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I. Distributed learning with big data

Big data leads to scientific challenges:

storage bottleneck, algorithmic scalability, ...

Distributed learning: based on a divide-and-conquer approach

A distributed learning algorithm consisting of three steps:

(1) partitioning the data into disjoint subsets

(2) applying a learning algorithm implemented in an individual

machine or processor to each data subset to produce an indi-

vidual output

(3) synthesizing a global output by utilizing some average of

the individual outputs

Advantages: reducing the memory and computing costs to

handle big data
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If we divide a sample D = {(xi, yi)}Ni=1 of input-output pairs

into disjoint subsets {Dj}mj=1, applying a learning algorithm to

the much smaller data subset Dj gives an output fDj, and the

global output might be fD = 1
m

∑m
j=1 fDj.

The distributed learning method has been observed to be very

successful in many practical applications. There a challenging

theoretical question is raised:

If we had a ”big machine” which could implement the same

learning algorithm to the whole data set D to produce an

output fD, could fD be as efficient as fD?

Recent work: Zhou-Chawla-Jin-Williams, Zhang-Duchi-Wainwright,

Shamir-Srebro, ...
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II. Least squares regression and and regularization

II.1. Model for the least squares regression. Learn f :

X → Y from a random sample D = {(xi, yi)}Ni=1

Take X to be a compact metric space and Y = R. y ≈ f(x)

Due to noises or other uncertainty, we assume a (unknown)

probability measure ρ on Z = X × Y governs the sampling.

marginal distribution ρX on X : x = {xi}Ni=1 drawn according

to ρX

conditional distribution ρ(·|x) at x ∈ X

Learning the regression function: fρ(x) =
∫
Y ydρ(y|x)

yi ≈ fρ(xi)
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II.2. Error decomposition and ERM

E ls(f) =
∫
Z(f(x)− y)2dρ minimized by fρ:

E ls(f)− E ls(fρ) = ‖f − fρ‖2L2
ρX

=: ‖f − fρ‖2ρ ≥ 0.

Classical Approach of Empirical Risk Minimization (ERM)

Let H be a compact subset of C(X ) called hypothesis space

(model selection). The ERM algorithm is given by

fD = arg min
f∈H
E lsD(f), E lsD(f) =

1

N

N∑
i=1

(f(xi)− yi)2.

Target function fH: best approximation of fρ in H

fH = arg min
f∈H
E ls(f) = arg inf

f∈H

∫
Z

(f(x)− y)2dρ
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II.3. Approximation error

Analysis. ‖fD − fρ‖2L2
ρX

=
∫
X (fD(x) − fρ(x))2dρX is bounded

by 2 supf∈H
∣∣∣E lsD(f)− E ls(f)

∣∣∣+

{
E ls(fH)− E ls(fρ)

}
.

Approximation Error. Smale-Zhou (Anal. Appl. 2003)

E ls(fH)− E ls(fρ) = ‖fH − fρ‖2L2
ρX

= inf
f∈H

∫
(f(x)− fρ(x))2dρX

fH ≈ fρ when H is rich

Theorem 1 Let B be a Hilbert space (such as a Sobolev space
or a reproducing kernel Hilbert space). If B ⊂ L2

ρX
is dense and

θ > 0, then

inf
‖f‖B≤R

‖f − fρ‖L2
ρX

= O(R−θ)

if and only if fρ lies in the interpolation space (B,L2
ρX

) θ
1+θ ,∞

.
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II.4. Examples of hypothesis spaces

Sobolv spaces: if X ⊂ Rn, ρX is the normalized Lebesgue

measure, and B is the Sobolev space Hs with s > n/2, then

(Hs, L2
ρX

) θ
1+θ ,∞

is the Besov space B
θ

1+θs

2,∞ and H
θ

1+θs ⊂ B
θ

1+θs

2,∞ ⊂

H
θ

1+θs−ε for any ε > 0.

Range of power of integral operator: if K : X × X → R is

a Mercer kernel (continuous, symmetric and positive semidef-

inite), then the integral operator LK on L2
ρX

is defined by

LK(f)(x) =
∫
X
K(x, y)f(y)dρX(y), x ∈ X .

The r-th power LrK is well defined for any r ≥ 0. Its range

LrK(L2
ρX

) gives the RKHS HK = L
1/2
K (L2

ρX
) and for 0 < r ≤ 1/2,

LrK(L2
ρX

) ⊂ (HK, L2
ρX

)2r,∞ and (HK, L2
ρX

)2r,∞ ⊂ Lr−εK (L2
ρX

) for

any ε > 0 when the support of ρX is X . So we may assume

fρ = LrK(gρ) for some r > 0, gρ ∈ L2
ρX
.
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II.5. Least squares regularization

fD,λ := arg min
f∈HK

 1

N

N∑
i=1

(f(xi)− yi)2 + λ‖f‖2K

 , λ > 0.

A large literature in learning theory: books by Vapnik, Schölkopf-
Smola, Wahba, Anthony-Bartlett, Shawe-Taylor-Cristianini, Steinwart-
Christmann, Cucker-Zhou, ...
many papers: Cucker-Smale, Zhang, De Vito-Caponnetto-
Rosasco, Smale-Zhou, Lin-Zeng-Fang-Xu, Yao, Chen-Xu, Shi-
Feng-Zhou, Wu-Ying-Zhou, ...

regularity of fρ

complexity of HK: covering numbers, decay of eigenvalues
{λi} of LK, effective dimension, ...

decay of y: |y| ≤ M , exponential decay, moment decay-
ing condition, E[|y|q] < ∞ for some q > 2, σ2

ρ ∈ L
p
ρX for the

conditional variance σ2
ρ(x) =

∫
Y (y − fρ(x))2 dρ(y|x), ...
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III. Distributed learning with regularization schemes

Join work with S. B. Lin and X. Guo (under major revision for

JMLR)

Distributed learning with the data disjoint union D = ∪mj=1Dj:

fD,λ =
m∑
j=1

|Dj|
|D|

fDj,λ

Define the effective dimension to measure the complexity of

HK with respect to ρX as

N (λ) = Tr
(
(LK + λI)−1LK

)
=
∑
i

λi
λi + λ

, λ > 0.

Note that λi = O(i−2α) implies N (λ) = O(λ−
1

2α)
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III.1. Error analysis for distributed learning

Theorem 2 Assume |y| ≤ M and fρ = LrK(gρ) for some 0 ≤
r ≤ 1

2 and gρ ∈ HK. If N (λ) = O(λ−
1

2α) for some α > 0,

|Dj| = N
m for j = 1, . . . ,m, and m ≤ Nmin

{
12αr+1

5(4αr+2α+1)
, 4αr

4αr+2α+1

}
,

then by taking λ = N
− 2α

4αr+1, we have

E

[∥∥∥fD,λ − fρ∥∥∥ρ
]

= O

(
N
− α+2αr

2α+4αr+1

)
.

If fρ ∈ HK and m ≤ N
1

4+6α, the choice λ =
(
m
N

) 2α
2α+1 yields

E

[∥∥∥fD,λ − fD,λ∥∥∥ρ
]

= O

(
N
− α

2α+1m
− 1

4α+2

)
and

E
[∥∥∥fD,λ − fD,λ∥∥∥K] = O

(
1
√
m

)
.
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III.2. Previous work: Zhang-Duchi-Wainwright (2015):

If the normalized eigenfunctions {ϕi}i of LK on L2
ρX

satisfy

‖ϕi‖2kL2k
ρX

= E
[
|ϕi(x)|2k

]
≤ A2k, i = 1,2, . . . ,

for some constants k > 2 and A < ∞, fρ ∈ HK and λi =

O(i−2α) for some α > 1/2, then E
[∥∥∥fD,λ − fρ∥∥∥2

ρ

]
= O

(
N
− 2α

2α+1

)
when λ = N

2α
2α+1 and m = O((N

2(k−4)α−k
2α+1 /(A4k logkN))

1
k−2).

An example of a C∞ Mercer kernel without uniform bounded-

ness of the eigenfunctions: Zhou (2002)

Advantages of our analysis:

(1) General results without any eigenfunction assumption

(2) Error estimates in the HK metric (Smale-Zhou 2007)

(3) A novel second order decomposition applicable to other

algorithms
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IV. Optimal rates for regularization: by-product

Caponnetto-DeVito (2007): If λi ≈ i−2α with some α > 1/2,

then with λ =
(

logN
N

) 2α
2α+1,

lim
τ→∞ lim sup

N→∞
sup
ρ

prob

∥∥∥fD,λN − fρ∥∥∥2

ρ
≤ τ

(
logN

N

) 2α
2α+1

 = 1.

Steinwart-Hush-Scovel (2009): If λi = O
(
i−2α

)
with some α >

1/2, and for some constant C > 0, the pair (K, ρX) satisfies

‖f‖∞ ≤ C‖f‖
1

2α
K ‖f‖

1− 1
2α

ρ , ∀f ∈ HK,

then with λ = N
− 2α

2α+1,

E

[∥∥∥πM (
fD,λ

)
− fρ

∥∥∥2

ρ

]
= O

(
N
− 2α

2α+1

)
.

Here πM is the projection onto the interval [−M,M ].
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Our result: E

[∥∥∥fD,λ − fρ∥∥∥ρ
]

= O

(
N
− α

2α+1

)
.

Theorem 3 Assume E[y2] < ∞ and σ2
ρ ∈ L

p
ρX for some 1 ≤

p ≤ ∞. If fρ = LrK(gρ) for some gρ ∈ L2
ρX

and 0 < r ≤ 1,

and N (λ) = O(λ−
1

2α) for some α > 0, then by taking λ =

N
− 2α

2αmax{2r,1}+1 we have

E

[∥∥∥fD,λ − fρ∥∥∥ρ
]

= O

(
N
− 2rα

2αmax{2r,1}+1+ 1
2p

2α−1
2αmax{2r,1}+1

)
.

In particular, when p = ∞ (the conditional variances are uni-

formly bounded), we have

E

[∥∥∥fD,λ − fρ∥∥∥ρ
]

= O

(
N
− 2rα

2αmax{2r,1}+1

)
.

Second order decomposition used to solve two conjecture on

kernel partial least squares: S. B. Lin-Zhou
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V. Other distributed learning algorithms

Distributed learning with spectral algorithms based on SVD of

Gramian matrices
(
K(xi, xj)

)N
i,j=1

: Z. C. Guo-S. B. Lin-Zhou

Distributed learning with stochastic gradient descent: S. B.

Lin-Zhou

Distributed learning with additional unlabeled data: X. Y.

Chang-S. B. Lin-Zhou
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VI. Further topics with distributed learning and deep nets

VI.1. Approximation theory of deep nets

Classical results on shallow nets (Cybenko 1989, Hornik

1991, Barron 1993, Mhaskar 1996): if σ is C∞ strictly increas-

ing function satisfying limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1

(sigmoidal function), and if f is in the Sobolev space W r
2(Rd),

then for every N ∈ N, there exists a function fN(x) =
∑N
i=1 ciσ(wi·

x+ bi) with ci ∈ R, wi ∈ Rd, bi ∈ R such that

‖fN − f‖2L2(Rd) = O(N−2r/d).

Lack of localized approximation (Chui-Li-Mhaskar 1994): the

neural network with the activation function σ = χ[0,∞) does

not provide localized approximation meaning that for every

compact subset K of Rd,

inf
N∈N,ci,wi,bi

∥∥∥∥∥∥
N∑
i=1

ciσ(wi · x+ bi)− χ[−1,1]d

∥∥∥∥∥∥
L1(K)

= 0.
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Approximation by deep nets

Neural network with 2 hidden layers:

f(x) =
n2∑
i=1

ciσ

 n1∑
j=1

ai,jσ
(
wi,j · x+ bi,j

)+ c0

with ci ∈ R, ai,j ∈ Rd, bi,j ∈ R.

Chui-Li-Mhaskar (1994): the neural network with with 2 hid-
den layers and an activation measurable function σ satisfying
limx→−∞ σ(x) = 0, limx→∞ σ(x) = 1 and ‖σ‖∞ < 2d

2d−1 provides
localized approximation.

Eldan-Shamir (2016): an example of a function expressible by
a 3-layer feedforward neural network cannot be approximated
by any 2-layer neural network to certain accuracy unless the
width is exponential in the dimension.

Telgarsky (2016): more examples
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Neural network with 4 hidden layers: Shaham-Cloningen-Coifman

(2016) For the rectify linear function σ(x) = max{x,0}, a

depth-4 neural networks with N units can achieve the approxi-

mation order of O(N−2/d) if f is C2 on a smooth d-dimensional

Riemannian manifold without boundary.

Robust and distributed learning with deep nets: Chui-Lin-Zhou

(in progress)
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VI.2. Stochastic gradient descent and mirror descent: Y.

W. Lei-Zhou (Neural Computation 2016), Y. M. Ying-Zhou

(ACHA 2016)

Learning with a mirror map Ψ : Rd → R, a loss φ, and a convex

regularizer r:

wt+1 = arg min
w∈Rd

ηt〈w−wt, φ′−(yt, 〈wt, xt〉xt〉+ηtr(w)+DΨ(w,wt),

where ηt is a step size and DΨ(w, w̃) is the Bregman distance

between w and w̃.

Motivation: capture the geometry involving `p norms with p ≥
1 where Ψp(x) = 1

2‖x‖
2
p.
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VI.3. Compositional models for deep nets

Additive models (Stone 1985): f(x1, . . . , xd) = f1(x1) + . . . +

fd(xd)

M. Yuan-Zhou (Ann. Stat. 2016), Christmann-Zhou (Anal.

Appl. 2016)

Interaction models (Stone 1994):

f(x1, . . . , xd) =
∑

I⊆{1,...,d},|I|=d∗
fI(xI)

with d∗ ∈ {1, . . . , d} and for I = {i1, . . . , id∗} ⊆ {1, . . . , d} with

|I| = d∗, xI = (xi1, . . . , xid∗).

Single index models and Projection pursuit (Härdle and Stoker

1989, Friedman and Stuetzle 1981): f(x1, . . . , xd) =
∑K
k=1 gk(ak·

x) with K ∈ N, ak ∈ Rd and univariate functions gk
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Hierarchical interaction models (Kohler1 and Krzyzak 2016):

f(x1, . . . , xd) = g(f1(xI1), f2(xI2), . . . , fd∗(xId∗) with d∗ ∈ {1, . . . , d}
and Ii ⊆ {1, . . . , d} with |Ii| = d∗

Compositional functions: Mhaskar-Liao-Poggio, Mhaskar-Poggio

(2016)
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THANK YOU!
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