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Introduction



Example

tensor = multidimensional array

vector matrix tensor

Ve R64 X c RSXS X e [R4x4x4



Application: Moment and Cumulant Tensors

Let x be a random vector of dimension n with components x;. lts
moment and cumulant tensors of order m as

M(X) = [y ip, e im]  WIth gy iy = E{Xi X+ ++ X }
and

C(x) = [Ci iy il With  Cip iy = Cum{ X X, -+ - X, }

sIm

(3rd order: skewness and 4th order: kurtosis)



Application: Background and Foreground Separation in
Video (spatial dimensions + time)

-
m 114 1414




Application: Recognition (spatial dimensions + time)




Application: Color Images Completion and Denoising
(spatial dimensions + RGB)

Original (PSNR, SSIM) Naisy Image RPCA (1788, 0.3928)  BM3D (1741,03393)  TRPCA (2560, 0.1192)

RMC (403, 063800 SNN(2347,07399)  BM3D+ (23.60,06279)  BM3D++ (26,18, 0.6668)  RTC (2839, 0.83%3)



Application: Hyperspectral Images Completion and
Denoising (spatial dimensions + frequencies)




Application: Adjacency and Laplacian Tensors

As a generalization of a graph, a uniform hypergraph G = (V, E)

with V' ={1,2,---  n} the vertex set and E = {e1, e, - ,em}
the edge set, is defined to satisfy that |e,| = k for any e, C V,
p=2,---,mand k > 2. Such a uniform hypergraph is also called

a k-graph. If k =2, G is exactly an ordinary graph.

Given a k-graph G, its adjacency tensor A (LA(G)) of G, is a k-th
order n-dimensional symmetric tensor, defined as A = [aj, j,.... i,
where aj, j, .. i = ﬁ if (i, h2,--+ ,im) € E, and 0 otherwise.

)

For i € V, its degree d(i) is defined as d(i) = |{e; : i € e, € E}|.
The degree tensor D of G is a k-th order n-dimensional tensor:
di .. i =d(i). The Laplacian tensor is defined D — A.



Multiple Relations Tensor

» Tensor can be used to describe the multiple relationships
between objects. A tensor is a multidimensional array. Here a
three-way array (third-order tensor) is used:

O (o)} On O1 (o)) Op
O; | a11,1 | a121 | ~-+ | a1,n1 O1 | a112 | a122 | -+ | ai,n2
O | a21,1 | a221 | ©-+ | @201 O | a1 | a2 | -+ | @202
On | an1,1 | an21 | =+ | annt On | an12 | an22 | ~-+ | ann2
O1 (0} On
O | a11p | @12p | *+- | 31np
O> | @1,p | @2p | *+- | Bnp
On | anip | an2p | - an,n,p

> p relationships among n objects



Application: Information Retrieval

» Web information retrieval is significantly more challenging
than that based on web hyperlink structure

» One main difference is the multiple links based on the other
features (text, images, etc)

» Example: 100,000 webpages from .GOV Web collection in
2002 TREC and 50 topic distillation topics in TREC 2003
Web track as queries

» Multiple links among webpages via different anchor texts

» 39,255 anchor terms (multiple relations), and 479,122 links
with these anchor terms among the 100,000 webpages



Application: Networks

» In a social network where objects are connected via multiple
relations, via sharing, comments, stories, photos, tags,
keywords, topics, etc

» In a publication network where the interactions among items
in three entities: author, keyword and paper

author <n|v('t'p>
] |
/
< e e
L» \\\\\\\\\ m] ( paper ) ( paper ) pae: paper
~ N / N 4

» A tensor: the interactions among items in three
dimensions/entities: author, keyword and paper; A matrix:
the interactions between items in two dimensions/entities:
concept and paper



Tensor Decomposition
CANDECOMP /PARAFAC Decomposition:
x=> Nalg--@am
i=1

The minimal value of r is called the rank of A.

ay ap ap

Fig. 3.1 CP decomposition of a three-way array.



Tensor Decomposition
Tucker Decomposition:

X=GxA;1 xAr--- xAp

n m
X = E Tt E gilyfz,“',imaml ®---®am’
h=1  im=1
It can be obtained by using singular value decomposition to each

unfolded matrix X,~j from X. The Tucker rank is
(rank(X1), rank(Xz), -+ ,rank(Xm)) = (rn, r2, -+ rm)-

=
N
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Low Rank Tensor Recovery



Low-dimensional Structure

Data in many real applications exhibit low-dimensional structures
due to local regularities, global symmetries, repetitive patterns,

redundant sampling, ... (low-dimensional structure — low-rank

data matrices) -




Example

Customer/Item | | | Il [ Il [ IV
A 51117 |7
B 7121317
C P71 42
D 1?27?77

For example (Netflix Challenge 2009), it is about 0.5 million users
and about 18,000 movies

Matrix Completion

m)én rank(X) subject to Pq(X) = Pq(M)



Example

Matrix RPCA
mxin rank(X) + A||[E|lp subject to X+ E=M



Example

Robust Matrix Completion

mxin rank(X) + A||[E|lo subject to Pq(X + E) = Pqo(M)



Low Rank Matrix Recovery

» Matrix Completion
mxin rank(X) subject to Pq(X) = Pq(M)
» Matrix RPCA

m)én rank(X) + A||[E[jo subject to M =X+E

» Robust Matrix Completion

m)én rank(X) + A||[E|jo  subject to Pq(M) = Pq(X + E)



Low Rank Matrix Recovery

> Matrix Completion
m)én |X][« subject to Pq(X) = Pq(M)
> Matrix RPCA
mxin IIX]|« + A||E||1 subject to M =X+E
» Robust Matrix Completion

mxin |IX|[« + A[E|]|1 subject to Pq(M) = Pqo(X + E)

Nuclear norm || - ||«: sum of singular values (convex envelop of
rank)



Low Rank Matrix Recovery Results

v

(RPCA) Candes, E. J., Li, X., Ma, Y., and Wright, J. Journal
of the ACM, 58(3):173, 2011,

(Matrix Completion) Recht, B. Journal of Machine Learning
Research, 12(4):34133430, 2011.

(Matrix Completion) Chen, Y. IEEE Transactions on
Information Theory, 61(5):29092923, 2013.

> many papers ...

v

v



Low Rank Tensor Recovery

Data are usually in multi-dimensional array.

Mode 1 (spatial column)
Mode 1 (spatial column)

Mode 2 (spatial row) Mode 2 (spatial row)

“Vectorization” probably break the inherent structures and
correlations in the original data.



Low Rank Tensor Recovery

» Tensor Completion
m)in rank(X') subject to Pq(X) = Pq(M)
» Tensor Robust PCA

m)in rank(X) + A||€]jo subject to M=X+E

» Robust Tensor Completion

m/r\i?n rank(X) + A||€]lo0  subject to  Pq(M) = Pq(X + &)



Low Rank Tensor Recovery

» CP decomposition/rank cannot be computed efficiently
» Matrix rank can be replaced by matrix nuclear norm (the sum
of singular values), it is a convex envelope

» Replace Tucker rank by the sum of nuclear norms of unfolding
tensors, interdependent matrix trace norm is involved

» The use of the sum of nuclear norms of unfolding matrices of
a tensor may be challenged since it is suboptimall

» The tensor trace norm (the average of trace norms of
unfolding matrices) is not a tight convex relaxation of the
tensor rank (the average rank of unfolding matrices) 2

1C. My, B. Huang, J. Wright, and D. Goldfarb. Square deal: Lower bounds
and improved relaxations for tensor recovery. In ICML, pages 7381, 2014.

2B. Romera-Paredes and M. Pontil. A new convex relaxation for tensor
completion. In Adv. Neural Inf. Process. Syst., pages 29672975, 2013.



t-SVD



t-SVD Decomposition

A third-order tensor of size ny X n» X n3 can be viewed as an

n1 X np matrix of tubes which lie in the third-dimension. [Kilmer,

M. E. and Martin, C. D. Linear Algebra & Its Applications,
435(3):641658, 2011]
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t-SVD Decomposition

Definition: The t-product A x B of A € R™M*™*"s and
B € Rm™*mxm is 3 tensor C € RM*™*Ms whose (/, j)th tube is
given by

(i) ZA ) Bk, j, ),

where * denotes the circular convolution between two tubes of
same size.

The tube at (/, k) position in A convolutes with the tube at (k,;)
position in B. Both have sizes n3. Put all the correlations at (i, )
position in C.

The multiplication of between the scalars is replaced by circular
convolution between the tubes.



t-SVD Decomposition

Definition: The identity tensor Z € R"*"*" is defined to be a
tensor whose first frontal slice Z(1) is the n x n identity matrix and
whose other frontal slices ZU),j = 2, ..., n3 are zero matrices.

Definition: The conjugate transpose of a tensor A € RM>*M™%M jg
the tensor A" € R™*Mxns ohtained by conjugate transposing
each of the frontal slice and then reversing the order of transposed
frontal slices 2 through ns, i.e.,

()" = (a0)",

(AH)(i) - (A<"3+2—">)H, i=2.... .



t-SVD Decomposition

Definition: A tensor @ € R"*"*M is orthogonal if it satisfies
Q"xQ0=0x0"=1,

where 7 is the identity tensor of size n X n X n3.

Definition: A tensor A is called f-diagonal if each frontal slice A()
is a diagonal matrix.



t-SVD Decomposition
For A € RMm*mXm  the t-SVD of A is given by
A=UxS*VH,

where U € RM*M*M and Y € RM™*M*M gre orthogonal tensors,
and § € RM*Mxns s 3 f-diagonal tensor, respectively. The entries

in S are called the singular tubes of A.
/’I n,
|
i n'g
|
I
! n




t-SVD Decomposition

The tensor tubal-rank, denoted as rank:(.A), is defined as the

number of nonzero singular tubes of S, where S comes from the
t-SVD of A4, i.e.,

rank:(A) = #{i : S(i,i,:) # 0}.

It can be shown that it is equal to max; rank(fl(")) where A0) is
the i-th slice of A and A represents a third-order tensor obtained
by taking the Discrete Fourier Transform (DFT) of all the tubes

along the third dimension of A.

Example of t-SVD Decomposition



Original Images

(a) 20st (b) 60st (c) 100st (d) 140st

Original images with different bands for the Samson hyperspectral data.



Tubal Rank 1

(a) 20st (b) 60st (c) 100st (d) 140st

Original images with different bands for the Samson hyperspectral data.

FET

(a) 20st (b) 60st (c) 100st (d) 140st

The U + &  VH by using 1st tube in & and the corresponding 1st ¢ and V¥ components
for the Samson hyperspectral data.



Tubal Rank 5

(a) 20st (b) 60st (c) 100st (d) 140st

Original images with different bands for the Samson hyperspectral data.

L

(a) 20st (b) 60st (c) 100st (d) 140st

Figure 0.3: The U % S « VH by using 3st tube in S and the corresponding Sst I and V¥ components
for the Samson hyperspectral data.



Tubal Rank 10

(a) 20st (b) 60st (c) 100st (d) 140st

Original images with different bands for the Samson hyperspectral data.
.|

(a) 20st (b) 60st (c) 100st (d) 140st

The U 8 « VH by using 10st tube in S and the corresponding 10st I and V¥ components
for the Samson hyperspectral data.



Tubal Rank 20

(a) 20st (b) 60st (c) 100st (d) 140st

Original images with different bands for the Samson hyperspectral data.

(a) 20st (b) 60st (c) 100st (d) 140st

The U # S + VH by using 20st tube in S and the corresponding 20st I and V¥ components
for the Samson hyperspectral data.



Tubal Rank 40

(a) 20st (b) 60st (c) 100st (d) 140st

Original images with different bands for the Samson hyperspectral data.

A
| | R

(a) 20st (b) 60st (c) 100st (d) 140st

Figure 0.6: The U S V¥ by using 40st tube in S and the corresponding 40st I and V¥ components
for the Samson hyperspectral data.



Low Tubal Rank Tensor Recovery

» Tensor Completion
m)in rank(X') subject to Pq(X) = Pq(M)
» Tensor Robust PCA

m)in rank(X) + A||€]jo subject to M=X+E

» Robust Tensor Completion

m/r\i?n rank(X) + A||€]lo0  subject to  Pq(M) = Pq(X + &)



TNN

Definition: The tubal nuclear norm of a tensor A € RM*M2Xxn3
denoted as || A||tnn, is the nuclear norm of all the frontal slices of

A.

Theorem
For any tensor X € C™*"*™ || X|ltnN is the convex envelope of
the function 37, rank(A")) on the set {X | ||X| < 1}.



Low Tubal Rank Tensor Recovery (Relaxation)

» Tensor Completion
m}én |X[[Tan subject to  Pq(X) = Pq(M)
» Tensor Robust PCA
m)in X Tnn + A€l subject to M =X+ &
» Robust Tensor Completion
m)én 1 X]Tan + AllE]l1 subject to  Po(M) = Po(X + &)

Can we recover low-tubal-rank tensor from partial and grossly
corrupted observations exactly ?



Tensor Incoherence Conditions

Assume that rank:(Lo) = r and its t-SVD Lo =U * S+ V. Ly is
said to satisfy the tensor incoherence conditions with parameter
w>0if
- r
max UM x &l < /L,
=1, .m n

r
_max Vgl </
J=1,,m no
and (joint incoherence condition)

ur
n1n2n3'

U = Vo <



Tensor Incoherence Conditions

The column basis, denoted as &, is a tensor of size n; X 1 X n3
with its (7,1, 1)th entry equaling to 1 and the rest equaling to 0.
The tube basis, denoted as @, is a tensor of size 1 x 1 X n3 with
its (1,1, k)th entry equaling to 1 and the rest equaling to 0.

ng3

n3
T Ug!

it
N)
yel
Q



Low Rank Tensor Recovery

Theorem

Suppose Ly € RM*mXM3 opeys tensor incoherence conditions, and
the observation set ) is uniformly distributed among all sets of
cardinality m = pninan3. Also suppose that each observed entry is
independently corrupted with probability ~v. Then, there exist
universal constants c1, cp > 0 such that with probability at least

1 — c1(n(1yn3) =2, the recovery of Lo with A\ =1/, /ph1)m3 is
exact, provided that

Cr n(2)

r<—> ——  and <c
p(log(n1yns))? T=9

where ¢, and ¢, are two positive constants.

nay = max{ny, n2} and ne) = min{ny, n2}



Low Rank Tensor Recovery

Theorem
(Tensor Completion): Suppose Ly € R™*™XM obeys tensor
incoherence conditions, and m entries of Lo are observed with
locations sampled uniformly at random, then there exist universal
constants ¢y, c1, ¢ > 0 such that if
2

m > copurn(yynz(log(n(1ynz))”,
Lo Is the unique minimizer to the convex optimization problem
with probability at east 1 — c1(n(yn3)~ .



Low Rank Tensor Recovery

Theorem

(Tensor Robust PCA): Suppose Lo € R™M*™XM opeys tensor
incoherence conditions and joint incoherence condition and & has
support uniformly distributed with probability v. Then, there exist
universal constants ci, cp > 0 such that with probability at least

1 — a(nayn3)~2, (Lo, &o) is the unique minimizer to the convex
optimization problem with A =1/, /a)n3, provided that

<)

r< —2 _  and <c
= Ji(log(n(1)n3))? T=9

where c, and c, are two positive constants.



Convex Optimization Problem
Input: X, Q and A
Initialize: £0=£0=)°=0, p=1.1, 4° = le-4, fimax = 1e8.
» WHILE not converged
1. Update £K*1 by

K
min |]|rw + 5|2+ £ - & + *H
2. Update Pq(EKt1) b
K
. Br k+1 S H
min APa(E)[l1 + 5 HPQ(S-i-E - X+ )

3. Update Pqc(EKTY) by Poe(EFH1) = Pqe(X — £k+1 — VK /uk;
4. Update the multipliers Y*+1 by
yk+1 — yk + Mk(£k+1 + gk+1 _ X);
5. Update p*** by "+t = min(pp*, fimax);
6. Check the convergence condition

» ENDWHILE
Output: £



Phase Transition

(a)p=0.95

0.5
0.4
— 0.3
0.2
0.1

0.1 0.2 03 04 05
7n

(c)p=0.65

—

0.1 02 03 04 05
n

(b)p =08
0.5
0.4

0.2
0.1

01 02 03 04 05
rn

(d)p=0.5

01 02 03 04 05
rn

p (data observation) and ~ (data corruption)



Application: Completion and Denoising

Original (PSNR, 55IM)

Noisy Image RPCA (18.62,03935)  BM3D (1643, 0.3366)  TRPCA (2112, 0.3250)

RMC (2331, 0.7048)

SNN (2691, 0.7898)  BM3D-+ (27.94,0.7163) - BM3D++ (28,62, 0.7440)

RTC (30,98, 0.9044)
p = 70% (data observation) and v = 30% (data corruption)_




Application: Completion and Denoising

Original (PSNR, SSIM) Noisy Image RPCA (I7.85,03928)  BM3D (1741,05395)  TRPCA (25.60, 0.7192)

RMC (2403, 06380) SN (2347,07399)  BM3D+ (23,60, 0.6279)  BM3D++ (26.18, 0.6668)  RTC (28.39, 0.8393)

p = 70% (data observation) and v = 30% (data corruption)



Application: Completion

and Denoising

p=90% p=T0%

Method 7=10% y=20% v=30% y=10% y=20% y=30%
PSNR  SSIM | PSNR  SSIM | PSNR  SSIM | PSNR  SSIM | PSNR  SSIM | PSNR  SSIM
RPCA | 2767 08535 27.30 0.8367 | 2688 0.8122 | 21.60 05600 | 20.62 04744 | 19.64 04081
BM3D | 2542 07766 | 2499 0.7649 | 2459 07559 | 17.80 0.5793 | 1767 05740 | 1755 0.5690
TRPCA | 3140 09370 | 30.51 09153 | 2063 0.8851 | 23.82 0.6763 | 22.52 05810 | 21.31 04979
RMC | 2811 0.8552 | 27.82 0.8423 | 27.53 08276 | 2633 07865 | 2609 07736 | 2584 0.759
SNN | 3043 09128 | 29.60 0.8972 | 29.11 0.8797 | 2774 0.8426 | 2735 08248 | 2697 0.8063
BM3D+ | 3072 08289 | 30.51 08245 | 3028 0.8203 | 2975 0.8060 | 2945 07993 | 29.18 07933
BM3D++ | 3094 0.8338 | 30.74 0.8297 | 3052 0.8257 | 3042 0.8221 | 30.10 08152 | 29.82 0.8093
RTC | 3303 09566 | 3210 09400 | 31.27 0.9185 | 3030  0.9296 | 30.58 0.9001 | 2091 0.8831

For RPCA and RMC, we apply them on each channel with A = l/ﬁ;

For SNN, unfolding with three parameters suggested in the literature; For

TRPCA, \ = 1/W; For BM3D, standard denoising method using
nonlocal information; For BM3D-+, two-step method with BM3D and
image completion using HaLRTC (tensor unfolding to matrix); For

BM3D-++, two-step method with BM3D and image completion using

TNMM.




Video Background Modeling

Background: Low-Tubal-Rank Component and Moving Objects:
Sparse Component

Bootstrap (Resolution: 120 > 140)

Method
e RPCA RMC SNN TRPCA RTC
1009 0.7190 0.7190 0.6849 0. 7548 D.7548
BO% 0.6783 0.7084 0.6417 0. 7441 0.7529
50% NA 0.6869 0.4081 NA 0.7476
20% NA 0.5492 NA NA 0.7208
Hall (Resolution: 144 = 176)
Method
P RPCA RAMMC SNN TRPCA RTC
1009 0.6296 0.6296 0.5539 0.6345 D.6345
BO% 0.5697 0.6247 0.5516 0.4495 6340
50% NA 0.6110 0.4720 NA 06218
20% NA 0.5650 NA INA N.6158
Shopping Mall (Resolution: 256 < 320)
Method
£ RPCA REMC SNN TREPCA RTC
100% 0. 7466 0.7466 0.7361 0.7708 0.7708
BO% 0.7424 0.7422 0.7036 0.7559 0.7675
50% NA 0.7353 0.4770 NA 07614
20% NA 0.7176 NA NA 0.7496




Video Background Modeling

q R

Original Input



Traffic Data Estimation

» Traffic flow data such as traffic volumes, occupancy rats and
flow speeds are usually contaminated by missing values and
outliers due to the hardware or software malfunctions.

» Performance Measurement System (PeMS) pems.dot.ca.gov

» Third-order tensor (day) x (time) x (week) of traffic volume



Traffic Data Estimation

Lane 1 Lane 2
7 — 60 —
== WTucker =8=W\Tucker
60 =a=\\CP 50 =B=\CP
=4 HalRTC —4—HalRTC
> =T g —y-ThM
0 4 ~%=RTC 0 =h=RTC
2 23
id id
2
10

01 02 03 04 05 01 02 03 04 05



The Correction Model



The Corrected Model

Issue: The nuclear norm minimization of a matrix may be
challenged under general sampling distribution. Salakhutdinov et
al.3 showed that when certain rows and/or columns were sampled
with high probability, the matrix nuclear norm minimization may
fail in the sense that the number of observations required for
recovery was much more than the setting of most matrix
completion problems.

Miao et al. proposed a rank-corrected model for low-rank matrix
recovery with fixed basis coefficients*.

3R. Salakhutdinov and N. Srebro. Collaborative filtering in a non-uniform
world: Learning with the weighted trace norm. In Adv. Neural Inform. Process.
Syst., pages 20562064, 2010.

*W. Miao, S. Pan, and D. Sun. A rank-corrected procedure for matrix
completion with fixed basis coefficients. Math. Program., 159(1):289338, 2016.



The Corrected Method

For any given index set
Qc{1,2,....m} x{1,2,...,m} x {1,2,...,n3}, we define the
sampling operator Dgq : RMm*mxns _y RIQ by

Da(X) = ((Eijks X)) i wyeas
where |Q| denotes the number of entries in Q.

Let Xy € R™M*MmXM3 he an unknown true tensor. The observed
model can be described in the following form:

y = Dq(Ao) + o¢,

where y = (y1,y2,...,¥Ym)’ € R™and ¢ = (¢1,€2,...,6m)’ € R™
are the observation vector and the noise vector, respectively, €; are
the independent and identically distributed (i.i.d.) noises with
E(e;) = 0 and E(¢?) = 1, and o > 0 controls the magnitude of
noise.



The Corrected Method

Assumption: Each entry is sampled with positive probability, i.e.,
there exists a positive constant k1 > 1 such that

Pijk =2 ————.
K1nM1NonN3
It implies

n n3

n
1
SV Y

i=1 j=1 k=1



The Corrected Method

In the matrix case, the nuclear norm penalization may fail when
some columns or rows are sampled with very high probability. In
the third-order tensor, we also need to avoid this case that each

fiber is sampled with very high probability. Let
ny n n3
Rjx = Zpijk, Cik = ZPijk, T = Zpijk,
i=1 j=1 k=1

Assumption: There exists a positive constant ko > 1 such that
K2

ax{ Ry, Cix, Tjj} < ————.
ranZ({ o Cirr Tigh < min{ny, na, n3}



The Corrected Method

1 »
min 5 ly = Da(2)|2 + (11Xl 7 — (F(Xm), X))
st || X]|eo <

where the spectral function F : R™M*mXM _ RMXMmXN3 jg given as
follows: F(Xp) :=U x X + V¥, associated with

o~/

PEES ifft(/\//\l, [1,3) with M) = f£(50y.= Diag(f(diag(g(i))>),

f is defined by

fi(x) = { ¢(H Xn’;o)» if x #0,

X
0, otherwise,
and the scalar function ¢ : R — R, is defined by

2|
|Z‘T + ET'

Hz) = (1+¢7)



The Corrected Method

» The correction function F is used to get a lower tubal rank
solution.

» For the small singular values of the frontal slices in the Fourier
domain, we would like to penalize more in the correction
procedure. Then these small singular values will approximate
to zero in the next correction procedure. In this case, the
model can generate a lower tubal rank solution by the
correction method.



The Corrected Method

Theorem

Suppose the two assumptions hold. Let T > 1 be given. Then, for

m > i3 log3(nyn3 + nyn3) /Ko, there exists constants C,Cy > 0
such that

|1 X — XOH%_- < nlngn%ﬁ;z log((n1 + n2)n3)

ninan3 - mn
V2 2
(32C12 (—r + am) 0% +
T
~ v/ 2
4096 C c? (M) )
T—1
with probability at least 1 — ——2—, where

n+na+n3’

am = Uy * VI — F(Xn)l|F.

Here U, ]71T are the associated orthogonal tensors in t-SVD of Ajp.



The Symmetric Gauss-Seidel Multi-Block ADMM

Let U(X) := {X]||X|loc < c}. By introducing z=y — Dq(X) and
X = &S, the model is given by

min 5122+ (1|7 — (F(m), ) ) + 64(S)
s.t. z=y—Dq(X), X =S8.

Since the TNN is the dual norm of the tensor spectral norm, its
Lagrangian dual is given as follows:

max  —Z[ul? + (uy) — 55(-W)

)

st [[F(Xm) + Dip(u) + W] < .



The Symmetric Gauss-Seidel Multi-Block ADMM

Let 2 = uF(X) — D) + W and X(X) := {X]|1X] < .
il = () + FW) +dx(2)
s.t. Z = pF(Xm) +D5(u) +W.
The augmented Lagrangian function is defined by
m
LW, 2,8) = a2 = {u,y) + G(-W) + 6x(2)
<XZ 1F(Xm) — Do(u) = W)
+0112 — wF () ~ D) ~ W,

where 3 > 0 is the penalty parameter and X is the Lagrangian
multiplier.



The Symmetric Gauss-Seidel Multi-Block ADMM

The iteration system of sGS-ADMM is described as follows:
ukts — arg muin {L(u,Wk,Zk, Xk)},
WKL = arg rr;\i/n {L(u“%,W, zk, Xk)},
uktl = arg muin {L(u,WkH,Zk,Xk)},
Zkl = arg mzln {L(ukH,WkH,Z,Xk)},
kL — yk _ 7ﬁ(gkﬂ (X)) — D (uk ) — Wk+1>7

where v € (0, (1 4 1/5)/2) is the step-length.



The Symmetric Gauss-Seidel Multi-Block ADMM

The optimal solution with respect to u is given explicitly by

u= mj_ﬂ(y—’}DQ(X—l—B(,uF(Xm)—l—W—Z))).

The optimal solution with respect to W is given explicitly by
1
WA= Proxy (%X’( + UF(X) + D (ukt2) - 2¥)
- - (%xk +F (Xp) + D (ukr3) — zk)

+5Proxgs, (B(%X" + pF (Xm) + D(uktz) — Zk)).



The Symmetric Gauss-Seidel Multi-Block ADMM

For the subproblem with respect to Z, it is a projection onto X,
which has a closed-form solution.

Theorem
Forany Y € RM*mXm gnd p >0, let Y =U xS * VH be the
t-SVD. Then the optimal solution X* of the following problem

min {|X = VIE 1X] < p}

X cRM XmXn3

is given by
X*=UxS, V",

where S, = ifft(min{S, p}, ], 3).



The Symmetric Gauss-Seidel Multi-Block ADMM

The optimal solution with respect to Z in (1) is given by

2~ Prox, (MF(X,,,) + DL (uk Ty 4 Wk %xkﬂ)

— ukJrl % S}/;Jrl % (VkJrl)T,

where SKH1 = ifft(min{Sk+1, u},[],3) and

pF (X)) — D5 (u 1) + Wk 4 ;Xk"‘l Ly SKHLy (PRHT)T



The Symmetric Gauss-Seidel Multi-Block ADMM

Theorem
The optimal solution set is nonempty and compact.

Only two blocks with respect to W, Z are nonsmooth and other
blocks are quadratic.

Theorem

Suppose that 3 > 0 and v € (0, (1 ++/5)/2). Let the sequence
{(Wk, uk, Zk Xk)} be generated by the algorithm. Then
{(Wk,uk, ZK)} converges to an optimal solution and {X*}
converges to an optimal solution of the dual problem.



Numerical Examples

Table: Relative errors of the TNN and CTNN with different tensors,
tubal ranks, and sampling ratios for low-rank tensor recovery.

| Tensor [ r ] o [ SR | TNN _CINN-I__CINN-2 _CINN3 |
0.15 | 512e1  357el  10lel  4.00e2
30 x 40 x 50 2 | 01 | 020 | 230el  1.63e2  133e2 1332

0.30 1.69e-2 1.0le-2 1.01e-2 1.01e-2
0.20 5.46e-1 4.58e-1 3.82e-1 3.07e-1
30 x 40 x 50 3 0.01 0.25 3.19%-1 1.51e-2 1.29e-3 1.26e-3
0.30 8.61e-2 1.08e-3 1.04e-3 1.04e-3
0.15 5.17e-1 3.70e-1 2.12e-1 2.83e-2
50 x 50 x 50 4 0.01 0.20 2.29%-1 1.31e-3 1.08e-3 1.08e-3
0.25 2.31e-3 9.03e-4 9.03e-4 9.03e-4
0.10 3.73e-1 1.44e-2 5.96e-3 5.96e-3
100 x 100 x 50 3 0.05 0.15 1.08e-2 4.45e-3 4.45e-3 4.45e-3
0.20 6.04e-3 3.93e-3 3.93e-3 3.93e-3
0.15 5.37e-1 3.88e-1 2.38e-1 5.79e-2
100 x 100 x 50 6 0.01 0.20 2.41e-1 1.36e-3 1.13e-3 1.13e-3
0.25 2.36e-3 9.68e-4 9.68e-4 9.68e-4
0.10 5.98e-1 4.75e-1 3.63e-1 2.3be-1
100 x 100 x 100 4 0.1 0.15 1.73e-1 6.41e-3 5.83e-3 5.83e-3
0.20 1.05e-2 4.92e-3 4.92e-3 4.92e-3
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Other t-SVDs



Revisit t-SVD
We use X' € C™>mMxms 4 represent the discrete Fourier
transform of X' € C™>™XM3 jlong each tube, i.e.,
X = fft(X,[],3). The block circulant matrix is defined as

x (1) x(ms) ... x(2)

x(2) x(1) .o x3)
bcirc(X) :=

X(m) x(m-1) ... x(O)

The block diagonal matrix and the corresponding inverse operator
are defined as

x (1)
x(2)
bdiag(X) := _ ,
X(m3)

unbdiag(bdiag(X)) = X.



Revisit t-SVD

Theorem

bdiag(X) = (Fm, @ lm,)bcirc(X)(FH. @ Im,),

where ® denotes the Kronecker product, F,, is an m3 x ms DFT
matrix and |, is an m X m identity matrix.



Revisit t-SVD

The unfold and fold operators in t-SVD are defined as

x (1)
x(2)
unfold(X) := _ , fold(unfold(X)) = X.

X(;"3)

Given X € CMxmXms gpd ) € CM2XMaxMs the t-product X * )
is a third-order tensor of size m; X mg X m3

Z = X %) := fold(bcirc(X )unfold())).

Since the corresponding block circulant matrices can be
diagonalized by DFT, the DFT based t-SVD can be efficiently
implemented via fast Fourier transform (fft).



Cosine-Transform based t-SVD

The first work is given by E. Kernfeld, M. Kilmer and S. Aeron,
Tensor tensor products with invertible linear transforms, LAA, Vol
485, pp. 545-570 (2015).

A1)
A2)
We define the shift of tensor A = fold , as
A(.m?,)
- AQ) T
AB)
o(A) = fold :
Alm3)
| 0 |

Any tensor X' can be uniquely divided into A + o(A).



Cosine-Transform based t-SVD

We use A:’ € RMxmXms tq represent the DCT along each tube of
X, ie, X =dct(X,[],3) = det(A+ o(A),[],3). We define the
block Toeplitz matrix of A as

A(m.gfl) A(m.372)
Alm)  A(m3—1)

The block Hankel matrix is defined as

bh(.A) :

T A2 AB)
A AM)
Am) 0

. 0 Alm)

Alms—1)  p(m3)
Alm=2)  p(m3—1)
AL A
A2 A1)
Alm) 0 ]
0 Alm)

AD A
ABG A |




Cosine-Transform based t-SVD

The block Toeplitz-plus-Hankel matrix of A is defined as
btph(.A) := bt(A) + bh(A).
The block Toeplitz-plus-Hankel matrix can be diagonalized.

Theorem

bdiag(X) = (Cpmy @ lm, ) btph(A)(CL. @ Im,),

where ® denotes the Kronecker product, C,,, is an m3 x mz DCT
matrix.



Cosine-Transform based t-SVD

Definition: Given X € C™*MXmM3 gnd ) ¢ CMXMxXm3  the
t-product X’ * ) is a third-order tensor of size m; X myg X m3

Z = X x ) := fold(btph(.A)unfold(})),

where X = A+ o(A).



Cosine-Transform based t-SVD

Theorem
Given a tensor X € R™M*mM2xm3 the DCT-pased t-SVD of X is
given by
X =U xget S gt V7,
where U € RM>Mxm3 ) ¢ RMXMXM3 gre orthogonal tensors,

S € RmxmXms js 5 f.djagonal tensor, and VH is the tensor
transpose of V.



Cosine-Transform based t-SVD

Table: The time cost of t-SVD and DCT-based t-SVD on the random
tensors of different size.

size 100*100%¥100  100¥100%400  200*200*100  400*400*100
FFT 0.0041 0.0175 0.0176 0.0653
SVD after FFT 0.0818 0.3250 0.3641 1.9015
original t-SVD 0.0859 0.3425 0.3817 1.9668
DCT 0.0042 0.0150 0.0162 0.0601
SVD after DCT 0.0439 0.1649 0.1978 0.8922
new t-SVD 0.0481 0.1799 0.2140 0.9523




Video Examples




Table: PSNR, SSIM, and time of two methods in video completion. In
brackets, they are the time required for transformation and time required
for performing SVD. The best results are highlighted in bold.

video akiyo suzie salesman
SR metric | TNN-F  TNN-C | TNN-F  TNN-C | TNN-F  TNN-C
PSNR 32.00 32.57 25.50 26.02 30.12 30.22
SSIM 0.934 0.941 0.681 0.700 0.895 0.897

005 Hime | 1562  91.9 606  40.1 | 1485  85.6
PSNR | 3420 3475 | 2773 27.03 | 3213  32.20

g SSIM | 0958 0963 | 0750 0766 | 0928  0.931
1 Yime | 1418  86.3 645 3903 | 1395  84.9
PSNR | 3744 38.11 | 3029 3051 | 3501 3520

0p SSIM | 0079 0983 | 083 0844 | 0960  0.961

time 145.2 79.8 62.5 37.2 135.1 81.3




Video Examples

Ay S

PSNA

150
Frame rumber

Suzie SA=0.1

PSNR

Frame number
o1

Salesman SF
T

Frame numbar



Transform-based t-SVD

Fourier-Transform based t-SVD
Z = X # Y = fold(bcirc(X)unfold(}))

The DFT based t-SVD can be efficiently implemented via fast
Fourier transform (fft).

Cosine-Transform based t-SVD
Z = X x4t Y = fold(btph(A)unfold()))

The DCT based t-SVD can be efficiently implemented via fast
cosine transform (dct).



Transform-based t-SVD

Fourier-Transform based t-SVD

Z = X # Y = fft |fold(blockdiag(Xs) x blockdiag( Yz))

The DFT based t-SVD can be efficiently implemented via fast
Fourier transform (fft).

Cosine-Transform based t-SVD

Z = X #ge Y = dct | fold(blockdiag(Xuet) bIockdiag(\A/)dct)]

The DCT based t-SVD can be efficiently implemented via fast
cosine transform (dct).



Transform-based t-SVD

The first work is given by E. Kernfeld, M. Kilmer and S. Aeron,
Tensor tensor products with invertible linear transforms, LAA, Vol
485, pp. 545-570 (2015).

We generalize tensor singular value decomposition by using other
unitary transform matrices instead of discrete Fourier/cosine
transform matrix.

The motivation is that a lower transformed tubal tensor rank may
be obtained by using other unitary transform matrices than that by
using discrete Fourier/cosine transform matrix, and therefore this
would be more effective for robust tensor completion.



Transform-based t-SVD

> Let ® be the unitary transform matrix with ®®" = & = 1.
» Ag represents a third-order tensor obtained via multiplying by
® on all tubes along the third dimension of A.

» The ®-product of A € CM*M*XM and B € CMxMmxm js g
tensor C € C™*M>m which is given by

C=Aop B =0 [fold (blockdiag(,ﬁq,) x b|ockdiag(z§.,,)>} ,

where “ x " denotes the usual matrix product.



Transform-based t-SVD

Theorem
Suppose that A € C™*"*m_ Then A can be factorized as follows:

A=UoeSop VI,

where U € CM>*mxm ) ¢ Cn2xMXns gre ynijtary tensors with
respect to ®-product, and S € C™*™*™ s g diagonal tensor.



Transform-based t-SVD

Definition: The transformed tubal multi-rank of a tensor

A € Cmxmxns ig 5 vector r € R™ with its j-th entry as the rank
of the i-th frontal slice of Ag, i.e., r; = rank(.ﬁg)). The
transformed tubal tensor rank, denoted as rank(.A), is defined as
the number of nonzero singular tubes of &, where § comes from
the tt-SVD of A = U 0 S 0 V.

Definition: The transformed tubal nuclear norm of a tensor
A € Cmxm*m denoted as || Al|TTnn, is the sum of the nuclear
norms of all the frontal slices of Ag, i.e.,

n3 )
Al = S IS ..
=1



Transform-based t-SVD

Theorem
For any tensor X € (C’”X”?X”3 | X||TTnN is the convex envelope of

the function )2, rank(.A¢ ) on the set {X | || X < 1}.



Transform-based t-SVD

min IL][TTn + Al[€]l1, s.t., Pa(L + &) = Pa(X),

where \ is a penalty parameter and Pq is a linear projection such
that the entries in the set {2 are given while the remaining entries
are missing.



Transform-based t-SVD

Assume that ranks(Lo) = r and its skinny tt-SVD is
Lo=UoeSoe V. Lyis said to satisfy the transformed tensor
incoherence conditions with parameter p > 0 if

r

max_ (U o0 &llF < (/1

i=1,...,m n

-
max_ [V o &F < =

Jj=1,...,m no

and

r
U o0 VF]loo < |0,

ninon3

where €; and €; are the tensor basis with respect to ®.



Transform-based t-SVD

Theorem

Suppose that Ly € CM*M2XM3 obeys transformed tensor
incoherence conditions, and the observation set Q is uniformly
distributed among all sets of cardinality m = pninan3. Also
suppose that each observed entry is independently corrupted with
probability ~v. Then, there exist universal constants c1, ¢ > 0 such
that with probability at least 1 — c1(nyn3)~, the recovery of Lo
with A = 1/, /pAyns is exact, provided that

crn
r< @)

_—_— <
~ u(log(nyns))? and 7 < e

where c, and c, are two positive constants.



Numerical lllustration

Table: The transformed tubal ranks of randomly generated ten tensors.

[ Transform/Tensor [ #1  #2  H#3  H#4  #5 #6  H#T  #8  #9  #10 ]
level-1 Haar 10 20 15 7 3 12 30 5 18 2
level-2 Haar 10 20 15 7 3 12 30 5 18 2

Fourier 28 67 45 23 11 24 84 21 50 6




Numerical lllustration

Table: The relative errors of tensor completion for Tensors #1 and #2
with sampling ratios.

Tensor #1 Tensor #2
p level-1 Haar  level-2 Haar  Fourier | level-1 Haar level-2 Haar  Fourier
0.2 8.22e-2 2.79e-4 3.79%-1 4.72e-1 4.58e-2 5.68e-1
0.3 3.48e-3 2.39¢-4 2.29e-1 1.50e-1 2.46e-4 4.02e-1
0.4 1.8le-4 1.57e-4 1.43e-2 2.58e-3 1.74e-4 2.81le-1




Numerical lllustration

Table: The relative errors of robust tensor completion for Tensors #1 and
#2 with sampling ratios and noise levels.

Tensor #1 Tensor #2

p v level-1 Haar  level-2 Haar  Fourier | level-1 Haar level-2 Haar  Fourier
0.1 5.47e-3 6.91e-4 9.60e-1 9.18e-2 2.05e-3 9.78e-1

0.6 0.2 2.70e-2 1.26e-3 1.32e0 2.26e-1 1.41e-2 1.33e0
0.3 5.87e-2 2.79e-3 1.58e0 3.67e-1 8.60e-2 1.59e0

0.1 7.87e-5 5.51e-4 1.01e0 2.63e-2 7.13e-4 1.01e0

0.8 0.2 1.26e-4 7.55e-4 1.39e0 3.35e-2 1.67e-3 1.39e0
0.3 1.00e-2 9.96e-4 1.67e0 1.77e-1 9.35e-3 1.66e0




Hyperspectral Image

(a) Original images (b) Observed images (¢) Fourier (d) Wavelet

Figure 3: Recovered images with different bands by Fourier and wavelet transforms for
hyperspectral data with 15% sampling ratio. Form top to bottom: 20th band, 60th band,
100th band, and 140th band. (a) Original images. (b) Ohserved images. (c) Recovered
images by Fourier transform with PSNR 35.55. (d) Recovered images by wavelet transform
with PSNR 40.85.




Hyperspectral Image
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Figure 2: PSNR values versus sampling ratios for Hyperspectral data.



Hyperspectral Image
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Figure 1: Distributions of singular values of all frontal slices for Hyperspectral data after Fourier
and wavelet transforms, repsectively.



Data-Dependent Transform

Theorem

Let A be a given tensor with size ny X ny X n3 and A be its
unfolding matrix along the third-dimension. Suppose rank(A) = k.
Then a global optimal solution of the following problem

min  ||®A — B||?
rank(B)=k,®
st. dHo = vt = |,

is given by ® = U" and B = xV".



Hyperspectral Image

(a) Original images (b) Observed images (c) Fourier (d) Wavelet

Fig. 4. Recovered images with different bands by using Fourier, wavelet and unitary transforms in tensor completion for the Samson dataset with 10%
sampling ratio. From top to bottom: 15th band, 55th band, 95th band, and 135th band. (a) Original images. (b) Observed images. (c) Recovered images
by using Fourier transform with PSNR 32.44. (d) Recovered images by using wavelet transform with PSNR 33.10. (e) Recovered images by using unitary

transform with PSNR 48.01.



Hyperspectral Image

(a) Original images (b) Observed images (c) Fourier (d) Wavelet @u

Fig. 5. Recovered images with different bands by using Fourier, wavelet and unitary transforms in robust tensor component principal analysis for Japser
Ridge dataset with 60% sampling ratio and 30% corrupted entries. From top to bottom: 10th band, 70th band, 130th band, and 190th band. (a) Original
images. (b) Observed images. (c) Recovered images by using Fourier transform with PSNR 33.63. (d) Recovered images by using wavelet transform with
PSNR 33.59. (e) Recovered images bv using unitarv transform with PSNR 37.38.
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Multi-view Clustering

The original multi-view data with n objects from m views is taken
as a tensor. More specifically, each object from different views is
twisted into a third-order tensor D x 1 x m (D is the total number
of features in all the views), then the whole data set can be
organized as a tensor RP>*1xm

Then the multi-view data can be represented by collecting all
objects tensors along the second mode to obtain a tensor
X e RDXnXm.



Multi-view Clustering
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Fig. I. Demonstration of the multi-view representation learning (MRL). Given
an object ¢ with multiple views (a), MRL takes advantage of the multi-view
information (b) to learn the new representation of the object (c).



Multi-view Clustering
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Fig, 2. The framework of lensor-based representation leaming for muli-view clustering (tRLMYC). ' s the mult-view data tensor, 2 is the sell-expressive
tesar, {U, V, W} is obtaned by Tucker decompesicon on 2. Among them, W€ R shows the contiburons of difeent views, U € B2 d
V£ B2 igicate the repesenaton o muliview data in ltnt space rom tvo aspects, and H = [UV] is the fnal low-diniensional representaton,

Latent space with size k; and ky respectively, which can essentially capture the object

cluster structure. W € R™*1 is a column vector recording the contributions of

different views.



Multi-view Clustering

DESCRIPTION OF THE TEST DATASETS

Dataset type fviews  jobjects  fclusters
BDGP text-image 2 2500 )
NUS-WIDE-C5 ~ text-image 2 4000 d
MSRC-vl scene 6 210 7
Scene-13 soene 3 4485 [
Yale Face 3 165 15
Extend YaleB Face 3 640 10
Caltech101-7  Generic Object 6 441 7
COIL Generic Object 3 1440 20




Multi-view Clustering

TABLE 11T
CLUSTERING RESULTS OBTAINED BY APPLYING TEN METHODS ON BDGP DATABASE.
Methods ACC F-score Precision Recall NMI AR
LT-MSC[4] 0.945+0.002  0.897+£0.001  0.896 +0.001  0.898 £0.002  0.860+£0.002  0.871 +0.003
t-SVD-MSC [9] 0.984+0.004 0.947+0.003  0.968+0.004  0.969+0.001  0.947 +£0.003  0.961+0.003
SCMV-3DT [8] 0.990+0.004 0.975+0.003  0.978+0.002  0.975+0.003  0.960+0.000  0.969+0.004
MLAN [3] 0.474=0.004 0.427£0.002  0.328£0.002  0.711£0.004  0.265£0.005  0.165%0.002
MVSC[6] 0.827+0.002  0.695+0.003  0.686+0.004  0.705+0.002  0.600+£0.002  0.618 +0.001
ECMSC[33] 0.485+0.002  0.393+0.003  0.388+0.002  0.3984+0.004 0.286 +£0.002  0.239+0.002
DCCAE [14] 0.503=0.002 0.405+0.002 0.403+0.001  0.407+0.003  0.310+£0.003  0.2556=0.002
DSemi-NMF [15]  0.593+0.004 0.469+0.001  0.464+0.003  0.4754+0.002  0.372+0.002  0.335+0.004
{RLMvCr 0.924+0.001  0.862+0.001  0.862+0.003  0.862+0.002  0.821£0.002  0.823%0.003
(RLMvCs 0.999:0.003  0.999:+0.004  0.999+0.001 0.99940.003  0.998+0.002 0.9994-0.004
TABLE IV
CLUSTERING RESULTS OBTAINED BY APPLYING TEN METHODS ON NUS-WIDE-C5 DATABASE.

Methods ACC F-score Precision Recall NMI AR

LT-MSC[4] 0.821+0.003  0.686=£0.003 0.680+£0.004 0.6924+0.002  0.597+0.002  0.606=+0.003

t-SVD-MSC [9] 0.990+0.003  0.981+0.003 0.981+0.003 0.9814+0.003 0.962+0.004  0.976-0.002

SCMV-3DT [8] 0.842+0.002  0.718+0.003 0.710+£0.001  0.72640.002  0.638+0.002  0.648-+0.003

MLAN [3] 0.800+0.003  0.653+0.003 0.649+0.003 0.658+0.003  0.552+0.003  0.556=+0.003

MVSC[6] 0.750+0.003  0.738+£0.003  0.721+£0.004  0.7554+0.002  0.740 £0.002  0.687+0.003

ECMSC[33] 0.787+0.002  0.634+0.002 0.633+0.002 0.6384+0.002  0.530£0.002  0.545=+0.002

DCCAE [14] 0.780+0.001 0.653£0.002 0.649+0.002 0.658+0.003 0.552+£0.000  0.566=+0.001

DSemi-NMF [15]  0.785£0.003  0.638%+0.001  0.631+0.004 0.636+0.003  0.528=+0.004  0.542=0.001

tRLMvCx 0.933+0.003  0.900+£0.006  0.912+0.002  0.9174+0.005  0.900£0.002  0.903=+0.006

tRLMVCs 0.995+0.002  0.990=£0.001  0.990+0.001  0.99040.001  0.978+0.005  0.987-+0.001




Multi-view Clustering

t-SVD-MSC toy sun | bird toy hird ~ tower | sun toy

tRLMVCs bird food sun tower

Fig. 6. The image examples from bi-view NUS-WIDE-CS dataset with right
clustering results obtained by tRLMvCg, while the best baseline gives the
wrong results.



Multi-view Clustering
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Concluding Remarks

» More and more applications involving tensor data

» Theory and Algorithms to be studied



