Analysis of Distributed Learning Algorithms

Ding-Xuan Zhou

City University of Hong Kong E-mail: mazhou@cityu.edu.hk

Supported in part by Research Grants Council of Hong Kong

Start November 5, 2016

Outline of the Talk

- I. Distributed learning with big data
- II. Least squares regression and and regularization
- III. Distributed learning with regularization schemes
- IV. Optimal rates for regularization
- V. Other distributed learning algorithms
- VI. Further topics

I. Distributed learning with big data

Big data leads to scientific challenges: storage bottleneck, algorithmic scalability, ...

Distributed learning: based on a divide-and-conquer approach

A distributed learning algorithm consisting of three steps:

(1) partitioning the data into disjoint subsets

(2) applying a learning algorithm implemented in an individual machine or processor to each data subset to produce an individual output

(3) synthesizing a global output by utilizing some average of the individual outputs

Advantages: reducing the memory and computing costs to handle big data

2

If we divide a sample $D = \{(x_i, y_i)\}_{i=1}^N$ of input-output pairs into disjoint subsets $\{D_j\}_{j=1}^m$, applying a learning algorithm to the much smaller data subset D_j gives an output f_{D_j} , and the global output might be $\overline{f}_D = \frac{1}{m} \sum_{j=1}^m f_{D_j}$.

The distributed learning method has been observed to be very successful in many practical applications. There a challenging theoretical question is raised:

If we had a "big machine" which could implement the same learning algorithm to the whole data set D to produce an output f_D , could \overline{f}_D be as efficient as f_D ?

Recent work: Zhou-Chawla-Jin-Williams, Zhang-Duchi-Wainwright, Shamir-Srebro, ...

II. Least squares regression and and regularization

II.1. Model for the least squares regression. Learn f: $\mathcal{X} \to \mathcal{Y}$ from a random sample $D = \{(x_i, y_i)\}_{i=1}^N$

Take \mathcal{X} to be a compact metric space and $\mathcal{Y} = \mathbf{R}$. $y \approx f(x)$ Due to noises or other uncertainty, we assume a (unknown) probability measure ρ on $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ governs the sampling.

marginal distribution ρ_X on \mathcal{X} : $\mathbf{x}=\{x_i\}_{i=1}^N$ drawn according to ρ_X

conditional distribution $\rho(\cdot|x)$ at $x \in \mathcal{X}$

Last

Next

Learning the **regression function**: $f_{\rho}(x) = \int_{\mathcal{Y}} y d\rho(y|x)$

Back

Close

Quit

 $y_i \approx f_{
ho}(x_i)$

Previous

First

4

II.2. Error decomposition and ERM

$$\mathcal{E}^{ls}(f) = \int_{\mathcal{Z}} (f(x) - y)^2 d\rho$$
 minimized by f_{ρ} :
 $\mathcal{E}^{ls}(f) - \mathcal{E}^{ls}(f_{\rho}) = \|f - f_{\rho}\|_{L^2_{\rho_X}}^2 =: \|f - f_{\rho}\|_{\rho}^2 \ge 0.$

Classical Approach of Empirical Risk Minimization (ERM) Let \mathcal{H} be a compact subset of $C(\mathcal{X})$ called hypothesis space (model selection). The ERM algorithm is given by

$$f_D = \arg\min_{f \in \mathcal{H}} \mathcal{E}_D^{ls}(f), \qquad \mathcal{E}_D^{ls}(f) = \frac{1}{N} \sum_{i=1}^N (f(x_i) - y_i)^2.$$

Target function $f_{\mathcal{H}}$: best approximation of f_{ρ} in \mathcal{H}

$$f_{\mathcal{H}} = \arg\min_{f\in\mathcal{H}} \mathcal{E}^{ls}(f) = \arg\inf_{f\in\mathcal{H}} \int_{\mathcal{Z}} (f(x) - y)^2 d\rho$$

II.3. Approximation error

Previous

First

Analysis. $\|f_D - f_\rho\|_{L^2_{\rho_X}}^2 = \int_{\mathcal{X}} (f_D(x) - f_\rho(x))^2 d\rho_X$ is bounded by $2\sup_{f \in \mathcal{H}} \left| \mathcal{E}_D^{ls}(f) - \mathcal{E}^{ls}(f) \right| + \left\{ \mathcal{E}^{ls}(f_{\mathcal{H}}) - \mathcal{E}^{ls}(f_\rho) \right\}.$

Approximation Error. Smale-Zhou (Anal. Appl. 2003)

$$\mathcal{E}^{ls}(f_{\mathcal{H}}) - \mathcal{E}^{ls}(f_{\rho}) = \|f_{\mathcal{H}} - f_{\rho}\|_{L^{2}_{\rho_{X}}}^{2} = \inf_{f \in \mathcal{H}} \int (f(x) - f_{\rho}(x))^{2} d\rho_{X}$$
$$f_{\mathcal{H}} \approx f_{\rho} \text{ when } \mathcal{H} \text{ is rich}$$

Theorem 1 Let *B* be a Hilbert space (such as a Sobolev space or a reproducing kernel Hilbert space). If $B \subset L^2_{\rho_X}$ is dense and $\theta > 0$, then

$$\inf_{\|f\|_B \le R} \|f - f_\rho\|_{L^2_{\rho_X}} = O(R^{-\theta})$$

Close

if and only if f_{ρ} lies in the interpolation space $(B, L^2_{\rho_X})_{\frac{\theta}{1+\theta},\infty}$.

Back

Last

II.4. Examples of hypothesis spaces

Sobolv spaces: if $\mathcal{X} \subset \mathbb{R}^n$, ρ_X is the normalized Lebesgue measure, and B is the Sobolev space H^s with s > n/2, then $(H^s, L^2_{\rho_X})_{\substack{\theta \\ 1+\theta},\infty}$ is the Besov space $B_{2,\infty}^{\frac{\theta}{1+\theta}s}$ and $H^{\frac{\theta}{1+\theta}s} \subset B_{2,\infty}^{\frac{\theta}{1+\theta}s} \subset B_{2,\infty}^{\frac{\theta}{1+\theta}s} \subset H^{\frac{\theta}{1+\theta}s}$.

Range of power of integral operator: if $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a Mercer kernel (continuous, symmetric and positive semidefinite), then the integral operator L_K on $L^2_{\rho_X}$ is defined by

$$L_K(f)(x) = \int_{\mathcal{X}} K(x, y) f(y) d\rho_X(y), \qquad x \in \mathcal{X}.$$

The r-th power L_K^r is well defined for any $r \ge 0$. Its range $L_K^r(L_{\rho_X}^2)$ gives the RKHS $\mathcal{H}_K = L_K^{1/2}(L_{\rho_X}^2)$ and for $0 < r \le 1/2$, $L_K^r(L_{\rho_X}^2) \subset (\mathcal{H}_K, L_{\rho_X}^2)_{2r,\infty}$ and $(\mathcal{H}_K, L_{\rho_X}^2)_{2r,\infty} \subset L_K^{r-\epsilon}(L_{\rho_X}^2)$ for any $\epsilon > 0$ when the support of ρ_X is \mathcal{X} . So we may assume

$$f_{\rho} = L_K^r(g_{\rho})$$
 for some $r > 0, g_{\rho} \in L_{\rho_X}^2$.

II.5. Least squares regularization

$$f_{D,\lambda} := \arg \min_{f \in \mathcal{H}_K} \left\{ \frac{1}{N} \sum_{i=1}^N (f(x_i) - y_i)^2 + \lambda \|f\|_K^2 \right\}, \quad \lambda > 0.$$

A large literature in learning theory: books by Vapnik, Schölkopf-Smola, Wahba, Anthony-Bartlett, Shawe-Taylor-Cristianini, Steinwa Christmann, Cucker-Zhou, ...

many papers: Cucker-Smale, Zhang, De Vito-Caponnetto-Rosasco, Smale-Zhou, Lin-Zeng-Fang-Xu, Yao, Chen-Xu, Shi-Feng-Zhou, Wu-Ying-Zhou, ...

regularity of f_{ρ}

complexity of \mathcal{H}_K : covering numbers, decay of eigenvalues $\{\lambda_i\}$ of L_K , effective dimension, ...

decay of y: $|y| \leq M$, exponential decay, moment decaying condition, $\mathbb{E}[|y|^q] < \infty$ for some q > 2, $\sigma_{\rho}^2 \in L_{\rho_X}^p$ for the conditional variance $\sigma_{\rho}^2(x) = \int_{\mathcal{Y}} (y - f_{\rho}(x))^2 d\rho(y|x)$, ...

III. Distributed learning with regularization schemes

Join work with S. B. Lin and X. Guo (under major revision for JMLR)

Distributed learning with the data disjoint union $D = \bigcup_{j=1}^{m} D_j$:

$$\overline{f}_{D,\lambda} = \sum_{j=1}^{m} \frac{|D_j|}{|D|} f_{D_j,\lambda}$$

Define the effective dimension to measure the complexity of \mathcal{H}_K with respect to ρ_X as

$$\mathcal{N}(\lambda) = \operatorname{Tr}\left((L_K + \lambda I)^{-1}L_K\right) = \sum_i \frac{\lambda_i}{\lambda_i + \lambda}, \qquad \lambda > 0.$$

Back

Note that $\lambda_i = O(i^{-2\alpha})$ implies $\mathcal{N}(\lambda) = O(\lambda^{-\frac{1}{2\alpha}})$

Last

Next

Previous

First

Quit

Close

III.1. Error analysis for distributed learning

Theorem 2 Assume
$$|y| \leq M$$
 and $f_{\rho} = L_{K}^{r}(g_{\rho})$ for some $0 \leq r \leq \frac{1}{2}$ and $g_{\rho} \in \mathcal{H}_{K}$. If $\mathcal{N}(\lambda) = O(\lambda^{-\frac{1}{2\alpha}})$ for some $\alpha > 0$,
 $|D_{j}| = \frac{N}{m}$ for $j = 1, ..., m$, and $m \leq N^{\min\left\{\frac{12\alpha r+1}{5(4\alpha r+2\alpha+1)}, \frac{4\alpha r}{4\alpha r+2\alpha+1}\right\}}$,
then by taking $\lambda = N^{-\frac{2\alpha}{4\alpha r+1}}$, we have
 $E\left[\left\|\overline{f}_{D,\lambda} - f_{\rho}\right\|_{\rho}\right] = O\left(N^{-\frac{\alpha+2\alpha r}{2\alpha+4\alpha r+1}}\right)$.
If $f_{\rho} \in \mathcal{H}_{K}$ and $m \leq N^{\frac{1}{4+6\alpha}}$, the choice $\lambda = \left(\frac{m}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$ yields
 $E\left[\left\|\overline{f}_{D,\lambda} - f_{D,\lambda}\right\|_{\rho}\right] = O\left(N^{-\frac{\alpha}{2\alpha+1}m^{-\frac{1}{4\alpha+2}}}\right)$

and

$$E\left[\left\|\overline{f}_{D,\lambda} - f_{D,\lambda}\right\|_{K}\right] = O\left(\frac{1}{\sqrt{m}}\right).$$

III.2. Previous work: Zhang-Duchi-Wainwright (2015): If the normalized eigenfunctions $\{\varphi_i\}_i$ of L_K on $L^2_{\rho_X}$ satisfy

$$\|\varphi_i\|_{L^{2k}_{\rho_X}}^{2k} = E\left[|\varphi_i(x)|^{2k}\right] \le A^{2k}, \qquad i = 1, 2, \dots,$$

for some constants k > 2 and $A < \infty$, $f_{\rho} \in \mathcal{H}_{K}$ and $\lambda_{i} = O(i^{-2\alpha})$ for some $\alpha > 1/2$, then $E\left[\left\|\overline{f}_{D,\lambda} - f_{\rho}\right\|_{\rho}^{2}\right] = O\left(N^{-\frac{2\alpha}{2\alpha+1}}\right)$ when $\lambda = N^{\frac{2\alpha}{2\alpha+1}}$ and $m = O((N^{\frac{2(k-4)\alpha-k}{2\alpha+1}}/(A^{4k}\log^{k}N))^{\frac{1}{k-2}}).$

An example of a C^{∞} Mercer kernel without uniform boundedness of the eigenfunctions: Zhou (2002)

Advantages of our analysis:

(1) General results without any eigenfunction assumption

- (2) Error estimates in the \mathcal{H}_K metric (Smale-Zhou 2007)
- (3) A novel second order decomposition applicable to other algorithms

11

IV. Optimal rates for regularization: by-product

Caponnetto-DeVito (2007): If $\lambda_i \approx i^{-2\alpha}$ with some $\alpha > 1/2$, then with $\lambda = \left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$,

$$\lim_{\tau \to \infty} \limsup_{N \to \infty} \sup_{\rho} \operatorname{prob} \left[\left\| f_{D,\lambda_N} - f_{\rho} \right\|_{\rho}^2 \le \tau \left(\frac{\log N}{N} \right)^{\frac{2\alpha}{2\alpha+1}} \right] = 1.$$

Steinwart-Hush-Scovel (2009): If $\lambda_i = O(i^{-2\alpha})$ with some $\alpha > 1/2$, and for some constant C > 0, the pair (K, ρ_X) satisfies

$$\|f\|_{\infty} \le C \|f\|_{K}^{\frac{1}{2\alpha}} \|f\|_{\rho}^{1-\frac{1}{2\alpha}}, \qquad \forall f \in \mathcal{H}_{K},$$

then with $\lambda = N^{-\frac{2\alpha}{2\alpha+1}}$,

$$E\left[\left\|\pi_{M}\left(f_{D,\lambda}\right)-f_{\rho}\right\|_{\rho}^{2}\right]=O\left(N^{-\frac{2\alpha}{2\alpha+1}}\right).$$

12

Here π_M is the projection onto the interval [-M, M].

Our result:
$$E\left[\left\|f_{D,\lambda}-f_{\rho}\right\|_{\rho}\right] = O\left(N^{-\frac{\alpha}{2\alpha+1}}\right).$$

Theorem 3 Assume $E[y^2] < \infty$ and $\sigma_{\rho}^2 \in L_{\rho_X}^p$ for some $1 \le p \le \infty$. If $f_{\rho} = L_K^r(g_{\rho})$ for some $g_{\rho} \in L_{\rho_X}^2$ and $0 < r \le 1$, and $\mathcal{N}(\lambda) = O(\lambda^{-\frac{1}{2\alpha}})$ for some $\alpha > 0$, then by taking $\lambda = N^{-\frac{2\alpha}{2\alpha \max\{2r,1\}+1}}$ we have

$$E\left[\left\|f_{D,\lambda} - f_{\rho}\right\|_{\rho}\right] = O\left(N^{-\frac{2r\alpha}{2\alpha\max\{2r,1\}+1} + \frac{1}{2p}\frac{2\alpha-1}{2\alpha\max\{2r,1\}+1}}\right)$$

In particular, when $p = \infty$ (the conditional variances are uniformly bounded), we have

$$E\left[\left\|f_{D,\lambda}-f_{\rho}\right\|_{\rho}\right]=O\left(N^{-\frac{2r\alpha}{2\alpha\max\{2r,1\}+1}}\right).$$

Second order decomposition used to solve two conjecture on kernel partial least squares: S. B. Lin-Zhou

FirstPreviousNextLastBackCloseQuit13

V. Other distributed learning algorithms

Distributed learning with spectral algorithms based on SVD of Gramian matrices $(K(x_i, x_j))_{i,j=1}^N$: Z. C. Guo-S. B. Lin-Zhou

Distributed learning with stochastic gradient descent: S. B. Lin-Zhou

Distributed learning with additional unlabeled data: X. Y. Chang-S. B. Lin-Zhou

VI. Further topics with distributed learning and deep nets VI.1. Approximation theory of deep nets

Classical results on shallow nets (Cybenko 1989, Hornik 1991, Barron 1993, Mhaskar 1996): if σ is C^{∞} strictly increasing function satisfying $\lim_{x\to-\infty} \sigma(x) = 0$ and $\lim_{x\to\infty} \sigma(x) = 1$ (sigmoidal function), and if f is in the Sobolev space $W_2^r(\mathbb{R}^d)$, then for every $N \in \mathbb{N}$, there exists a function $f_N(x) = \sum_{i=1}^N c_i \sigma(w_i \cdot x + b_i)$ with $c_i \in \mathbb{R}, w_i \in \mathbb{R}^d, b_i \in \mathbb{R}$ such that

$$||f_N - f||^2_{L^2(\mathbb{R}^d)} = O(N^{-2r/d}).$$

Lack of localized approximation (Chui-Li-Mhaskar 1994): the neural network with the activation function $\sigma = \chi_{[0,\infty)}$ does not provide localized approximation meaning that for every compact subset K of \mathbb{R}^d ,

$$\inf_{N \in \mathbb{N}, c_i, w_i, b_i} \left\| \sum_{i=1}^N c_i \sigma(w_i \cdot x + b_i) - \chi_{[-1,1]^d} \right\|_{L^1(K)} = 0.$$

Approximation by deep nets

Neural network with 2 hidden layers:

$$f(x) = \sum_{i=1}^{n_2} c_i \sigma \left(\sum_{j=1}^{n_1} a_{i,j} \sigma \left(w_{i,j} \cdot x + b_{i,j} \right) \right) + c_0$$

with $c_i \in \mathbb{R}, a_{i,j} \in \mathbb{R}^d, b_{i,j} \in \mathbb{R}$.

Chui-Li-Mhaskar (1994): the neural network with with 2 hidden layers and an activation measurable function σ satisfying $\lim_{x\to-\infty} \sigma(x) = 0$, $\lim_{x\to\infty} \sigma(x) = 1$ and $\|\sigma\|_{\infty} < \frac{2d}{2d-1}$ provides localized approximation.

Eldan-Shamir (2016): an example of a function expressible by a 3-layer feedforward neural network cannot be approximated by any 2-layer neural network to certain accuracy unless the width is exponential in the dimension.

Telgarsky (2016): more examples

Neural network with 4 hidden layers: Shaham-Cloningen-Coifman (2016) For the rectify linear function $\sigma(x) = \max\{x, 0\}$, a depth-4 neural networks with N units can achieve the approximation order of $O(N^{-2/d})$ if f is C^2 on a smooth d-dimensional Riemannian manifold without boundary.

Robust and distributed learning with deep nets: Chui-Lin-Zhou (in progress)

VI.2. Stochastic gradient descent and mirror descent: Y. W. Lei-Zhou (Neural Computation 2016), Y. M. Ying-Zhou (ACHA 2016)

Learning with a mirror map $\Psi : \mathbb{R}^d \to \mathbb{R}$, a loss ϕ , and a convex regularizer r:

 $w_{t+1} = \arg \min_{w \in \mathbb{R}^d} \eta_t \langle w - w_t, \phi'_-(y_t, \langle w_t, x_t \rangle x_t \rangle + \eta_t r(w) + D_{\Psi}(w, w_t),$ where η_t is a step size and $D_{\Psi}(w, \tilde{w})$ is the Bregman distance between w and \tilde{w} .

Motivation: capture the geometry involving ℓ_p norms with $p \ge 1$ where $\Psi_p(x) = \frac{1}{2} ||x||_p^2$.

18

VI.3. Compositional models for deep nets

Additive models (Stone 1985): $f(x_1, \ldots, x_d) = f_1(x_1) + \ldots + f_d(x_d)$ M. Yuan-Zhou (Ann. Stat. 2016), Christmann-Zhou (Anal. Appl. 2016)

Interaction models (Stone 1994):

$$f(x_1, \dots, x_d) = \sum_{I \subseteq \{1, \dots, d\}, |I| = d^*} f_I(x_I)$$

 $\in \{1, \dots, d\}, and for I = \{i_1, \dots, i_{|I|}\} \subset \{1\}$

with $d^* \in \{1, \ldots, d\}$ and for $I = \{i_1, \ldots, i_{d^*}\} \subseteq \{1, \ldots, d\}$ with $|I| = d^*$, $x_I = (x_{i_1}, \ldots, x_{i_{d^*}})$.

Single index models and Projection pursuit (Härdle and Stoker 1989, Friedman and Stuetzle 1981): $f(x_1, \ldots, x_d) = \sum_{k=1}^{K} g_k(a_k \cdot x)$ with $K \in \mathbb{N}$, $a_k \in \mathbb{R}^d$ and univariate functions g_k

Hierarchical interaction models (Kohler1 and Krzyzak 2016): $f(x_1, \ldots, x_d) = g(f_1(x_{I_1}), f_2(x_{I_2}), \ldots, f_{d^*}(x_{I_{d^*}}) \text{ with } d^* \in \{1, \ldots, d\}$ and $I_i \subseteq \{1, \ldots, d\}$ with $|I_i| = d^*$

Compositional functions: Mhaskar-Liao-Poggio, Mhaskar-Poggio (2016)

THANK YOU!

