
Optimization in Alibaba:
Beyond Convexity

Jian Tan
Machine Intelligent Technology
����|	�
������
 |����

Computer Systems

Operations
Research

Machine
Learning

Optimization

System for AI

AI for system

Agenda
ØTheories on non-convex optimization:

Part 1. Parallel restarted SGD: it finds first-order

stationary points

(why model averaging works for

Deep Learning?)

Part 2. Escaping saddle points in

non-convex optimization

(first-order stochastic algorithms to find

second-order stationary points)

ØSystem optimization: BPTune for an intelligent
database (from OR/ML perspectives)

A real complex system deployment

Combine pairwise DNN, active learning,

heavy-tailed randomness …

Part 3. Stochastic (large deviation) analysis

for LRU caching

1

0.5

0

-0.5

-1-1

-0.5

0

0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

escape

stuck

Learning as Optimization
• Stochastic (non-convex) optimization

• !: random training sample
• f(#): has Lipschitz continuous Gradient

min
(∈*+

, # = E[0(#; !)]

-6 -4 -2 0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Training samples

Loss function

Model

v.s.

Non-Convex Optimization is Challenging

Many local minima & saddle points

local minimum

local minimum

local maximum

saddle point

global minimum

In general, finding global minimum of non-convex optimization is NP-hard

For stationary points !" # =0

!$"(#) ≻ 0 Local minimum

!$"(#) ≺ 0 Local maximum

!$" # has both +/- eigenvalues saddle points

Degenerate case: could be either
local minimum or saddle points

!$" # has 0/+ eigenvalues

(first-order stationary)

Instead …
• For some applications, e.g., matrix completion, tensor decomposition,

dictionary learning, and certain neural networks,

Good news: local minima

• Either all local minima are
all global minima
• Or all local minima are close

to global minima

Bad news: saddle points

• Poor function value compared
with global/local minima
• Possibly many saddle points

(even exponential number)

Finding First-order Stationary Points (FSP)
• Stochastic Gradient Descent (SGD):

• Complexity of SGD (Ghadimi & Lan, 2013, 2016; Ghadimi et al., 2016; Yang
et al., 2016) :
• !-FSP, E["# $ %%] ≤ !%: Iteration complexity ((1/!,)

• Improved Iteration complexity based on Variance Reduction:
• SCSG (Lei et al.,2017): ((1/!.//0)

• Workhorse of deep learning

$12. = $1 − 5"6($1; 81)

Part 1:

Parallel Restarted SGD with Faster Convergence and Less Communication:

Demystifying Why Model Averaging works for Deep Learning

Hao Yu, Sen Yang, Shenghuo Zhu (AAAI 2019)

• One server is not enough:

• too many parameters, e.g., deep neural

networks

• huge number of training samples

• training time is too long

• Parallel on N servers:

• With N machines, can we be N times faster?

If yes, we have the linear speed-up (w.r.t. #

of workers)

Classical Parallel mini-batch SGD
• The classical Parallel mini-batch SGD (PSGD) achieves O(#

$%) convergence with N
workers [Dekel et al. 12]. PSGD can attain a linear speed-up.

• Each iteration aggregates gradients from every workers. Communication too high!
• Can we reduce the communication cost? Yes, model averaging.

……worker 1

PS

∇"	(%&; ()) ∇"	(%&; (+) ∇"	(%&; (,)

%&-)

%&-) = %& 	− 0
1
23∇"(%&; (4)

,

45)

worker 2 worker 3 worker N

∇"	(%&; (6)

%&-)%&-)
%&-)

Model Averaging (Parallel Restarted SGD)
Algorithm 1 Parallel Restarted SGD

1: Input: Initialize x0
i = y 2 Rm. Set learning rate � > 0 and node synchronization interval

(integer) I > 0
2: for t = 1 to T do
3: Each node i observes an unbiased stochastic gradient Gt

i of fi(·) at point x
t�1
i

4: if t is a multiple of I, i.e., t%I = 0, then

5: Calculate node average y
�
= 1

N

PN
i=1 x

t�1
i

6: Each node i in parallel updates its local solution

xt
i = y � �Gt

i, 8i (2)

7: else
8: Each node i in parallel updates its local solution

xt
i = xt�1

i � �Gt
i, 8i (3)

9: end if
10: end for

proven only for strongly convex optimization in [13]. However, there is no theoretical guarantee on
whether linear speed-up with I > 1 can be preserved for non-convex optimization, which is the case
of deep neural networks.

Fix iteration index t, we define

xt �
=

1

N

NX

i=1

xt
i (4)

as the average of local solution xt
i over all N nodes. It is immediate that

xt = xt�1 � �
1

N

NX

i=1

Gt
i (5)

Inspired by earlier works on distributed stochastic optimization [17, 7, 9, 13] where convergence
analysis is performed for an aggregated version of individual solutions, this paper focuses on the
convergence rate analysis of xt defined in (4). An interesting observation from (5) is: Workers
in Algorithm 1 run their local SGD independently for most iterations, however, they still jointly
update their node average using a dynamic similar to SGD.The main issue in (5) is an “inaccurate”
stochastic gradient, which is a simple average of individual stochastic gradients at points di↵erent
from xt, is used. Since each worker in Algorithm 1 periodically restarts its SGD with the same initial
point, deviations between each local solution xt

i and xt are expected to be controlled by selecting
a proper synchronization interval I. The following useful lemma relates quantity Ekxt � xt

ik2 and
algorithm parameter I.

Lemma 1. Under Assumption 1, Algorithm 1 ensures

Ekxt � xt
ik2 4�2

I
2
G

2
, 8i, 8t

where xt
is defined in (4) and G is the constant defined in Assumption 1.

4

Model Averaging
• Each worker train its local model + (periodically) average on all workers

• One-shot averaging: [Zindevich et al. 2010, McDonalt et al. 2010] propose to
average only once at the end.

• [Zhang et al. 2016] shows averaging once can leads to poor solutions for non-
convex opt and suggest more frequent averaging.

• If averaging every I iterations, how large is I ?
• One-shot averaging: I=T
• PSGT: I=1

Why I=1 works?
• If we average models each iteration (I=1), then it is equivalent to PSGD.

• What if we average after multiple iterations periodically (I>1)?
Converge or not? Convergence rate? Linear speed-up or not?

……worker 1

PS

!"#$$ = !" − '∇)	(!"; -$) !"#$/ = !" − '∇)	(!"; -/) !"#$0 = !" − '∇)	(!"; -0)

!"#$

!"#$ =
1
23!"#$4

0

45$

worker 2 worker 3 worker N

!"#$6 = !" − '∇)	(!"; -6)

!"#$!"#$
!"#$

……worker 1

PS

∇"	(%&; ()) ∇"	(%&; (+) ∇"	(%&; (,)

%&-)

%&-) = %& 	− 0
1
23∇"(%&; (4)

,

45)

worker 2 worker 3 worker N

∇"	(%&; (6)

%&-)%&-)
%&-)

PSGD

model average (I=1)

Empirical work

• There has been a long line of empirical works …
• [Zhang et al. 2016]: CNN for MNIST
• [Chen and Huo 2016] [Su, Chen, and Xu 2018] : DNN-GMM for speech

recognition
• [McMahan et al. 2017] :CNN for MNIST and Cifar10; LSTM for language

modeling
• [Kaamp et al. 2018] :CNN for MNIST
• [Lin, Stich, and Jaggi 2018]: Res20 for Cifar10/100; Res50 for ImageNet

• These empirical works show that ”model averaging” = PSGD with
significantly less communication overhead!
• Recall PSGD = linear speed-up

Model Averaging: almost linear speed-up in practice

• Good speed up (measured in wall time
used to achieve target accuracy)
• I: averaging intervals (I=4 means

“average every 4 iterations”)
• Resnet20 over CIFAR10

• Figure 7(a) from “Tao Lin, Sebastian U.
Stich, and Martin Jaggi 2018, Don’t
use large mini-batches, use local SGD”

I
I
I

I
I

Related work

• For strongly convex opt, [Stich 2018] shows the convergence (with
linear speed-up w.r.t. # of workers) is maintained as long as the
averaging interval I < O(#/ %).

• Why model averaging achieves almost linear speed-up for deep
learning (non-convex) in practice for I>1?

Main result

• Prove “model averaging ” (communication reduction) has the same
convergence rate as PSGD for non-convex opt under certain conditions

• ”Model averaging” works for deep learning. It is as fast as PSGD with
significantly less communication.

If the averaging interval ! = #(%
&
'/)

*
') , then model averaging has

the convergence rate O(-
./) .

Control bias-variance after I iterations

• Focus on

• Note…

• PSGD has i.i.d. gradients at "̅#$%, which are unavailable at local workers without
communication

"̅# = 1
()*+%

,
"*# average of local solution over all (workers

"̅# = "̅#$% − . 1()*+%

,
/*#

/*# : independent gradients sampled at different points "*#$%

Technical analysis
• Bound the difference between "̅# and "$#

Our Algorithm ensures %[||"̅# − "$# |) ≤ 4,)-).), ∀1, ∀2

• The rest part uses the smoothness and shows

Proof. Fix t � 1. By the smoothness of f , we have

E[f(xt)] E[f(xt�1)] + E[hrf(xt�1),xt � xt�1i] + L

2
E[kxt � xt�1k2] (7)

Note that

E[kxt � xt�1k2] (a)=�
2E[k 1

N

NX

i=1

Gt
ik2]

(b)
=�

2E[k 1

N

NX

i=1

�
Gt

i �rfi(x
t�1
i)

�
k2] + �

2E[k 1

N

NX

i=1

rfi(x
t�1
i)k2]

(c)
=�

2 1

N2

NX

i=1

E[kGt
i �rfi(x

t�1
i)k2] + �

2E[k 1

N

NX

i=1

rfi(x
t�1
i)k2]

(d)
 1

N
�
2
�
2 + �

2E[k 1

N

NX

i=1

rfi(x
t�1
i)k2] (8)

where (a) follows from (5); (b) follows by noting that E[Gt
i] = rfi(x

t�1
i) and applying the basic

inequality E[kZk2] = E[kZ � E[Z]k2] + kE[Z]k2 that holds for any random vector Z; (c) follows
because each Gt

i � rfi(x
t�1
i) has 0 mean and is independent across nodes; and (d) follows from

Assumption 1.
We further note that

E[hrf(xt�1),xt � xt�1i]

(a)
= � �E

"
hrf(xt�1),

1

N

NX

i=1

Gt
ii
#

(b)
= � �E

"
hrf(xt�1),

1

N

NX

i=1

rfi(x
t�1
i)i

#

(c)
= � �

2
E
"
krf(xt�1)k2 + k 1

N

NX

i=1

rfi(x
t�1
i)k2 � krf(xt�1)� 1

N

NX

i=1

rfi(x
t�1
i)k2

#
(9)

where (a) follows from (5); (b) follows because

E[hrf(xt�1),
1

N

NX

i=1

Gt
ii] =E[E[hrf(xt�1),

1

N

NX

i=1

Gt
ii|⇣

[t�1]]]

=E[hrf(xt�1),
1

N

NX

i=1

E[Gt
i|⇣

[t�1]]i]

=E[hrf(xt�1),
1

N

NX

i=1

rfi(x
t�1
i)i]

where the first equality follows by the iterated law of expectations, the second equality follows
because xt�1 is determined by ⇣[t�1] = [⇣1

, . . . , ⇣t�1] and the third equality follows by E[Gt
i|⇣

[t�1]] =

6

…
…

Assume:

Part 2:
Escaping Saddle points in non-convex optimization

Yi Xu*, Rong Jin, Tianbao Yang*

First-order Stochastic Algorithms for Escaping From
Saddle Points in Almost Linear Time, NIPS 2018.
* Xu and Yang are with Iowa State University

1

0.5

0

-0.5

-1-1

-0.5

0

0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

escape

stuck

(First-order) Stationary Points (FSP)

1

0.5

0

-0.5

-1-1

-0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 1

0.5

0

-0.5

-1-1

-0.5

0

0.5

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

1

1

0.5

0

-0.5

-1-1

-0.5

0

0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

Local minimum Local maximum Saddle point

!"# $ > 0 !"#($) ≺ 0 *+,-(!"# $) < 0
Second-order Stationary Points (SSP)
!# $ " = 0, *+,-(!"# $) ≥ 0

!1 $ " = 0

SSP is Local Minimum for
non-degenerate saddle point

!"# $ has both +/- eigenvalues saddle points, which can be bad!

degenerate case: local minimum/saddle points !"# $ has both 0/+ eigenvalues

The Problem

• Finding an approximate local minimum by using first-order methods

• Choice of γ : small enough, e.g., γ = # (Nesterov & Polyak 2006)

• Nesterov, Yurii, and Polyak, Boris T. "Cubic regularization of Newton method and its global
performance." Mathematical Programming 108.1 (2006): 177-205.

#−SSP: %& ' (≤ #, *+,- %(& ' ≥ −γ

Related Work

• Adding Isotropic Noise: Noisy SGD (Ge et al., 2015), SGLD (Zhang et
al., 2017)

• !" is an isotropic noise vector (e.g., Gaussian)
• Iteration complexity: #$(&'/)*), where , ≥ 4, & is dimension
• Noisy SGD is the first work on finding local minimum by first order methods
• For high-dimensional optimization problems, d is large

• Assume F(/; 1) has Lipschitz continuous Gradient and Hessian

/"23 = /" − 6 78 /"; 1" + !"

More Related Work

• Using Full Gradient (FG) and Isotropic Noise: Perturbed GD (Jin et al.,
2017)
• Add Perturbation Around a Saddle Point !"# = "# + &#
• Take Gradient Descent from !"#
• Iteration Complexity: '((1/,-), which hides the team log2 3

• Using Hessian-vector product (HVP): (Allen-Zhu, 2017)[Natasha2]
• Iteration Complexity: '((1/,4.6)
• The cost of computing HVP per-iteration could be as high as ((27)

• Using both FG and HVP (Carmon et al., 2016; Agarwal et al., 2017)

Issue: FG and HVP could be more expensive than SG

• Saddle points have zero gradient, i.e., !" # = 0
• Non-degenerate Hessian, i.e. &'()(!+" #) < 0
• Negative eigenvector is a direction of escaping

1

0.5

0

-0.5

-1-1

-0.5

0

0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

escape

stuck

f # + ∆ ≈ " # + ∆1!" # + 2
+ ∆

1!+" # ∆ < 3(#)

Motivation: How to Escape from Saddles?

Negative Curvature

• Find a NC direction !, update solution by "#$% = "# − (!
• Escape Saddles: we show f("#) − +("#$%) ≥ Ω(./)

Suppose 0123 45+ " ≤ −., a direction ! ∈ 89 is called negative
curvature (NC) direction if it satisfies (c > 0 is a constant)

!:45+ " ! ≤ −;. and ! = 1

How to Find NC?

• Second-order Methods: Power Method and Lanczos method

!" =n // isotropic noise
Iterate:
!$%& = ((− *+,-(.)) !$

How to find NC without using HVP and Full Gradient?

Propose NEON: NEgative curvature Originated from Noise

NEON: A New Perspective of Noise Perturbation
• Adding Noise is for Extracting NC
• !: around a saddle point
• Inspired by Perturbed Gradient Descent (PGD):

• !" = ! + %, noise % is from sphere of a Euclidean ball
• !& = !&'(− * +, !&'(, - = 1,⋯ ,

• An Equivalent Sequence: let 1& = !& − !
• 1& = 1&'(− * +, 1&'(+ !
• ≈ 1&'(− * [+, 1&'(+ ! - +, !]
• ≈ 1&'(− * +3, ! 1&'(= [5 − * +3, !]1&'(

• Around Saddle Point: PGD ≈ Power Method

NEON Update: Starting with a random noise 1", the recurrence:
1&7(= 1& − *(+, ! + 1& − +,(!))

+,(!) ≈ 0

Lipschitz continuous Hessian when 1&'(is
small:+, 1&'(+ ! - +, !] ≈ +3, ! 1&'(

iteration complexity = ;< (
=

NEON+: Another Perspective

• Recall the update of NEON: !"#$= !" − '()* + + !" −)*(+))
• NEON is essentially an application of GD to decrease *. ! :

*. ! = * + + ! − * + −)* + 0!

Use Nesterov’s Accelerated Gradient to decrease *. ! :
1"#$= !" − ')*. !" , !"#$= 1"#$ +2(1"#$− 1")

*34 2 = 1 − '6, # iteration can be reduced to 7 = 89 $
:

Applications of NEON: Finding Local Minimum
Given a first-order alg. ! (it can find a FSP)
• SGD, Stochastic Heavy-ball, Stochastic Nesterov’s Accelerated Method
• Variance reduction methods, e.g., SCSG, SVRG

NEON + ! -> find a SSP point
• e.g., NEON-SCSG enjoy iteration complexity of "# (1/'(.*) for finding ', ' -

SSP only using first-order information

#IFO ×104
0 1 2 3 4 5

ob
je

ct
iv

e

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0
d = 10

3

NEON+-SGD
NEON-SGD
Noisy SGD

#IFO ×104
0 1 2 3 4 5

ob
je

ct
iv

e
×104

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
d = 10

4

NEON+-SGD
NEON-SGD
Noisy SGD

#IFO ×104
0 1 2 3 4 5

ob
je

ct
iv

e

×105

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
d = 10

5

NEON+-SGD
NEON-SGD
Noisy SGD

f - = ∑0123 40(-05 − 4-08) 40 : a normal random variables with mean of 1

Example: finding local minimum

Part 3:
BPTune: Optimizing Buffer Pool Management for

Large-Scale OLTP Database Clusters

J. Tan, T. Zhang, F. Li, J. Chen, Q. Zheng,
P. Zhang, H. Qiao, Y. Shi, W. Cao, R. Zhang

Computer Systems

Operations
Research

Machine
Learning

Computing
Resource

Optimization

A real system deployed for Alibaba database clusters
Algorithm: large deviation, deep neural networks,

active learning
Large deviation on LRU: joint work with
Quan, Ji and Shroff from The Ohio State
University

“Personalization” for > 10,000 database instances
Measurements can NOT help much:
1. real BP usage configured size
2. (miss ratio, response time) BP size

Current practice:
1. Overprovision (e.g., double BP size)
2. Use only a few BP sizes

Challenges:
1. “Personalization” - find the “best” BP

size for each instance; manual
optimization is not scalable.

2. Prediction - estimate the response time
for queries on each instance after
changing its BP size?

Measurements on 10,000 database instances
an instance = a database working unit

Use only 11 different BP sizes
by manual configurations

?

BP = memory = fast access

BPTune architecture

Reduce > 20% BP memory, compared with manual configurations
A bin-packing analysis shows BP is the bottleneck resource

Real experiment on an instance
Change BP

holidays work days

Response Time:
processing time
of queries

Miss Ratio:
fraction of queried
Data not in memory

• Least recently used (LRU) algorithm (widely used: Memcached, Redis)
• Store the most recently used data in the cache.
• Easy to implement, adaptive to time-varying popularities
• Q: What is the miss ratio of LRU?

d2 d1 d4 d5 d7
Request: d1

Hit

Request: d3

Miss

d3Cache

Today focus on LRU Caching algorithm

BP size

Goal & challenges

• Goal: characterize BP size = F (miss ratio)
• Accurately and explicitly compute LRU miss ratio
• A unified analysis solving all challenges below

• Challenges
• Different data sizes
• Time correlations
• Multiple query flows on a single BP
• Overlapped data across different flows
• Long tailed data access probabilities

e.g., Zipf’s distribution, Weibull distribution

Model
• ! sets of data: "#$, "#&, … , "#(, "#) = {,-) , 1 ≤ 0 ≤ 1)}
• ! data flows sharing a LRU cache:

Data flow 3: a sequence of requests on the data set "#)
• Time correlation

• {Π5}5∈ℝ: a stationary and ergodic modulating process with finite
states {1,2, … ,9} and the stationary distribution (;$, ;&, … , ;<).

• Request rates, data popularities vary in different states.
• Goal: ℙ[Miss].

New functional representation
• Define the (conditional) popularities

!"
($) and &"

($) can be very different.

• Functional relationship Ψ$ (() & finite support impacting Θ$(() :
For each flow *, for ∀, > 1, let the size of the data set /$~,1. Find two

eventually decreasing functions Ψ$ (() and Θ$(() that satisfy, as 1 → ∞,

where 4 5 ~6 5 ⟺ lim;→< ⁄4 5 6(5) = 1.

New functional representation

• Example: If !"
($) = '"

($) = ($/*+,, 1 ≤ * ≤ /, 0 = 1, we have
for flow 1:

Main result

Theorem [Tan, Quan, Ji, Shroff]: Consider ! flows without overlapped data that
are modulated by the stationary and ergodic process {Π$}$∈ℝ. For flow (, if
Ψ*(,)~,

/0(,), then under mild conditions, we have, as the cache size , → ∞,
for ∀4 > 0, 7* = 49←(,),

where 9←(,) is the inverse function of

Note:
• 0(,) is any slowly varying function satisfying lim

>→?
⁄0 4, 0(,) = 1 for

any 4 > 0. (e.g., log(,), D, etc.)
• Γ F, H = ∫J

?
,/KLMK>N, is the incomplete gamma function.

• Quan, Ji and Shroff are with The Ohio State University

Main result
Corollary: Consider one flow of unit-sized data. Assume !"

($)~'/)*, 1 ≤) ≤ -.
For ∀/ > 0, - = /3←(5), we have, as the cache size 5 ⟶ ∞,

where, 3←(5) is the inverse function of

Our result (labeled as ‘theoretical 1’)

Previous result (labeled as ‘theoretical 2’)

Conclusion
Ø System for AI

Part 1. Parallel restarted SGD
(why model averaging works for
Deep Learning?)

Part 2. Escaping saddle points in
non-convex optimization
(first-order stochastic algorithms to find
second-order stationary points)

Ø AI for system
BPTune: intelligent database
A real complex system deployment
Combine OR/ML, e.g., pairwise DNN, active

learning, heavy-tailed randomness …

Part 3. Stochastic (large deviation) analysis
for LRU caching

Computer Systems

Operations
Research

Machine
Learning

Optimization

Thank You! Questions?

