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Introduction



Example



Application: Moment and Cumulant Tensors

Let x be a random vector of dimension n with components xi . Its
moment and cumulant tensors of order m as

M(x) = [µi1,i2,··· ,im ] with µi1,i2,··· ,im = E{xi1xi2 · · · xim}

and

C(x) = [ci1,i2,··· ,im ] with ci1,i2,··· ,im = Cum{xi1xi2 · · · xim}

(3rd order: skewness and 4th order: kurtosis)



Application: Background and Foreground Separation in
Video (spatial dimensions + time)



Application: Recognition (spatial dimensions + time)



Application: Color Images Completion and Denoising
(spatial dimensions + RGB)



Application: Hyperspectral Images Completion and
Denoising (spatial dimensions + frequencies)



Application: Adjacency and Laplacian Tensors

As a generalization of a graph, a uniform hypergraph G = (V ,E )
with V = {1, 2, · · · , n} the vertex set and E = {e1, e2, · · · , em}
the edge set, is defined to satisfy that |ep| = k for any ep ⊂ V ,
p = 2, · · · ,m and k ≥ 2. Such a uniform hypergraph is also called
a k-graph. If k = 2, G is exactly an ordinary graph.

Given a k-graph G , its adjacency tensor A (A(G )) of G , is a k-th
order n-dimensional symmetric tensor, defined as A = [ai1,i2,··· ,im ]
where ai1,i2,··· ,im = 1

(k−1)! if (i1, i2, · · · , im) ∈ E , and 0 otherwise.

For i ∈ V , its degree d(i) is defined as d(i) = |{ei : i ∈ ep ∈ E}|.
The degree tensor D of G is a k-th order n-dimensional tensor:
di ,i ,··· ,i = d(i). The Laplacian tensor is defined D −A.



Multiple Relations Tensor

I Tensor can be used to describe the multiple relationships
between objects. A tensor is a multidimensional array. Here a
three-way array (third-order tensor) is used:

O1 O2 · · · On

O1 a1,1,1 a1,2,1 · · · a1,n,1

O2 a2,1,1 a2,2,1 · · · a2,n,1

...
...

... · · ·
...

On an,1,1 an,2,1 · · · an,n,1

O1 O2 · · · On

O1 a1,1,2 a1,2,2 · · · a1,n,2

O2 a2,1,2 a2,2,2 · · · a2,n,2

...
...

... · · ·
...

On an,1,2 an,2,2 · · · an,n,2

· · ·

O1 O2 · · · On

O1 a1,1,p a1,2,p · · · a1,n,p

O2 a2,1,p a2,2,p · · · a2,n,p

...
...

... · · ·
...

On an,1,p an,2,p · · · an,n,p

I p relationships among n objects



Application: Information Retrieval

I Web information retrieval is significantly more challenging
than that based on web hyperlink structure

I One main difference is the multiple links based on the other
features (text, images, etc)

I Example: 100,000 webpages from .GOV Web collection in
2002 TREC and 50 topic distillation topics in TREC 2003
Web track as queries

I Multiple links among webpages via different anchor texts

I 39,255 anchor terms (multiple relations), and 479,122 links
with these anchor terms among the 100,000 webpages



Application: Networks

I In a social network where objects are connected via multiple
relations, via sharing, comments, stories, photos, tags,
keywords, topics, etc

I In a publication network where the interactions among items
in three entities: author, keyword and paper

I A tensor: the interactions among items in three
dimensions/entities: author, keyword and paper; A matrix:
the interactions between items in two dimensions/entities:
concept and paper



Tensor Decomposition

CANDECOMP/PARAFAC Decomposition:

X =
r∑

i=1

λi a
i ,1 ⊗ · · · ⊗ ai ,m

The minimal value of r is called the rank of A.



Tensor Decomposition
Tucker Decomposition:

X = G × A1 × A2 · · · × Am

X =

r1∑
i1=1

· · ·
rm∑

im=1

gi1,i2,··· ,im ai1,1 ⊗ · · · ⊗ aim,m

It can be obtained by using singular value decomposition to each
unfolded matrix Xij from X . The Tucker rank is
(rank(X1), rank(X2), · · · , rank(Xm)) = (r1, r2, · · · , rm).



Low Rank Tensor Recovery



Low-dimensional Structure

Data in many real applications exhibit low-dimensional structures
due to local regularities, global symmetries, repetitive patterns,
redundant sampling, ... (low-dimensional structure → low-rank
data matrices)



Example

Customer/Item I II III IV · · ·
A 5 1 ? ? · · ·
B ? 2 3 ? · · ·
C ? ? 4 2 · · ·
D 1 ? ? ? · · ·
...

...
...

...
... · · ·

For example (Netflix Challenge 2009), it is about 0.5 million users
and about 18,000 movies

Matrix Completion

min
X

rank(X) subject to PΩ(X) = PΩ(M)



Example

Matrix RPCA

min
X

rank(X) + λ‖E‖0 subject to X + E = M



Example

Robust Matrix Completion

min
X

rank(X) + λ‖E‖0 subject to PΩ(X + E) = PΩ(M)



Low Rank Matrix Recovery

I Matrix Completion

min
X

rank(X) subject to PΩ(X) = PΩ(M)

I Matrix RPCA

min
X

rank(X) + λ‖E‖0 subject to M = X + E

I Robust Matrix Completion

min
X

rank(X) + λ‖E‖0 subject to PΩ(M) = PΩ(X + E)



Low Rank Matrix Recovery

I Matrix Completion

min
X
‖X‖∗ subject to PΩ(X) = PΩ(M)

I Matrix RPCA

min
X
‖X‖∗ + λ‖E‖1 subject to M = X + E

I Robust Matrix Completion

min
X
‖X‖∗ + λ‖E‖1 subject to PΩ(M) = PΩ(X + E)

Nuclear norm ‖ · ‖∗: sum of singular values (convex envelop of
rank)



Low Rank Matrix Recovery Results

I (RPCA) Candes, E. J., Li, X., Ma, Y., and Wright, J. Journal
of the ACM, 58(3):173, 2011.

I (Matrix Completion) Recht, B. Journal of Machine Learning
Research, 12(4):34133430, 2011.

I (Matrix Completion) Chen, Y. IEEE Transactions on
Information Theory, 61(5):29092923, 2013.

I many papers ...



Low Rank Tensor Recovery

Data are usually in multi-dimensional array.

“Vectorization” probably break the inherent structures and
correlations in the original data.



Low Rank Tensor Recovery

I Tensor Completion

min
X

rank(X ) subject to PΩ(X ) = PΩ(M)

I Tensor Robust PCA

min
X

rank(X ) + λ‖E‖0 subject to M = X + E

I Robust Tensor Completion

min
X

rank(X ) + λ‖E‖0 subject to PΩ(M) = PΩ(X + E)



Low Rank Tensor Recovery

I CP decomposition/rank cannot be computed efficiently

I Matrix rank can be replaced by matrix nuclear norm (the sum
of singular values), it is a convex envelope

I Replace Tucker rank by the sum of nuclear norms of unfolding
tensors, interdependent matrix trace norm is involved

I The use of the sum of nuclear norms of unfolding matrices of
a tensor may be challenged since it is suboptimal1

I The tensor trace norm (the average of trace norms of
unfolding matrices) is not a tight convex relaxation of the
tensor rank (the average rank of unfolding matrices) 2

1C. Mu, B. Huang, J. Wright, and D. Goldfarb. Square deal: Lower bounds
and improved relaxations for tensor recovery. In ICML, pages 7381, 2014.

2B. Romera-Paredes and M. Pontil. A new convex relaxation for tensor
completion. In Adv. Neural Inf. Process. Syst., pages 29672975, 2013.



t-SVD



t-SVD Decomposition

A third-order tensor of size n1 × n2 × n3 can be viewed as an
n1 × n2 matrix of tubes which lie in the third-dimension. [Kilmer,
M. E. and Martin, C. D. Linear Algebra & Its Applications,
435(3):641658, 2011]



t-SVD Decomposition

Definition: The t-product A ∗ B of A ∈ Rn1×n2×n3 and
B ∈ Rn2×n4×n3 is a tensor C ∈ Rn1×n4×n3 whose (i , j)th tube is
given by

C(i , j , :) =

n2∑
k=1

A(i , k, :) ∗ B(k , j , :),

where ∗ denotes the circular convolution between two tubes of
same size.

The tube at (i , k) position in A convolutes with the tube at (k , j)
position in B. Both have sizes n3. Put all the correlations at (i , j)
position in C.

The multiplication of between the scalars is replaced by circular
convolution between the tubes.



t-SVD Decomposition

Definition: The identity tensor I ∈ Rn×n×n3 is defined to be a
tensor whose first frontal slice I(1) is the n × n identity matrix and
whose other frontal slices I(i), i = 2, . . . , n3 are zero matrices.

Definition: The conjugate transpose of a tensor A ∈ Rn1×n2×n3 is
the tensor AH ∈ Rn2×n1×n3 obtained by conjugate transposing
each of the frontal slice and then reversing the order of transposed
frontal slices 2 through n3, i.e.,(

AH
)(1)

=
(
A(1)

)H
,(

AH
)(i)

=
(
A(n3+2−i)

)H
, i = 2, . . . , n3.



t-SVD Decomposition

Definition: A tensor Q ∈ Rn×n×n3 is orthogonal if it satisfies

QH ∗ Q = Q ∗ QH = I,

where I is the identity tensor of size n × n × n3.

Definition: A tensor A is called f-diagonal if each frontal slice A(i)

is a diagonal matrix.



t-SVD Decomposition

For A ∈ Rn1×n2×n3 , the t-SVD of A is given by

A = U ∗ S ∗ VH ,

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors,
and S ∈ Rn1×n2×n3 is a f-diagonal tensor, respectively. The entries
in S are called the singular tubes of A.



t-SVD Decomposition

The tensor tubal-rank, denoted as rankt(A), is defined as the
number of nonzero singular tubes of S, where S comes from the
t-SVD of A, i.e.,

rankt(A) = #{i : S(i , i , :) 6= ~0}.

It can be shown that it is equal to maxi rank(Â(i)) where Â(i) is
the i-th slice of Â and Â represents a third-order tensor obtained
by taking the Discrete Fourier Transform (DFT) of all the tubes
along the third dimension of A.

Example of t-SVD Decomposition



Original Images



Tubal Rank 1



Tubal Rank 5



Tubal Rank 10



Tubal Rank 20



Tubal Rank 40



Low Tubal Rank Tensor Recovery

I Tensor Completion

min
X

rank(X ) subject to PΩ(X ) = PΩ(M)

I Tensor Robust PCA

min
X

rank(X ) + λ‖E‖0 subject to M = X + E

I Robust Tensor Completion

min
X

rank(X ) + λ‖E‖0 subject to PΩ(M) = PΩ(X + E)



TNN

Definition: The tubal nuclear norm of a tensor A ∈ Rn1×n2×n3 ,
denoted as ‖A‖TNN, is the nuclear norm of all the frontal slices of
Â.

Theorem
For any tensor X ∈ Cn1×n2×n3 , ‖X‖TNN is the convex envelope of
the function

∑n3
i=1 rank(Â(i)) on the set {X | ‖X‖ ≤ 1}.



Low Tubal Rank Tensor Recovery (Relaxation)

I Tensor Completion

min
X
‖X‖TNN subject to PΩ(X ) = PΩ(M)

I Tensor Robust PCA

min
X
‖X‖TNN + λ‖E‖1 subject to M = X + E

I Robust Tensor Completion

min
X
‖X‖TNN + λ‖E‖1 subject to PΩ(M) = PΩ(X + E)

Can we recover low-tubal-rank tensor from partial and grossly
corrupted observations exactly ?



Tensor Incoherence Conditions

Assume that rankt(L0) = r and its t-SVD L0 = U ∗ S ∗ VH . L0 is
said to satisfy the tensor incoherence conditions with parameter
µ > 0 if

max
i=1,··· ,n1

‖UH ∗ ~ei‖F ≤
√
µr

n1
,

max
j=1,··· ,n2

‖VH ∗ ~ej‖F ≤
√
µr

n2
,

and (joint incoherence condition)

‖U ∗ VH‖∞ ≤
√

µr

n1n2n3
.



Tensor Incoherence Conditions

The column basis, denoted as ~ei , is a tensor of size n1 × 1× n3

with its (i , 1, 1)th entry equaling to 1 and the rest equaling to 0.
The tube basis, denoted as e̊k , is a tensor of size 1× 1× n3 with
its (1, 1, k)th entry equaling to 1 and the rest equaling to 0.



Low Rank Tensor Recovery

Theorem
Suppose L0 ∈ Rn1×n2×n3 obeys tensor incoherence conditions, and
the observation set Ω is uniformly distributed among all sets of
cardinality m = ρn1n2n3. Also suppose that each observed entry is
independently corrupted with probability γ. Then, there exist
universal constants c1, c2 > 0 such that with probability at least
1− c1(n(1)n3)−c2 , the recovery of L0 with λ = 1/

√
ρn(1)n3 is

exact, provided that

r ≤
crn(2)

µ(log(n(1)n3))2
and γ ≤ cγ

where cr and cγ are two positive constants.

n(1) = max{n1, n2} and n(2) = min{n1, n2}



Low Rank Tensor Recovery

Theorem
(Tensor Completion): Suppose L0 ∈ Rn1×n2×n3 obeys tensor
incoherence conditions, and m entries of L0 are observed with
locations sampled uniformly at random, then there exist universal
constants c0, c1, c2 > 0 such that if

m ≥ c0µrn(1)n3(log(n(1)n3))2,

L0 is the unique minimizer to the convex optimization problem
with probability at east 1− c1(n(1)n3)−c2 .



Low Rank Tensor Recovery

Theorem
(Tensor Robust PCA): Suppose L0 ∈ Rn1×n2×n3 obeys tensor
incoherence conditions and joint incoherence condition and E0 has
support uniformly distributed with probability γ. Then, there exist
universal constants c1, c2 > 0 such that with probability at least
1− c1(n(1)n3)−c2 , (L0, E0) is the unique minimizer to the convex
optimization problem with λ = 1/

√
n(1)n3, provided that

r ≤
crn(2)

µ(log(n(1)n3))2
and γ ≤ cγ

where cr and cγ are two positive constants.



Convex Optimization Problem
Input: X , Ω and λ.
Initialize: L0 = E0 = Y0 = 0, ρ = 1.1, µ0 = 1e-4, µmax = 1e8.

I WHILE not converged
1. Update Lk+1 by

min
L
‖L‖TNN +

µk

2

∥∥∥L+ Ek −X +
Yk

µk

∥∥∥2

F
;

2. Update PΩ(Ek+1) by

min
E
λ‖PΩ(E)‖1 +

µk

2

∥∥∥PΩ

(
E + Lk+1 −X +

Yk

µk

)∥∥∥2

F
;

3. Update PΩc (Ek+1) by PΩc (Ek+1) = PΩc (X − Lk+1 − Yk/µk );
4. Update the multipliers Yk+1 by
Yk+1 = Yk + µk (Lk+1 + Ek+1 −X );

5. Update µk+1 by µk+1 = min(ρµk , µmax);
6. Check the convergence condition

I ENDWHILE

Output: L



Phase Transition

ρ (data observation) and γ (data corruption)



Application: Completion and Denoising

ρ = 70% (data observation) and γ = 30% (data corruption)



Application: Completion and Denoising

ρ = 70% (data observation) and γ = 30% (data corruption)



Application: Completion and Denoising

For RPCA and RMC, we apply them on each channel with λ = 1/
√
n1;

For SNN, unfolding with three parameters suggested in the literature; For

TRPCA, λ = 1/
√
n1n3; For BM3D, standard denoising method using

nonlocal information; For BM3D+, two-step method with BM3D and

image completion using HaLRTC (tensor unfolding to matrix); For

BM3D++, two-step method with BM3D and image completion using

TNMM.



Video Background Modeling

Background: Low-Tubal-Rank Component and Moving Objects:
Sparse Component



Video Background Modeling



Traffic Data Estimation

I Traffic flow data such as traffic volumes, occupancy rats and
flow speeds are usually contaminated by missing values and
outliers due to the hardware or software malfunctions.

I Performance Measurement System (PeMS) pems.dot.ca.gov

I Third-order tensor (day) x (time) x (week) of traffic volume



Traffic Data Estimation



The Correction Model



The Corrected Model

Issue: The nuclear norm minimization of a matrix may be
challenged under general sampling distribution. Salakhutdinov et
al.3 showed that when certain rows and/or columns were sampled
with high probability, the matrix nuclear norm minimization may
fail in the sense that the number of observations required for
recovery was much more than the setting of most matrix
completion problems.

Miao et al. proposed a rank-corrected model for low-rank matrix
recovery with fixed basis coefficients4.

3R. Salakhutdinov and N. Srebro. Collaborative filtering in a non-uniform
world: Learning with the weighted trace norm. In Adv. Neural Inform. Process.
Syst., pages 20562064, 2010.

4W. Miao, S. Pan, and D. Sun. A rank-corrected procedure for matrix
completion with fixed basis coefficients. Math. Program., 159(1):289338, 2016.



The Corrected Method

For any given index set
Ω ⊂ {1, 2, . . . , n1} × {1, 2, . . . , n2} × {1, 2, . . . , n3}, we define the
sampling operator DΩ : Rn1×n2×n3 → R|Ω| by

DΩ(X ) = (〈Eijk ,X〉)T
(i ,j ,k)∈Ω,

where |Ω| denotes the number of entries in Ω.

Let X0 ∈ Rn1×n2×n3 be an unknown true tensor. The observed
model can be described in the following form:

y = DΩ(X0) + σε,

where y = (y1, y2, . . . , ym)T ∈ Rm and ε = (ε1, ε2, . . . , εm)T ∈ Rm

are the observation vector and the noise vector, respectively, εi are
the independent and identically distributed (i.i.d.) noises with
E(εi ) = 0 and E(ε2

i ) = 1, and σ > 0 controls the magnitude of
noise.



The Corrected Method

Assumption: Each entry is sampled with positive probability, i.e.,
there exists a positive constant κ1 ≥ 1 such that

pijk ≥
1

κ1n1n2n3
.

It implies

E(〈E ,X〉2) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

pijkx
2
ijk ≥

1

κ1n1n2n3
‖X‖2

F .



The Corrected Method

In the matrix case, the nuclear norm penalization may fail when
some columns or rows are sampled with very high probability. In
the third-order tensor, we also need to avoid this case that each
fiber is sampled with very high probability. Let

Rjk =

n1∑
i=1

pijk , Cik =

n2∑
j=1

pijk , Tij =

n3∑
k=1

pijk ,

Assumption: There exists a positive constant κ2 ≥ 1 such that

max
i ,j ,k
{Rjk ,Cik ,Tij} ≤

κ2

min{n1, n2, n3}
.



The Corrected Method

min
1

2m
‖y −DΩ(X )‖2 + µ

(
‖X‖TNN − 〈F (Xm),X〉

)
s.t. ‖X‖∞ ≤ c ,

where the spectral function F : Rn1×n2×n3 → Rn1×n2×n3 is given as
follows: F (Xm) := U ∗ Σ ∗ VH , associated with

Σ = ifft(M̂, [ ], 3) with M̂(i) = f (Ŝ (i)) := Diag
(
f
(

diag(Ŝ (i))
))
,

f is defined by

fi (x) :=

{
φ
(

xi
‖x‖∞

)
, if x 6= 0,

0, otherwise,

and the scalar function φ : R→ R, is defined by

φ(z) = (1 + ετ )
|z |τ

|z |τ + ετ
.



The Corrected Method

I The correction function F is used to get a lower tubal rank
solution.

I For the small singular values of the frontal slices in the Fourier
domain, we would like to penalize more in the correction
procedure. Then these small singular values will approximate
to zero in the next correction procedure. In this case, the
model can generate a lower tubal rank solution by the
correction method.



The Corrected Method

Theorem
Suppose the two assumptions hold. Let τ > 1 be given. Then, for
m ≥ ñn3 log3(n1n3 + n2n3)/κ2, there exists constants C̃ ,C1 > 0
such that

‖Xc −X0‖2
F

n1n2n3
≤ n1n2κ

2
1κ2 log((n1 + n2)n3)

mñ(
32C 2

1

(√2r

τ
+ αm

)2
τ2σ2 +

4096C̃ c2
(τ(
√

2r + αm)

τ − 1

)2
)

with probability at least 1− 2
n1+n2+n3

, where

αm = ‖Ũ1 ∗ ṼT
1 − F (Xm)‖F .

Here Ũ1, ṼT
1 are the associated orthogonal tensors in t-SVD of X0.



The Symmetric Gauss-Seidel Multi-Block ADMM

Let U(X ) := {X |‖X‖∞ ≤ c}. By introducing z = y −DΩ(X ) and
X = S, the model is given by

min 1
2m‖z‖

2 + µ
(
‖X‖TNN − 〈F (Xm),X〉

)
+ δU(S)

s.t. z = y −DΩ(X ),X = S.

Since the TNN is the dual norm of the tensor spectral norm, its
Lagrangian dual is given as follows:

max
u,W

−m
2 ‖u‖

2 + 〈u, y〉 − δ∗U(−W)

s.t. ‖µF (Xm) + D∗Ω(u) +W‖ ≤ µ.



The Symmetric Gauss-Seidel Multi-Block ADMM

Let Z := µF (Xm)−D∗Ω(u) +W and X(X ) := {X |‖X‖ ≤ µ}.

min
u,W,Z

m
2 ‖u‖

2 − 〈u, y〉+ δ∗U(−W) + δX(Z)

s.t. Z = µF (Xm) + D∗Ω(u) +W.

The augmented Lagrangian function is defined by

L(u,W,Z,X ) :=
m

2
‖u‖2 − 〈u, y〉+ δ∗U(−W) + δX(Z)

−〈X ,Z − µF (Xm)−D∗Ω(u)−W〉

+
β

2
‖Z − µF (Xm)−D∗Ω(u)−W‖2

F ,

where β > 0 is the penalty parameter and X is the Lagrangian
multiplier.



The Symmetric Gauss-Seidel Multi-Block ADMM

The iteration system of sGS-ADMM is described as follows:

uk+ 1
2 = arg min

u

{
L(u,Wk ,Zk ,X k )

}
,

Wk+1 = arg min
W

{
L(uk+ 1

2 ,W,Zk ,X k )
}
,

uk+1 = arg min
u

{
L(u,Wk+1,Zk ,X k )

}
,

Zk+1 = arg min
Z

{
L(uk+1,Wk+1,Z,X k )

}
,

X k+1 = X k − γβ
(
Zk+1 − µF (Xm)−D∗Ω(uk+1)−Wk+1

)
,

where γ ∈ (0, (1 +
√

5)/2) is the step-length.



The Symmetric Gauss-Seidel Multi-Block ADMM

The optimal solution with respect to u is given explicitly by

u =
1

m + β

(
y −DΩ

(
X + β(µF (Xm) +W −Z)

))
.

The optimal solution with respect to W is given explicitly by

Wk+1 = −Prox 1
β
δ∗U

(
1
βX

k + µF (Xm) + D∗Ω(uk+ 1
2 )−Zk

)
= −

(
1
βX

k + µF (Xm) + D∗Ω(uk+ 1
2 )−Zk

)
+ 1
βProxβδU

(
β
(

1
βX

k + µF (Xm) + D∗Ω(uk+ 1
2 )−Zk

))
.



The Symmetric Gauss-Seidel Multi-Block ADMM

For the subproblem with respect to Z, it is a projection onto X,
which has a closed-form solution.

Theorem
For any Y ∈ Rn1×n2×n3 and ρ > 0, let Y = U ∗ S ∗ VH be the
t-SVD. Then the optimal solution X ∗ of the following problem

min
X∈Rn1×n2×n3

{‖X − Y‖2
F , ‖X‖ ≤ ρ}

is given by
X ∗ = U ∗ Sρ ∗ VH ,

where Sρ = ifft(min{S, ρ}, [], 3).



The Symmetric Gauss-Seidel Multi-Block ADMM

The optimal solution with respect to Z in (1) is given by

Zk+1 = Prox 1
β
δX

(
µF (Xm) + D∗Ω(uk+1) +Wk+1 + 1

βX
k+1
)

= Uk+1 ∗ Sk+1
µ ∗ (Vk+1)T ,

where Sk+1
µ = ifft(min{Sk+1, µ}, [ ], 3) and

µF (Xm)−D∗Ω(uk+1) +Wk+1 +
1

β
X k+1 = Uk+1 ∗ Sk+1 ∗ (Vk+1)T .



The Symmetric Gauss-Seidel Multi-Block ADMM

Theorem
The optimal solution set is nonempty and compact.

Only two blocks with respect to W,Z are nonsmooth and other
blocks are quadratic.

Theorem
Suppose that β > 0 and γ ∈ (0, (1 +

√
5)/2). Let the sequence

{(Wk ,uk ,Zk ,X k )} be generated by the algorithm. Then
{(Wk ,uk ,Zk )} converges to an optimal solution and {X k}
converges to an optimal solution of the dual problem.



Numerical Examples

Table: Relative errors of the TNN and CTNN with different tensors,
tubal ranks, and sampling ratios for low-rank tensor recovery.

Tensor r σ SR TNN CTNN-1 CTNN-2 CTNN-3

30× 40× 50 2 0.1
0.15 5.12e-1 3.57e-1 1.91e-1 4.09e-2
0.20 2.30e-1 1.63e-2 1.33e-2 1.33e-2
0.30 1.69e-2 1.01e-2 1.01e-2 1.01e-2

30× 40× 50 3 0.01
0.20 5.46e-1 4.58e-1 3.82e-1 3.07e-1
0.25 3.19e-1 1.51e-2 1.29e-3 1.26e-3
0.30 8.61e-2 1.08e-3 1.04e-3 1.04e-3

50× 50× 50 4 0.01
0.15 5.17e-1 3.70e-1 2.12e-1 2.83e-2
0.20 2.29e-1 1.31e-3 1.08e-3 1.08e-3
0.25 2.31e-3 9.03e-4 9.03e-4 9.03e-4

100× 100× 50 3 0.05
0.10 3.73e-1 1.44e-2 5.96e-3 5.96e-3
0.15 1.08e-2 4.45e-3 4.45e-3 4.45e-3
0.20 6.04e-3 3.93e-3 3.93e-3 3.93e-3

100× 100× 50 6 0.01
0.15 5.37e-1 3.88e-1 2.38e-1 5.79e-2
0.20 2.41e-1 1.36e-3 1.13e-3 1.13e-3
0.25 2.36e-3 9.68e-4 9.68e-4 9.68e-4

100× 100× 100 4 0.1
0.10 5.98e-1 4.75e-1 3.63e-1 2.35e-1
0.15 1.73e-1 6.41e-3 5.83e-3 5.83e-3
0.20 1.05e-2 4.92e-3 4.92e-3 4.92e-3
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Other t-SVDs



Revisit t-SVD
We use X̃ ∈ Cm1×m2×m3 to represent the discrete Fourier
transform of X ∈ Cm1×m2×m3 along each tube, i.e.,
X̃ = fft(X , [ ], 3). The block circulant matrix is defined as

bcirc(X ) :=


X(1) X(m3) · · · X(2)

X(2) X(1) · · · X(3)

...
...

. . .
...

X(m3) X(m3−1) · · · X(1)

 .
The block diagonal matrix and the corresponding inverse operator
are defined as

bdiag(X ) :=


X(1)

X(2)

. . .

X(m3)

 ,
unbdiag(bdiag(X )) = X .



Revisit t-SVD

Theorem

bdiag(X̃ ) = (Fm3 ⊗ Im1)bcirc(X )(FH
m3
⊗ Im2),

where ⊗ denotes the Kronecker product, Fm3 is an m3 ×m3 DFT
matrix and Im is an m ×m identity matrix.



Revisit t-SVD

The unfold and fold operators in t-SVD are defined as

unfold(X ) :=


X(1)

X(2)

...

X(m3)

 , fold(unfold(X )) = X .

Given X ∈ Cm1×m2×m3 and Y ∈ Cm2×m4×m3 , the t-product X ∗ Y
is a third-order tensor of size m1 ×m4 ×m3

Z = X ∗ Y := fold(bcirc(X )unfold(Y)).

Since the corresponding block circulant matrices can be
diagonalized by DFT, the DFT based t-SVD can be efficiently
implemented via fast Fourier transform (fft).



Cosine-Transform based t-SVD

The first work is given by E. Kernfeld, M. Kilmer and S. Aeron,
Tensor tensor products with invertible linear transforms, LAA, Vol
485, pp. 545-570 (2015).

We define the shift of tensor A = fold


A(1)

A(2)

...

A(m3)

 as

σ(A) = fold


A(2)

A(3)

...

A(m3)

O

.

Any tensor X can be uniquely divided into A+ σ(A).



Cosine-Transform based t-SVD
We use X̄ ∈ Rm1×m2×m3 to represent the DCT along each tube of
X , i.e., X̄ = dct(X , [ ], 3) = dct(A+ σ(A), [ ], 3). We define the
block Toeplitz matrix of A as

bt(A) :=


A(1) A(2) · · · A(m3−1) A(m3)

A(2) A(1) · · · A(m3−2) A(m3−1)

...
...

. . .
...

A(m3−1) A(m3−2) · · · A(1) A(2)

A(m3) A(m3−1) · · · A(2) A(1)

 .

The block Hankel matrix is defined as

bh(A) :=


A(2) A(3) · · · A(m3) O
A(3) A(4) · · · O A(m3)

...
...

. . .
...

A(m3) O · · · A(4) A(3)

O A(m3) · · · A(3) A(2)

 .



Cosine-Transform based t-SVD

The block Toeplitz-plus-Hankel matrix of A is defined as

btph(A) := bt(A) + bh(A).

The block Toeplitz-plus-Hankel matrix can be diagonalized.

Theorem

bdiag(X̄ ) = (Cm3 ⊗ Im1)btph(A)(CT
m3
⊗ Im2),

where ⊗ denotes the Kronecker product, Cm3 is an m3 ×m3 DCT
matrix.



Cosine-Transform based t-SVD

Definition: Given X ∈ Cm1×m2×m3 and Y ∈ Cm2×m4×m3 , the
t-product X ∗ Y is a third-order tensor of size m1 ×m4 ×m3

Z = X ∗ Y := fold(btph(A)unfold(Y)),

where X = A+ σ(A).



Cosine-Transform based t-SVD

Theorem
Given a tensor X ∈ Rm1×m2×m3 , the DCT-based t-SVD of X is
given by

X = U ∗dct S ∗dct VH ,

where U ∈ Rm1×m1×m3 ,V ∈ Rm2×m2×m3 are orthogonal tensors,
S ∈ Rm1×m2×m3 is a f-diagonal tensor, and VH is the tensor
transpose of V.



Cosine-Transform based t-SVD

Table: The time cost of t-SVD and DCT-based t-SVD on the random
tensors of different size.

size 100*100*100 100*100*400 200*200*100 400*400*100
FFT 0.0041 0.0175 0.0176 0.0653

SVD after FFT 0.0818 0.3250 0.3641 1.9015
original t-SVD 0.0859 0.3425 0.3817 1.9668

DCT 0.0042 0.0150 0.0162 0.0601
SVD after DCT 0.0439 0.1649 0.1978 0.8922

new t-SVD 0.0481 0.1799 0.2140 0.9523



Video Examples



Table: PSNR, SSIM, and time of two methods in video completion. In
brackets, they are the time required for transformation and time required
for performing SVD. The best results are highlighted in bold.

video akiyo suzie salesman
SR metric TNN-F TNN-C TNN-F TNN-C TNN-F TNN-C

0.05

PSNR 32.00 32.57 25.50 26.02 30.12 30.22
SSIM 0.934 0.941 0.681 0.700 0.895 0.897
time 156.2 91.9 69.6 40.1 148.5 85.6

0.1

PSNR 34.20 34.75 27.73 27.93 32.13 32.29
SSIM 0.958 0.963 0.759 0.766 0.928 0.931
time 141.8 86.3 64.5 39.3 139.5 84.9

0.2

PSNR 37.44 38.11 30.29 30.51 35.01 35.20
SSIM 0.979 0.983 0.838 0.844 0.960 0.961
time 145.2 79.8 62.5 37.2 135.1 81.3



Video Examples



Transform-based t-SVD

Fourier-Transform based t-SVD

Z = X ∗fft Y = fold(bcirc(X )unfold(Y))

The DFT based t-SVD can be efficiently implemented via fast
Fourier transform (fft).

Cosine-Transform based t-SVD

Z = X ∗dct Y = fold(btph(A)unfold(Y))

The DCT based t-SVD can be efficiently implemented via fast
cosine transform (dct).



Transform-based t-SVD

Fourier-Transform based t-SVD

Z = X ∗fft Y = fft
[
fold(blockdiag(X̂fft)× blockdiag(Ŷfft))

]
The DFT based t-SVD can be efficiently implemented via fast
Fourier transform (fft).

Cosine-Transform based t-SVD

Z = X ∗dct Y = dct
[
fold(blockdiag(X̂dct)× blockdiag(Ŷ )dct)

]
The DCT based t-SVD can be efficiently implemented via fast
cosine transform (dct).



Transform-based t-SVD

The first work is given by E. Kernfeld, M. Kilmer and S. Aeron,
Tensor tensor products with invertible linear transforms, LAA, Vol
485, pp. 545-570 (2015).

We generalize tensor singular value decomposition by using other
unitary transform matrices instead of discrete Fourier/cosine
transform matrix.

The motivation is that a lower transformed tubal tensor rank may
be obtained by using other unitary transform matrices than that by
using discrete Fourier/cosine transform matrix, and therefore this
would be more effective for robust tensor completion.



Transform-based t-SVD

I Let Φ be the unitary transform matrix with ΦΦH = ΦHΦ = I.

I ÂΦ represents a third-order tensor obtained via multiplying by
Φ on all tubes along the third dimension of A.

I The Φ-product of A ∈ Cn1×n2×n3 and B ∈ Cn2×n4×n3 is a
tensor C ∈ Cn1×n4×n3 , which is given by

C = A �Φ B = ΦH
[
fold

(
blockdiag(ÂΦ)× blockdiag(B̂Φ)

)]
,

where “× ” denotes the usual matrix product.



Transform-based t-SVD

Theorem
Suppose that A ∈ Cn1×n2×n3 . Then A can be factorized as follows:

A = U �Φ S �Φ VH ,

where U ∈ Cn1×n1×n3 , V ∈ Cn2×n2×n3 are unitary tensors with
respect to Φ-product, and S ∈ Cn1×n2×n3 is a diagonal tensor.



Transform-based t-SVD

Definition: The transformed tubal multi-rank of a tensor
A ∈ Cn1×n2×n3 is a vector r ∈ Rn3 with its i-th entry as the rank

of the i-th frontal slice of ÂΦ, i.e., ri = rank(Â(i)
Φ ). The

transformed tubal tensor rank, denoted as ranktt(A), is defined as
the number of nonzero singular tubes of S, where S comes from
the tt-SVD of A = U �Φ S �Φ VH .

Definition: The transformed tubal nuclear norm of a tensor
A ∈ Cn1×n2×n3 , denoted as ‖A‖TTNN, is the sum of the nuclear
norms of all the frontal slices of ÂΦ, i.e.,

‖A‖TTNN =

n3∑
i=1

‖Â(i)
Φ ‖∗.



Transform-based t-SVD

Theorem
For any tensor X ∈ Cn1×n2×n3 , ‖X‖TTNN is the convex envelope of

the function
∑n3

i=1 rank(Â(i)
Φ ) on the set {X | ‖X‖ ≤ 1}.



Transform-based t-SVD

min
L, E
‖L‖TTNN + λ‖E‖1, s.t., PΩ(L+ E) = PΩ(X ),

where λ is a penalty parameter and PΩ is a linear projection such
that the entries in the set Ω are given while the remaining entries
are missing.



Transform-based t-SVD

Assume that ranktt(L0) = r and its skinny tt-SVD is
L0 = U �Φ S �Φ VH . L0 is said to satisfy the transformed tensor
incoherence conditions with parameter µ > 0 if

max
i=1,...,n1

‖UH �Φ ~e i‖F ≤
√
µr

n1
,

max
j=1,...,n2

‖VH �Φ ~ej‖F ≤
√
µr

n2
,

and

‖U �Φ VH‖∞ ≤
√

µr

n1n2n3
,

where ~e i and ~e j are the tensor basis with respect to Φ.



Transform-based t-SVD

Theorem
Suppose that L0 ∈ Cn1×n2×n3 obeys transformed tensor
incoherence conditions, and the observation set Ω is uniformly
distributed among all sets of cardinality m = ρn1n2n3. Also
suppose that each observed entry is independently corrupted with
probability γ. Then, there exist universal constants c1, c2 > 0 such
that with probability at least 1− c1(n(1)n3)−c2 , the recovery of L0

with λ = 1/
√
ρn(1)n3 is exact, provided that

r ≤
crn(2)

µ(log(n(1)n3))2
and γ ≤ cγ ,

where cr and cγ are two positive constants.



Numerical Illustration

Table: The transformed tubal ranks of randomly generated ten tensors.

Transform/Tensor #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

level-1 Haar 10 20 15 7 3 12 30 5 18 2
level-2 Haar 10 20 15 7 3 12 30 5 18 2

Fourier 28 67 45 23 11 24 84 21 50 6



Numerical Illustration

Table: The relative errors of tensor completion for Tensors #1 and #2
with sampling ratios.

ρ
Tensor #1 Tensor #2

level-1 Haar level-2 Haar Fourier level-1 Haar level-2 Haar Fourier

0.2 8.22e-2 2.79e-4 3.79e-1 4.72e-1 4.58e-2 5.68e-1
0.3 3.48e-3 2.39e-4 2.29e-1 1.50e-1 2.46e-4 4.02e-1
0.4 1.81e-4 1.57e-4 1.43e-2 2.58e-3 1.74e-4 2.81e-1



Numerical Illustration

Table: The relative errors of robust tensor completion for Tensors #1 and
#2 with sampling ratios and noise levels.

ρ γ
Tensor #1 Tensor #2

level-1 Haar level-2 Haar Fourier level-1 Haar level-2 Haar Fourier

0.6
0.1 5.47e-3 6.91e-4 9.60e-1 9.18e-2 2.05e-3 9.78e-1
0.2 2.70e-2 1.26e-3 1.32e0 2.26e-1 1.41e-2 1.33e0
0.3 5.87e-2 2.79e-3 1.58e0 3.67e-1 8.60e-2 1.59e0

0.8
0.1 7.87e-5 5.51e-4 1.01e0 2.63e-2 7.13e-4 1.01e0
0.2 1.26e-4 7.55e-4 1.39e0 3.35e-2 1.67e-3 1.39e0
0.3 1.00e-2 9.96e-4 1.67e0 1.77e-1 9.35e-3 1.66e0
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Data-Dependent Transform

Theorem
Let A be a given tensor with size n1 × n2 × n3 and A be its
unfolding matrix along the third-dimension. Suppose rank(A) = k.
Then a global optimal solution of the following problem

min
rank(B)=k,Φ

‖ΦA− B‖2
F

s.t. ΦHΦ = ΦΦH = I,

is given by Φ = UH and B = ΣVH .
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Multi-view Clustering

The original multi-view data with n objects from m views is taken
as a tensor. More specifically, each object from different views is
twisted into a third-order tensor D × 1×m (D is the total number
of features in all the views), then the whole data set can be
organized as a tensor RD×1×m

Then the multi-view data can be represented by collecting all
objects tensors along the second mode to obtain a tensor
X ∈ RD×n×m.



Multi-view Clustering



Multi-view Clustering

Latent space with size k1 and k2 respectively, which can essentially capture the object

cluster structure. W ∈ Rm×1 is a column vector recording the contributions of

different views.



Multi-view Clustering



Multi-view Clustering



Multi-view Clustering



Multi-view Clustering



Concluding Remarks

I More and more applications involving tensor data

I Theory and Algorithms to be studied


