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» High dimensional dataset often consists of multiple
low-dimensional subspaces, i.e. a union of subspaces

Face Recognition/Clustering Hyperspectralimage in remote  Cancer Subtypes Clustering
sensing

» Subspace clustering: to segment the data into each
subspace

(a) data points lying in a union of subspaces  (b) Subspace segmentation

> State-of-the-art subspace clustering methods follow a
two-step approach:
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» Step 1: Self-Expression Model:
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(a) non-subspace preserving b) subspace-preserving

*Step 2: Spectral Clustering

v" Conditions to yield correct clustering:

1. nonzero entries in affinity matrix are correct (i.e.
subspace preserving)

2. affinity graph well-connected for each subspace (i.e.
good connectivity)
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» Our Goal

» Our Ildea and Proposal

... to provide a general approach to improve the connectivity of sparsity-
based subspace clustering methods
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our goal:
develop a method
here |

« SSCOMP is very promising except for its suffering from the
connectivity issue = How to improve the connectivity of

SSCOMP?

Dropout + Self Expression Model
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X

columns uniformly at random
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Theorem 1: Let {¢; f,?';lbe .1.d. Bernoulli random variables, we have that:
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v Introduce dropout into self-expression model to drop the

v" We prove that: dropout = an implicit squared ¢, norm, i.e.
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» SSCOMP (You et al. CVPR16)
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» Dropout meets SSCOMP:
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where ||‘||o is the ¢ pseudo-norm and s is a parameter that controls the sparsity

Stochastic Sparse Subspace Clustering

» We develop a Consensus Orthogonal Matching Pursuit algorithm to solve
problem:
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by alternating the following two steps:

T
* Step 1: Fixed ¢;, update {b@} _lby solving T subproblems via Damped OMP

T T
* Step 2: Fixed {b](-t)}. . update ¢j by taking an average over {b(-t)}_ )
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st 6o <5, b8 =0
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c; < taking an average over {b;t)}f:
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(a) Clustering accuracy (a%) (b) Connectivity (c¢) (¢) Subspace-preserving rate (1 — e%)

» Clustering accuracy compared with scalable subspace clustering methods

L er—

Extended Yale B 2,432 87.58%
COIL100 7,200 56.90%

o
GTSRB 12,390 90.16%
MNIST 70,000 90.87%

» For more recent work and released codes, please visit my homepage:
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Berkeley Stochastic Sparse Subspace Clustering

(3)

Each subproblem can be
solved in parallel
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(a) S2COMP (b) S*COMP-C

62.11% 77.59% 61.20%
58.85% 49.88% 63.94%
78.42% 82.52% 86.05%
87.22% 81.59% 93.67%

87.41%

78.89%

95.54%

96.32%
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