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Introduction

Partial-label learning (PLL) is a typical weakly supervised learning
problems, and arises in many real-world tasks

Ordinary multi-class classification Partial-Label Learning
(i.e., supervised learning)
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Most existing PLL methods must be solved in specific manners,
making their computational complexity a bottleneck for scaling up to
big data

Let PLL enjoy the leading-edge models and optimizers from deep
learning communities

Let the PLL method not benefit purely from the network architecture,
but also our careful algorithm design

Classifier-Consistent Risk Estimator

Notation

Ordinary multi-class classification Partial-Label Learning
Space X C R Y=lc:={L2,....cy S§={P)/0/V}
Random variables (X,Y) e X xY (X,5) e X xS
Density p(x,y) p(z, s)
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g: X — R° gr(X) = p(Y = k[|X) Y = arg max g;(X)
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Lemma 1 (Liu & Dietterich, 2014) The ambiguity degree is defined as
Y = Sup(X,Y)mp(a:,y),YG)J,SNp(skc,y),Y#YPI(Y = S)

If'y < 1;i.e. the under the small ambiguity degree condition, the PLL
problem is ERM learnability.

a negative label is not a classification error made on any
always co-occurred instance will be detected with probability
with the true label at least 1 - y (Liu & Dietterich, 2014)

Lemma 2. If a certain loss function is used (e.g. the cross-entropy loss or
mean squared error loss), the optimal classifier satisfies

g; (X) =p(Y =14X) Tipa optimal classifier g* = argmin_ .5 R(g)

can recover the class-posterior probability

Progressive ldentification of True Labels
for Partial-Label Learning

Jiaqi Lv! Miao Xu?3 Lei Feng* Gang Niu? Xin Geng! Masashi Sugiyama?>°
In: Proceedings of the 37th International Conference on Machine Learning (ICML 2020)

Classifier-Consistent Risk Estimator

Partial label risk estimator

only one label contributes
to retrieve the classifier!
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€PLL(9(X)3 S) = I{}gg *?(Q(X)v e?/)

7?/PLL (g) — E(X,S)Np(a:,s) Iz%lglg(g X)a ei)

Classifier-consistency

Suppose that the learning is conducted under the deterministic scenario,
and Lemma 1 and Lemma 2 are satisfied. Then the optimal PLL minimizer
is equivalent to the ordinary optimal minimizer

griL =9

Estimation error bound

For any 6 > 0, we have with probability at least 1 — 6
log(2/9)

RerL(geLr) — Reon(gprrn) < 4cLeRi(9) + QM\/ 2n

This means the risk of the empirical classifier learned by ERM can be
bounded by the risk of the optimal PLL classifier

Benchmark Solution

* Difficulty: the min operator is non-differentiable

* Ideally: only one (true) label should be taken into account

* Our solution: relax the minimal loss by the shifting confidences

* Advantage: this method can be easily implemented over flexible
learning models and powerful stochastic optimization

Requirement on the loss function: can be decomposed onto each label:
f(g(X)aey) — ZE(%(X);G@Y)
1=1

Thus with appropriate confidences w;,, the risk can be expressed as
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PRODEN
(PROgressive iDENTtification)

Remarks

* PRODEN gets rid of the overfitting issue of EM methods
* PRODEN has great flexibility for models and loss functions
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Experiments

Datasets

Benchmark datasets: MNIST, Fashion-MNIST, Kuzushiji-MNIST, CIFAR-10

» Generate partially labeled versions by a binomial/pair flip strategy with
g: ¢ =Pr(y =1y =0)

UCI datasets: Yeast, Texture, Dermatology, Synthetic Control,

20Newsgroups

Real-world partial-label datasets: Lost, Birdsong, MSRCv2, Soccer Player,

Yahoo! News

Results on MNIST in the binomial case
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* PRODEN is always the best method and comparable to with
all the models
* The performance of the baselines is greatly reduced with a large flipping

probability
 The superiority always stands out for PRODEN compared with two deep methods
and

Analysis on the ambiguity degree on Kuzushiji-MNIST
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* A pair flip strategy to simulate ambiguity degree: asn — 00,7 — ¢
 PRODEN tends to be less affected with increased ambiguity

Conclusion

* We proposed a risk estimator for PLL, theoretically analyzed the
classifier-consistency, and established an estimation error bound

 We proposed a method for PLL which is compatible with any learning
model including DNNs or stochastic optimizer

 Experiments demonstrated our proposal is compared favorably with
state-of-the-art PLL methods

More information

nttp://palm.seu.edu.cn
nttps://arxiv.org/abs/2002.08053
nttps://github.com/Lvcrezia77/PRODEN
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