Q \\ Q^{T} & 0 \end{pmatrix} \quad H = \begin{pmatrix} F \\ G \end{pmatrix} \quad G^{T}G = I$ - F, G: indicating matrices for tasks and features. $\min_{F^{T}F=I,G^{T}G=I} \left\{ 2 \|Q\|_{F}^{2} - tr(F^{T}QQ^{T}F) - tr(G^{T}Q^{T}QG) \right\}_{27}$

CoCMTL: Model

• Decomposition model: W = P + Q $\min_{W} Loss(W) + \lambda_1 \Omega_1(P) + \lambda_2 \Omega_2(Q)$

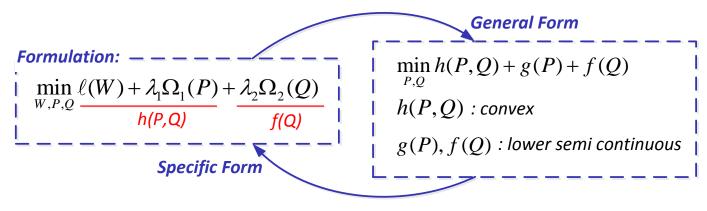
Theorem 1. For any given matrix $Q \in \mathbb{R}^{d \times m}$, any matrices $F \in \mathbb{R}^{d \times k}$, $G \in \mathbb{R}^{m \times k}$ and any nonnegative integer $k, k \leq \min(d, m)$, Problem (4) reaches its minimum value at $F = (\mathbf{u}_1, \ldots, \mathbf{u}_k)$, $G = (\mathbf{v}_1, \ldots, \mathbf{v}_k)$, where \mathbf{u}_i and \mathbf{v}_i are the *i*-th left and right singular vectors of Q respectively The minimum value is $2\sum_{i=k+1}^{\min(d,m)} \sigma_i^2(Q)$, where $\sigma_1(Q) \geq \sigma_2(Q) \geq \cdots \geq \sigma_{\min(d,m)}(Q) \geq 0$ are the singular values of Q.



$$\min_{W} Loss(W) + \lambda_1 \operatorname{tr}(PLP^T) + \lambda_2 \sum_{i=k+1}^{\min(d,m)} \sigma_i^2(Q)$$

CoCMTL: Optimization

• We follow the *Proximal Alternative Linear Method (PALM)* to solve the non-convex problem.



In the *r*-th iteration, we get two sub-problems. $\begin{cases}
P_{r} = \arg \min_{P} \frac{\gamma_{r}}{2} \|P - C_{P}\|_{F}^{2} \\
Q_{r} = \arg \min_{Q} \frac{\gamma_{r}}{2} \|Q - C_{Q}\|_{F}^{2} + \lambda_{2}\Omega_{2}(Q)
\end{cases}$ arg min $\frac{\gamma_{r}}{2} \|Q - C_{Q}\|_{F}^{2} + \lambda_{2}tr(F_{*}^{T}QQ^{T}F_{*})$ Alternative Optimization

CoCMTL: Results

School data: #Tasks 139, #Features 27, #Samples 15k

	Training Ratio	Ridge	L21	Low Rank	rMTL	rMTFL	Dirty	Flex-Clus	CMTL	CoCMTL
nMSE	10%	1.1031	1.0931	0.9693	0.9603	1.3838	1.1421	0.8862	0.9914	0.8114
	20%	0.9178	0.9045	0.8435	0.8198	1.0310	0.9436	0.7891	0.8462	0.7688
	30%	0.8511	0.8401	0.8002	0.7833	0.9103	0.8517	0.7634	0.8064	0.7515
	10%	0.2891	0.2867	0.2541	0.2515	0.3618	0.2983	0.2315	0.2593	0.2118
aMSE	20%	0.2385	0.2368	0.2207	0.2147	0.2702	0.2470	0.2062	0.2214	0.2009
	30%	0.2212	0.2197	0.2091	0.2049	0.2378	0.2225	0.1992	0.2107	0.1961
	10%	11.5321	11.5141	11.2000	11.1984	12.1233	11.6401	10.9991	11.2680	10.7430
rMSE	20%	10.7318	10.7011	10.5427	10.4866	10.9928	10.8033	10.3986	10.5500	10.3110
	30%	10.1831	10.1704	10.0663	10.0291	10.3338	10.1956	9.9767	10.0865	9.9221

Outline

- Introduction to multi-task learning (MTL): problem and models
- Multi-task learning with task-feature co-clusters
- Low-rank optimization in multi-task learning
- Multi-task learning applied to trajectory regression

Recap: Low-Rank MTL

<u>Assumption</u>: in high dimensional feature space, the linear models share the same low-rank subspace

Regularization - Rank minimization formulation $\min_{W} Loss(W) + \lambda \cdot \operatorname{rank}(W)$

- Rank minimization is NP-Hard for general loss functions

 Convex relaxation: nuclear norm minimization min Loss(W) + λ ||W||_{*} (||W||_{*} : sum of singular values of W)

More on Nuclear Norm

Rank minimization formulation $\min_{W} Loss(W) + \lambda \cdot \operatorname{rank}(W)$ $- \operatorname{rank}(W) = \# \operatorname{non-zero singular values}$ $- \|W\|_* = \sum \sigma_i(W) : \operatorname{sum of singular values}$

- Limitation of $||W||_*$
 - Large singular values are penalized more heavily
 - Large singular values are dominant in determining the properties of a matrix

Idea: Weighted Nuclear Norm

[Zhong et al, AAAI15; Xu et al, ICDM16]

$$\min_{W} Loss(W) + \lambda \sum_{i} \frac{p_i}{\sigma_i} \sigma_i(W)$$

- Intuition: penalize large singular values less
 Non-descending weights p_i
- Reweighting strategy:
 - Given current weights p^{k-1} , solve for W^{k-1}
 - Reweighting of p
 - $p_i^k = \frac{r}{(\sigma_i(W^k) + \epsilon)^{1-r}}$, where $0 < r < 1, \epsilon > 0$
 - Each weight inversely proportional to the corresponding singular value

Non-convex

Idea: Weighted Nuclear Norm

$$\min_{W} Loss(W) + \lambda \sum_{i} p_{i} \sigma_{i}(W)$$

$$\int_{W} p_{i}^{k} = \frac{r}{(\sigma_{i}(W^{k}) + \epsilon)^{1-r}}$$

$$\min_{W} Loss(W) + \lambda \sum_{i} (\sigma_{i}(W) + \epsilon)^{r}$$
Enhances low rank
$$\rightarrow \operatorname{rank}(W) \text{ when } \epsilon \rightarrow 0, r \rightarrow 0$$

Optimization: Proximal Operator

First-order approximation of Loss(W), regularized by a proximal term

$$P_{t^{k}}(W, W^{k}) = Loss(W^{k}) + \langle W - W^{k}, \nabla Loss(W^{k}) \rangle + \frac{t^{k}}{2} \left\| W - W^{k} \right\|^{2}$$

Generate the sequence

$$W^{k} = \arg\min_{W} \frac{t^{k}}{2\lambda} \left\| W - \left(W^{k} - \frac{1}{t^{k}} \nabla Loss(W^{k}) \right) \right\|_{F}^{2} + \left(p^{k} \right)^{T} \sigma(W)$$

- − ⊗ Non-convex proximal operator problem
- —
 ^(C) Has closed form solution by exploiting structure of the weighted nuclear norm (unitarily invariant property)

<u>Theorem.</u> Suppose that $A = U\Sigma V^T$, then, $W^* = UD(x^*)V^T$ is a global solution of the problem

$$\min_{X} \frac{\mu}{2} \|W - A\|_{F}^{2} + p^{T} \sigma(W)$$

where x*can be denoted as $x^{*} = \max\left(\sigma(A) - \frac{1}{\mu}p, 0\right)$

Optimization: Algorithm

Algorithm 1 Iterative Shrinkage-Thresholding and Reweighted Algorithm (ISTRA)

Input: $0 < t_{\min} < t_{\max}, 0 < \tau < 1, 0 < \overline{r < 1, \lambda > 0},$ $\delta > 0, \epsilon > 0, \rho > 1$ Output: X^* 1: Initialize: $k = -1, w^0 = \mathbf{1}^T, X^{-1}, X^0$ 2: repeat k = k + 1 Barzilai Borwein (BB) rule update t^k 3: 4: make $t^k \in [t_{\min}, t_{\max}]$ 5: while true do 6: update X^{k+1} 7: if line search criterion is satisfied then 8: Break; 9: 10: end if $t^k = \rho t^k$ 11: becrease the step size end while 12: 13: update the weights w_i^{k+1} , $i = 1 \cdots q$ reweighting strategy 14: **until** stop criterion $||X^{k+1} - X^k||^2 \le \delta$ is satisfied

Convergence Analysis

• Critical points

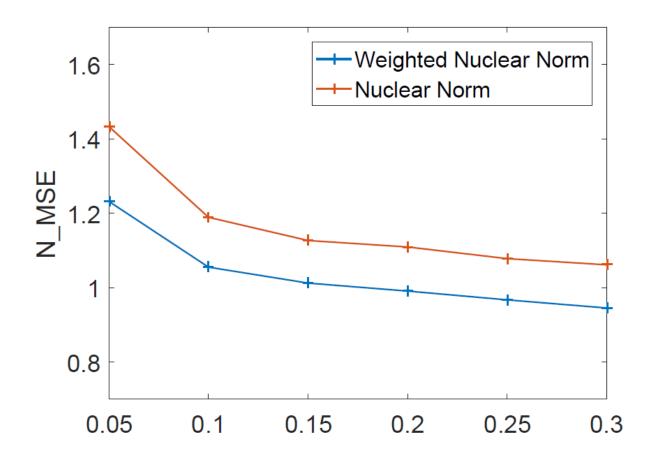
<u>Theorem.</u> The sequence $\{W^k\}$ generated by the ISTRA algorithm makes the objective function monotonically decrease, and all accumulation points (i.e. the limit points of convergent subsequence in $\{W^k\}$) are critical points (i.e. 0 belongs to the subgradients)

• Sublinear convergence rate

<u>**Theorem.</u></u> Suppose that \{W^k\} is the sequence generated by the ISTRA algorithm, and W^* is an accumulation point of \{X^k\}, then \min_{0 \le k \le n} \left\| W^{k+1} - W^k \right\|^2 \le 2 \left(g(W^0) - g(W^*) \right) / n\tau t_{\min}</u>**

Results

School data



Outline

- Introduction to multi-task learning (MTL): problem and models
- Multi-task learning with task-feature co-clusters
- Low-rank optimization in multi-task learning
- Multi-task learning applied to trajectory regression

Trajectory Regression: Problem

Trajectory:

A sequence of link (road segments), where any two consecutive links share an intersection

Goal:

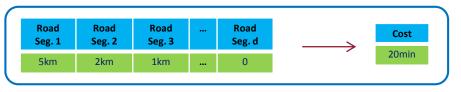
Estimate the total travel time of an arbitrary trajectory

Trajectory Regression: Problem

Given a set consisting of *N* trajectory-cost pairs:

$$D \equiv \{(\boldsymbol{x}_i, y_i) | i = 1, 2, \dots, N\}, \boldsymbol{x}_i \in \mathbb{R}_d$$

- Each feature of x_i corresponds to a link - distance traveled along the link



Goal: Learn the weights $w \in \mathbb{R}_d$ that encode the cost per distance unit for each link

Single task learning:
$$\min_{\boldsymbol{w}} \|Y - X\boldsymbol{w}\|_{2}^{2} + \beta \|\boldsymbol{w}\|_{2}^{2}$$

Trajectory Regression: Key Challenges

- Dynamic: costs of road segments are not static over time
 - Cost of a road segment fluctuates smoothly most of the time
 - Costs can be abruptly different between peak periods and off-peak periods
- Trajectories are extremely sparse
 - A driving path spans just a small fraction of road segments
- Insufficient instances

Trajectory Regression: Idea

[Huang et al. ICDM14]

Dynamic trajectory regression in an MTL framework

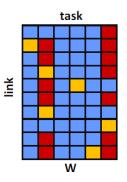
- Divide D into m disjoint subsets ordered by time
- Multi-task learning framework: each time slot corresponds to a task
 - leverage the inherent relations of tasks to enhance the predictive performance, especially when the data samples are insufficient

Trajectory Regression

$$\min_{W} \sum_{i} Loss(W, X^{i}, Y^{i}) + \lambda \operatorname{Reg}(W) = \min_{W} \sum_{i} ||Y^{i} - X^{i} w^{i}|| + \lambda \operatorname{Reg}(W)$$

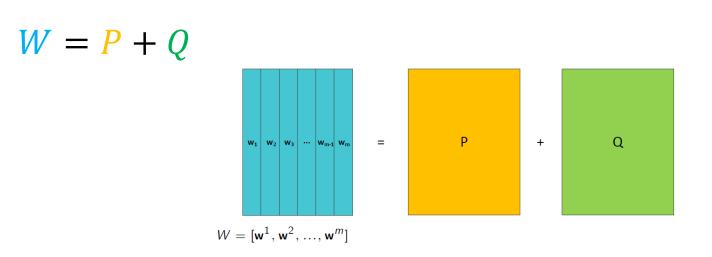
W Structure in the trajectory regression problem

- Global temporal smoothness:
 - Link costs change smoothly most of the time
- Global spatial smoothness:
 - Costs are similar if the two corresponding links are close to each other
- Local temporal patterns:
 - Significant temporal changes in rush hours



Trajectory Regression - Additive Model

 $\min_{W} \sum_{i} Loss(W, X^{i}, Y^{i}) + \lambda \operatorname{Reg}(W) = \min_{W} \sum_{i} ||Y^{i} - X^{i} w^{i}|| + \lambda \operatorname{Reg}(W)$

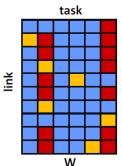


- P: models the global smoothness over links and time
- *Q*: captures the local "outliers" including rush hours

Trajectory Regression - Regularization

W = P + Q

• *P*: models the global smoothness over links and time



Global temporal smoothness

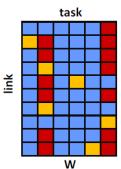
$$\Omega_1 = \sum_{t=1}^m \left\| P_{:,t} - \frac{1}{m} \sum_{r=1}^m P_{:,r} \right\|_2^2 = tr(PL_1P^T) \qquad L_1 = I - \frac{1}{m} \mathbf{11}'$$

• Enforces the columns of *P* or the tasks to be similar with some discrepancy

Trajectory Regression - Regularization

W = P + Q

• *P*: models the global smoothness over links and time



Global spatial smoothness

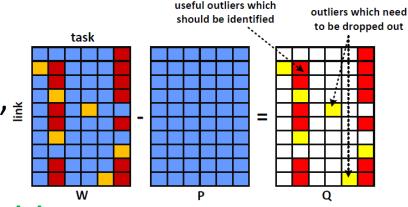
$$\Omega_2 = \sum_{i,j=1}^d S_{ij} \|P_{i,:} - P_{j,:}\|_2^2 = tr(P^T L_2 P)$$

- S measures the spatial closeness of links
- Costs are similar if the two corresponding links are close to each other

Trajectory Regression - Regularization

W = P + Q

• Q: captures the local "outliers"[≝]

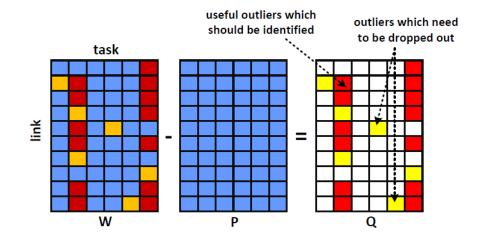


• Local significant temporal transitions

 $\Omega_3 = \|Q\|_{\infty,1}$

- $||Z||_{\infty,1} = \sum_{j} ||Z_{:,j}||_{\infty}$, $||Z_{:,j}||_{\infty} = \max_{i} |Z_{ij}|$
- Enforces column sparsity to identify peak traffic
- The $\ell_{\infty,1}$ norm is only influenced by the maximum elements of the nonzero columns the cost of a trajectory is mostly decided by the link with highest cost during traffic peaks
- Leaves out the outliers ROBUST

Trajectory Regression - Model



 $\min_{W} \sum_{i=1}^{m} \|Y^{i} - X^{i} \boldsymbol{w}^{i}\|_{2}^{2} + \lambda_{1} tr(PL_{1}P^{T}) + \lambda_{2} tr(P^{T}L_{2}P) + \lambda_{3} \|Q\|_{\infty,1}$

Trajectory Regression - Optimization

$$\min_{W} \sum_{i=1}^{m} \|Y^{i} - X^{i} \boldsymbol{w}^{i}\|_{2}^{2} + \lambda_{1} tr(PL_{1}P^{T}) + \lambda_{2} tr(P^{T}L_{2}P) + \lambda_{3} \|Q\|_{\infty,1}$$

Convex problem, but non-trivial for optimization due to the $\ell_{\infty,1}$ term *Proximal Method:*

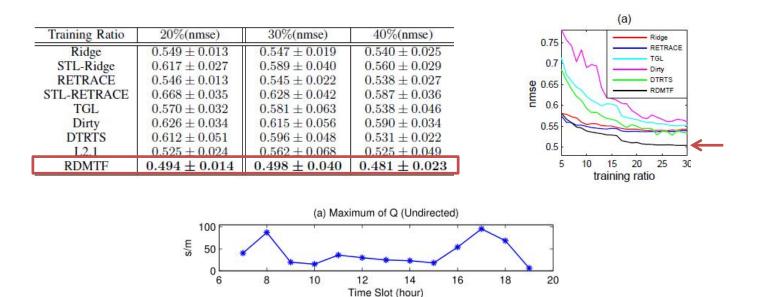
$$\min_{W} \{F(W) + R(W)\} \begin{cases} F(W) = L(W) + \lambda_1 tr(PL_1P^T) + \lambda_2 tr(P^TL_2P) \\ R(W) = \lambda_3 \|Q\|_{\infty,1} \end{cases}$$

$$P_{r} = \arg \min_{P} \frac{\gamma_{r}}{2} \|P - C_{P}(P_{r-1})\|_{F}^{2},$$
$$Q_{r} = \arg \min_{Q} \frac{\gamma_{r}}{2} \|Q - C_{Q}(Q_{r-1})\|_{F}^{2} + \lambda_{3} \|Q\|_{\infty,1}$$

 $\min_{\boldsymbol{q}^{i}} \frac{1}{2} \|\boldsymbol{q}^{i} - \boldsymbol{c}^{i}\|_{2}^{2} + \lambda \|\boldsymbol{q}^{i}\|_{\infty} \xrightarrow{\text{Moreau Decomposition}} \min_{\boldsymbol{c} = prox_{R}(\boldsymbol{c}) + prox_{R*}(\boldsymbol{c})} \min_{\boldsymbol{q}^{i}} \left\{ \boldsymbol{c}^{i} - \left(\frac{1}{2} \|\boldsymbol{q}^{i} - \boldsymbol{c}^{i}\|_{2}^{2} + \lambda \|\boldsymbol{q}^{i}\|_{1} \right) \right\}$

Trajectory Regression - Results

- Suzhou Traffic Data
 - Contains 59593 trajectory records of 4797 taxies from 7:00 to 19:59 in urban area of Suzhou during the first week in March, 2012



Summary

- Multi-task Learning (MTL)
 - MTL is preferred when dealing with multiple related tasks with small number of training samples
 - Key issue of MTL: Exploiting relationships among the tasks
- Optimization
 - General formulations, classical algorithms apply
 - Distributed optimization
- Applications
 - Task relationships are specific to the nature of the problem

References

- Xu, L., Huang, A., Chen, J., and Chen, E. **Exploiting Task-Feature Co-Clusters in Multi-Task Learning.** In *Proceedings of the 29th National Conference on Artificial Intelligence (AAAI-15).*
- Zhong, X., Xu, L., Li., Y, Liu, Z., and Chen, E. A Nonconvex Relaxation Approach for Rank Minimization Problems. In *Proceedings of the 29th National Conference on Artificial Intelligence (AAAI-15)*.
- Xu, L., Chen, Z., Zhou, Q., Chen, E., Yuan, N.J., Xie, X. Aligned Matrix Completion: Integrating Consistency and Independency in Multiple Domains. In *Proceedings of the 16th IEEE Conference on Data Mining (ICDM-16).*
- Huang, A., Xu, L., Li., Y, and Chen, E. Robust Dynamic Trajectory Regression on Road Networks: A Multi-Task Learning Framework. In *Proceedings of the 14th IEEE Conference on Data Mining (ICDM-14).*
- Zhou, J., Chen, J., and Ye, J. Multi-Task Learning: Theory, Algorithms, and Applications. SDM 2012 Tutorial.
- Evgeniou, T., and Pontil, M. **Regularized Multi-Task Learning**. In *Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-04).*
- Argyriou, A., Evgeniou, T., and Pontil, M. Multi-Task Feature Learning. In Advances in Neural Information Processing Systems 19 (NIPS-06).
- Argyriou, A., Evgeniou, T., and Pontil, M. **Convex Multi-Task Learning**. Machine Learning, 73, 2008.
- Ji, S., and Ye, J. **An Accelerated Gradient Method for Trace Norm Minimization**. In *Proceedings of the 26th Annual International Conference on Machine Learning (ICML-09).*
- Zhou, J., Chen, J., and Ye, J. Clustered Multi-Task Learning Via Alternating Structure Optimization. In Advances in Neural Information Processing Systems 24 (NIPS-11).
- Chen, J., Zhou, J., and Ye, J. Integrating Low-Rank and Group-Sparse Structures for Robust Multi-Task Learning. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-11).

Joint Work With

Students

- Aiqing Huang
- Xiaowei Zhong
- Zaiyi Chen
- Yitan Li
- Collaborators
 - Enhong Chen
 - Jianhui Chen

Thanks!

Email: linlixu@ustc.edu.cn