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» Theories on non-convex optimization:
Part 1. Parallel restarted SGD: it finds first-order
stationary points
(why model averaging works for
Deep Learning?)
Part 2. Escaping saddle points in
non-convex optimization
(first-order stochastic algorithms to find
second-order stationary points)

» System optimization: BPTune for an intelligent
database (from OR/ML perspectives)
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Learning as Optimization

e Stochastic (non-convex) optimization Loss function ]

min f () = E[F(x; )]
XER [\ j ]

[ Model

e ¢: random training sample
* f(x): has Lipschitz continuous Gradient

|Vf(z) = Vf(y) <Lz -yl

. \/
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Non-Convex Optimization is Challenging

Many local minima & saddle points

For stationary points Vf(x)=0 (first-order stationary)
sz(x) > (0 =—=> Local minimum
F2f(x) <0 = Local maximum
sz(x) has both +/- eigenvalues =) saddle points

V2f(x) has0/+eigenvalues

—> Degenerate case: could be either
local minimum or saddle points

local maximum

saddle point

local minimum

local minimum

global minimum

In general, finding global minimum of non-convex optimization is NP-hard
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Instead ...

* For some applications, e.g., matrix completion, tensor decomposition,
dictionary learning, and certain neural networks,

Good news: local minima

e Either all local minima are
all global minima

* Or all local minima are close
to global minima

Bad news: saddle points

* Poor function value compared
with global/local minima

* Possibly many saddle points
(even exponential number)
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Finding First-order Stationary Points (FSP)

 Stochastic Gradient Descent (SGD):

Xey1 = X —MVE (x5 8t)
* Complexity of SGD (Ghadimi & Lan, 2013, 2016; Ghadimi et al., 2016; Yang
et al., 2016) :

e e-FSP, E[||Vf(x)||5] < €?: Iteration complexity O(1/e%)

* Improved lteration complexity based on Variance Reduction:
e SCSG (Lei et al.,2017): 0(1/€1%/3)

* Workhorse of deep learning t
theano

Caffe PYTORCH
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Part 1:

Parallel Restarted SGD with Faster Convergence and Less Communication:
Demystifying Why Model Averaging works for Deep Learning

Hao Yu, Sen Yang, Shenghuo Zhu (AAAI 2019)

* too many parameters, e.g., deep neural
networks

l W * huge number of training samples

%J» CQ%H Cea * training time is too long

* Parallel on N servers:

____________________________________________ - } * One server is not enough:

t ot t t ot * With N machines, can we be N times faster?
L Emem J [ mEEmm } L mmem } If yes, we have the linear speed-up (w.r.t. #
of workers)
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Classical Parallel mini-batch SGD

* The classical Parallel mini-batch SGD (PSGD) achieves O(\/%) convergence with N
workers [Dekel et al. 12]. PSGD can attain a linear speed-up.

N
1
Xt+1 = X — Vﬁz VF(x¢; ¢p)
n=1

A

(Xt 0y )

......

* Each iteration aggregates gradients from every workers. Communication too high!

e Can we reduce the communication cost? Yes, model averaging.
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Model Averaging (Parallel Restarted SGD)

Algorithm 1 Parallel Restarted SGD
0

1

1: Input: Initialize x
(integer) I > 0

2: fort=1to T do

3 Each node i observes an unbiased stochastic gradient G! of f;(-) at point x}~

4: if [t is a multiple of I, i.e., t%I = (), then

. t—1

6

=y € R™. Set learning rate v > 0 and node synchronization interval

1

Calculate node average y = N Zfil X,
Each node ¢ in parallel updates its local solution

x; =y —7G;, Vi (2)
7: else
8: Each node 7 in parallel updates its local solution
X = xﬁ_l —yGE Vi (3)
9: end if

10: end for
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Model Averaging

e Each worker train its local model + (periodically) average on all workers

* One-shot averaging: [Zindevich et al. 2010, McDonalt et al. 2010] propose to
average only once at the end.

e [Zhang et al. 2016] shows averaging once can leads to poor solutions for non-
convex opt and suggest more frequent averaging.

* If averaging every | iterations, how large is | ?
* One-shot averaging: I=T
e PSGT: I=1
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Why I=1 works?
* |f we average models each iteration (I=1), then it is equivalent to PSGD.

Xtv1 = Xt — V7 ZVF(xt €9

) PSGD xt+1 = Tt — ’YVF wtagn
VFM\(’% In) \

worker N H Xpyq = Nz Xy

Xe4+1 model average (I=1)

F(x:¢1)

Xt+1

xt1+1 =X VF (x¢;41) xg,

 What if we average after multiple iterations periodically (1>1)?
Converge or not? Convergence rate? Linear speed-up or not?

X = YVF (05 o) %41 = X, — YVF (203 33) G = %~ VVF (% Oy)
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Empirical work

* There has been a long line of empirical works ...

* [Zhang et al. 2016]: CNN for MNIST

* [Chen and Huo 2016] [Su, Chen, and Xu 2018] : DNN-GMM for speech
recognition

* [McMahan et al. 2017] :CNN for MNIST and Cifar10; LSTM for language
modeling

* [Kaamp et al. 2018] :CNN for MINIST
* [Lin, Stich, and Jaggi 2018]: Res20 for Cifar10/100; Res50 for ImageNet

* These empirical works show that "model averaging” = PSGD with
significantly less communication overhead!

e Recall PSGD = linear speed-up
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Model Averaging: almost linear speed-up in practice

Good speed up (measured in wall time
| =8 used to achieve target accuracy)

o

nmn
B N =
n
[
(*)]

* |: averaging intervals (I=4 means
“average every 4 iterations”)

Resnet20 over CIFAR10

=
N

=
o
[ ]

00

(@)

Speedup w.r.t. time-to-accuracy
NN

Figure 7(a) from “Tao Lin, Sebastian U.
Stich, and Martin Jaggi 2018, Don’t
use large mini-batches, use local SGD”

N

2 4 8 16
# of workers (K)
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Related work

* For strongly convex opt, [Stich 2018] shows the convergence (with
linear speed-up w.r.t. # of workers) is maintained as long as the

averaging interval | < O(+/'T /VN).

 Why model averaging achieves almost linear speed-up for deep
learning (non-convex) in practice for |>17?
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Main result

* Prove “model averaging ” (communication reduction) has the same
convergence rate as PSGD for non-convex opt under certain conditions

1 3

If the averaging interval I = O(T+/N+4),then model averaging has

1
the convergence rate O(ﬁ) :

* "Model averaging” works for deep learning. It is as fast as PSGD with
significantly less communication.
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Control bias-variance after | iterations

* Focus on
1 N
X = Nz X average of local solution over all N workers

* Note...

i=1 \
t—1

Git : independent gradients sampled at different points x;

* PSGD has i.i.d. gradients at X ™, which are unavailable at local workers without
communication
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Technical analysis

 Bound the difference between x! and xf

‘Our Algorithm ensures E||xt — x}||?] < 4y212G?, Vi, vt

* The rest part uses the smoothness and shows
' Assume: !

vo© :]Ec 1, IVFi(x;¢) — V(x)]]? < o?

ECz (X C’L||2 < G2 '
Proof. Fix t > 1. By the smoothness of f , we have ~  577ommmmmommmmommmmmmmmmmm oo

T
%ZE IVAE-H?] < %T (F(X) = ") + W’ PGP L+ %

E[f(x")] <E[f&E D] +E(VFE).x -1+ gE[Hft b

Note that

_ (@)
E[Ix" —<"1*] = 2EH—ZG”I
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Part 2:
Escaping Saddle points in non-convex optimization
Yi Xu*, Rong Jin, Tianbao Yang*™

First-order Stochastic Algorithms for Escaping From
Saddle Points in Almost Linear Time, NIPS 2018.
* Xu and Yang are with lowa State University

0.5

L escape
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(First-order) Stationary Points (FSP) I7F(x)Il, = 0

Local minimum Local maximum Saddle point

Amin(‘%éf(x)) <0

V2f(x) >0

Second-order Stationary Points (SSP) SSP is Local Minimum for
WV, =0, A, (VAf(x)) =0 non-degenerate saddle point

sz(X) has both +/- eigenvalues =) saddle points, which can be bad!

sz(X) has both 0/+ eigenvalues =) degenerate case: local minimum/saddle points



(@//N Global trade starts here.™
The Problem

* Finding an approximate local minimum by using first-order methods

e-SSP: ||[Vf(x)|l, <€ Amln(vzf(x))

* Choice of y : small enough, e.g., y = \/e (Nesterov & Polyak 2006)

Nesterov, Yurii, and Polyak, Boris T. "Cubic regularization of Newton method and its global
performance." Mathematical Programming 108.1 (2006): 177-205.



(@//N Global trade starts here.™
Related Work

* Adding Isotropic Noise: Noisy SGD (Ge et al., 2015), SGLD (Zhang et
al., 2017)

Xer1 = X — N(VF (xg; &) + 1)

* n; is an isotropic noise vector (e.g., Gaussian)

lteration complexity: O(d? /e*), where p > 4, d is dimension

Noisy SGD is the first work on finding local minimum by first order methods
For high-dimensional optimization problems, d is large

* Assume F(x; &) has Lipschitz continuous Gradient and Hessian
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More Related Work

e Using Full Gradient (FG) and Isotropic Noise: Perturbed GD (Jin et al.,
2017)

* Add Perturbation Around a Saddle Point X; = x; + n;
* Take Gradient Descent from X;
* Iteration Complexity:0 (1/€*), which hides the team (logd)?

* Using Hessian-vector product (HVP): (Allen-Zhu, 2017)[Natasha?2]
* Iteration Complexity: O (1/€3>)
e The cost of computing HVP per-iteration could be as high as 0(d?)

e Using both FG and HVP (Carmon et al., 2016; Agarwal et al., 2017)

Issue: FG and HVP could be more expensive than SG
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Motivation: How to Escape from Saddles?

L escape

f(x + A) ~ f(x) + ATVF(x) + gATVZf(x)A < F(x)

* Saddle points have zero gradient, i.e., Vf(x) =0
 Non-degenerate Hessian, i.e. 1,,;, (V2 f(x)) < 0
* Negative eigenvector is a direction of escaping
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Negative Curvature

Suppose /Lmin(sz(x)) < —v, a direction v € R% is called negative
curvature (NC) direction if it satisfies (c > 0 is a constant)

vIV2f(x)v < —cyand |v]| =1

* Find a NC direction v, update solution by x;,1 = x; — nv
* Escape Saddles: we show f(x;) — f(xi11) = Q(y3)
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How to Find NC?

e Second-order Methods: Power Method and Lanczos method

vo =n // isotropic noise

Iterate:
Ver1 = (I —nV?F(x)) v,

How to find NC without using HVP and Full Gradient?

Propose NEON: NEgative curvature Originated from Noise



Alibaba.com®

Global trade starts here.™

NEON: A New Perspective of Noise Perturbation
* Adding Noise is for Extracting NC

e x:around a saddle point
* Inspired by Perturbed Gradient Descent (PGD):

* Xo = X + e, noise e is from sphere of a Euclidean ball
* X=X —NVF(xe_q), t =1,

* An Equivalent Sequence: let u; = x; — x

U = U1 7] VF(ut_l T x) Lipschitz continuous Hessian when ||us_q|| is
~ Us—q — N [VF(Ue—q + x)-VE — small:VF (ue_y + x)- VF(x)] = V2F (x)ue_s

~ U —NVAF(uq = [I = VAF()]ue4
 Around Saddle Point: PGD =~ Power Method
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NEON+: Another Perspective

* Recall the update of NEON: u;, 1= u; —n(VF(x + u;) — VF(x))
* NEON is essentially an application of GD to decrease E, (u):

FE(w)=F(x+u)—F(x)—VF(x)'u

Use Nesterov’s Accelerated Gradient to decrease F, (u):
Ver1= Ut — NVE(Ut), Uts1= Vir1 F(Vir1— Vi)

~ (1
For { =1 —\/ny, # iteration can be reduced to L = 0 (ﬁ)



= Alibaba.com

4 _— Global trade starts here.™

Applications of NEON: Finding Local Minimum

Given a first-order alg. A (it can find a FSP)
* SGD, Stochastic Heavy-ball, Stochastic Nesterov’s Accelerated Method
* Variance reduction methods, e.g., SCSG, SVRG

NEON + A -> find a SSP point

* e.g., NEON-SCSG enjoy iteration complexity of O (1/e3) for finding (¢, /€)-
SSP only using first-order information

Example: finding local minimum

_vd 4 a2 , . .
f(x) = Y= &i(x) — 4x7) ¢; : a normal random variables with mean of 1
3 4 105
o (‘1=10‘ ‘ Ofdo‘l d=10 ‘ 0(“05 ‘ d—10 ‘
1 ——NEON*-SGD 05% ——=NEON*-SGD|| 0.5 ——=NEON*-SGD||
“s007 —~NEON-SGD || [ —=-NEON-SGD >y —--NEON-SGD
-1000 | Noisy SGD | At Noisy SGD |- 1t Noisy SGD |-
02-) -1 02-) -1.5¢ 8 02) -1.5
'S 2000 | 8 2t 18 2t
_§725OO r :§—2.5 4 §-2.5 r
-3000 | ey | 3l
-3500 3.5+ 5 -3.5¢
-4000 -4 ' 4
4 5 0 1

2 3 4 2 3 2 3
#IFO =x10% #IFO =<10% #IFO =10
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Part 3:
BPTune: Optimizing Buffer Pool Management for
Large-Scale OLTP Database Clusters

J. Tan, T. Zhang, F. Li, J. Chen, Q. Zheng,
P. Zhang, H. Qiao, Y. Shi, W. Cao, R. Zhang

Computer Systems

A real system deployed for Alibaba database clusters
Algorithm: large deviation, deep neural networks,
active learning

Operations
Research

Machine

Large deviation on LRU: joint work with
Learning

Quan, Ji and Shroff from The Ohio State
University
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“Personalization” for > 10,000 database instances

Measurements can NOT help much:

1. real BP usage =& configured size

2. (miss ratio, response time) «2— BP size

Current practice:

1. Overprovision (e.g., double BP size)

2. Use only a few BP sizes

Challenges:

1. “Personalization” - find the “best” BP
size for each instance; manual
optimization is not scalable.

2. Prediction - estimate the response time

for queries on each instance after
changing its BP size?

Miss Ratio

Response Time

BP = memory = fast access

| |
1 - = 1

b0 b

1} 4 ) e——-
|} — v
U<
b} ———-

™~ @

BEY

160
188

Buffer Pool (BP) Size

Measurements on 10,000 database instances
an instance = a database working unit
Use only 11 different BP sizes
by manual configurations

400
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BPTune architecture

e - - - - - S S S — — — — — — — — — o — — — — — — —

Collecting l : Processing I Decision Making l : Executing
| I |
|
- : : Data Processing & Storing : : Predicting Model : i | Controller
| |
: | Message Stream : : Neural Network New BP Size | Action
| Queue Processing Y % ;! Planner
|
==, +~ 930 " {2
* w7 ./'. : b
~a ./' Cache Size | Action
New RT | : Scheduler
Normalization ==]
Aggregation /\f\/\/ : | TH
Transformation | —@

|
Action Exe&ution/RollbackI

Reduce > 20% BP memory, compared with manual configurations

A bin-packing analysis shows BP is the bottleneck resource

rf
L)
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Response Time:
processing time
of queries

.

—>

Miss Ratio:
fraction of queried
Data not in memory

Change BP\ Predicted RT

Real experiment on an instance
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Today focus on LRU Caching algorithm

* Least recently used (LRU) algorithm (widely used: Memcached, Redis)
e Store the most recently used data in the cache.
* Easy to implement, adaptive to time-varying popularities
* Q: What is the miss ratio of LRU?

Hit  Miss
i
Request: d2
Cache d3 | d1 | d4 d5 | d7 < X

\
BP size
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Goal & challenges

e Goal: characterize BP size = F ( miss ratio )

Accurately and explicitly compute LRU miss ratio
A unified analysis solving all challenges below

* Challenges

Different data sizes

Time correlations

Multiple query flows on a single BP
Overlapped data across different flows
Long tailed data access probabilities

e.g., Zipf’s distribution, Weibull distribution
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Model

K sets of data: DS;, DS,, ..., DS, DSy, = {d,1 < i < Ny}
K data flows sharing a LRU cache:

Data flow k: a sequence of requests on the data set DSy,

Time correlation
* {Il;};er: a stationary and ergodic modulating process with finite
states {1,2, ..., M} and the stationary distribution (m, 5, ..., Tpy).
* Request rates, data popularities vary in different states.

* Goal: P[Miss].
oW o N
DS, /,, ds ", d, \\\
/ i | i H !
CONTCO I '\ Flow 1 e gD : ey A E)
\.’ ds”, dg | — 24 4 4
| —— : : : i T
L - T
\ dl 2 \\, . . |
DS, N DS, —+— I li | ! | o
1 2 [N g® d® /’\\ Flow 2 e Ed§2) | id§2) |
WE_ET ' g | | T Time
df) ng) | : , !
’ / | | | : !
AN\ d® 4@ ./ o dy” a4 af® a LRU
DS, \\ 5 + % 7 Time|  Cache

~ . —



New functional representation
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* Define the (conditional) popularities
k). Z ﬂ_mp(k 'm)7

M
,Ek) = Z TmP[request data d,g )|1n state m)|

m=1
M
(k) & Z TmP[request data dgk)|the request is from flow k,in state m|

m=1
(k,m)

- 7quz
) can be very different

pl( ) and q;

* Functional relationship W, () & finite support impacting 0, (-)
For each flow k, for VA > 1, let the size of the data set N, ~Ay. Find two

eventually decreasing functions Wy () and O, (+) that satisfy,asy — oo

Zq( ) T, ( (k))_l) + 0,(N})

where f(x)~g(x) < lim f(x)/g(0) = 1
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New functional representation

* Example: If pi(k) = qi(k) = ¢, /i%, 1<i< N,k =1, wehave

for flow 1:

N N
qu) N/ me g T1C1 B T1C1
— ’ y T (g —Dy*r—1 (@ —1)Nea—l

(rewnan®) 7
mic1v . —
1AVL1/Pi (a1 — 1) N1

mT1C1

051—1

(71.161)1/&11/1’11/041—1ml/al_1 O1(z) = — mT1C1 JRE

\Ijl(m) — a; — 1

041—].
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Main result

Theorem [Tan, Quan, Ji, Shroff]: Consider K flows without overlapped data that
are modulated by the stationary and ergodic process {Il;};cr. For flow k, if

W, (x)~xP1(x), then under mild conditions, we have, as the cache size x — oo,
forVA > 0, N, = Am*™ (x),

P[Miss|the request is from flow k| ~ BT’ (,B, m* (m)pgsz) U (m*(x)),

where m“ (x) is the inverse function of

K Ny M
m(x) = Z Z sz(-k) (1 — exp (— Z Wmuk,mqgk’m)x)) :
m=1

k=1 i=1
Note:
 [(x)is any slowly varying function satisfying lim [(Ax)/l(x) = 1 for
any A > 0. (e.g., log(x), c, etc.) T
« T(B,s) = fsoo xP~le=*dx is the incomplete gamma function.
e Quan, Ji and Shroff are with The Ohio State University
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Corollary: Consider one flow of unit-sized data. Assume g;

Main result

(L _

For VA > 0, N = Am“ (x), we have, as the cache size x — oo,

cl/a
P[Miss| ~ —T (1 TN
Qv (81

1 em®™
Qo

where, m™ (x) is the inverse function of

m(z) =T (

1 cx

l—a N—) (ca:)l/a—l—N(l—exp(

()

Our result (labeled as ‘theoretical 1’)

Previous result (labeled as ‘theoretical 2’)

0.5¢

Miss probability
o o
w B

o
no

o
Y

O 0=0.8, N=10*, empirical
—a=0.8, N=10% theoretical 1|1

* a=1.1, N=10* empirical
—a=1.1, N=10* theoretical 1
- = a=1.1, N=104, theoretical 2| |

0 1
0 2000

4000 6000 8000
Cache size

c/i*, 1<i<N.

) mt (@),

0.02

0.018

0.016

e =
o o
[ S —
nNOA

Miss probability

0.006
0.004 ¢

0.002
20

0.01f

0.008 1

*¥ «=2.0, N=200, empirical
\ —«a=2.0, N=200, theoretical 1| 1
N - - a=2.0, N=200, theoretical 2

40 60 80 100 120
Cache size



Alibaba.com’

Global trade starts here.™ CO n C | u S i O n

» System for Al
Part 1. Parallel restarted SGD
(why model averaging works for
Deep Learning?)

Computer Systems

Part 2. Escaping saddle points in
non-convex optimization
(first-order stochastic algorithms to find
second-order stationary points)

» Al for system

BPTune: intelligent database

A real complex system deployment

Combine OR/ML, e.g., pairwise DNN, active
learning, heavy-tailed randomness ...

Machine
Learning

Operations
Research

Part 3. Stochastic (large deviation) analysis
for LRU caching



Thank You! Questions?



