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ABSTRACT
Partial Multi-Label learning (PML) learns from the ambiguous data
where each instance is associated with a candidate label set, where
only a part is correct. The key to solve such problem is to disam-
biguate the candidate label sets and identify the correct assignments
between instances and their ground-truth labels. In this paper, we
interpret such assignments as instance-to-label matchings, and for-
mulate the task of PML as a matching selection problem. To model
such problem, we propose a novel grapH mAtching based partial
muLti-label lEarning (HALE) framework, where Graph Matching
scheme is incorporated owing to its good performance of exploiting
the instance and label relationship. Meanwhile, since conventional
one-to-one graph matching algorithm does not satisfy the constraint
of PML problem that multiple instances may correspond to multiple
labels, we extend the traditional probabilistic graph matching algo-
rithm from one-to-one constraint to many-to-many constraint, and
make the proposed framework to accommodate to the PML prob-
lem. Moreover, to improve the performance of predictive model,
both the minimum error reconstruction and k-nearest-neighbor
weight voting scheme are employed to assign more accurate labels
for unseen instances. Extensive experiments on various data sets
demonstrate the superiority of our proposed method.
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• Computing methodologies → Machine learning.
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partial multi-label learning; ‘instance-to-label’ matching; matching
selection; graph matching; ‘many-to-many’ constraint
ACM Reference Format:
Gengyu Lyu, Songhe Feng, and Yidong Li. 2020. Partial Multi-Label Learn-
ing via Probabilistic Graph Matching Mechanism. In 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’20), August
23–27, 2020, Virtual Event, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3394486.3403053
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403053

1 INTRODUCTION
In Partial Multi-Label learning (PML), each training instance is
associated with a set of candidate labels, among which only a part
is correct [30]. Recently, the need to learn from PML data naturally
rises in many real-world scenarios. For example, in crowdsourcing
image tagging (Figure 1), given a group of images together with
corresponding candidate label sets, where some of labels (cloud
and people) are incorrectly annotated owing to potential unreliable
annotators, PML aims to learn an accurate multi-label classifier
from such ambiguous training data and assign a set of proper labels
for the unseen instances.

Evidently, the major difficulty to learn from PML data lies in that
the ground-truth labels of each training instance are concealed in
its candidate label set and not directly accessible to the learning
algorithm. Thus, the common strategy to learn from PML data is
disambiguation, i.e. dislodging the noisy labels from the candidate
label set and then utilize the relatively credible labels for model
induction. Following such strategy, some concrete approaches to-
wards PML problem are proposed and can be roughly grouped into
two categories: Xie et al. [30] and Sun et al. [25] disambiguate the
candidate label set by assigning a confidence value for each candi-
date label, and then optimize it in an iterative manner. Fang et al.[8]
and Wang et al. [27] also follow the disambiguation strategy and
divide the training process into two stages, where the higher-level
confidence labels are first selected from the ambiguous candidate
label set, and then incorporated into some off-the-shelf MLL frame-
works to induce the PML model. However, the above PML methods
conduct the disambiguation operation by only utilizing either the
instance correlations, label correlations, or both of them, while the
direct assignment correlations between instances and labels are
hardly taken into consideration, where such potential instance-label
assignment correlations tends to have great contribution to improve
the disambiguation capability of learning model.

In light of this observation, in this paper, we propose a novel
grapHmAtching based partial muLti label lEarning (HALE) method,
where such instance-label assignment correlations together with
instance correlations and label correlations are simultaneously in-
corporated into the proposed framework. Specifically, we regard the
correspondences between instances and their candidate labels as
the instance-label matchings, and then reformulate the task of PML
as an instance-label matching selection problem. Motivated by [3]
[24], graph matching scheme is incorporated to solve such match-
ing selection problem owing to its good performance on utilizing
structural information of training data. However, existing graph
matching algorithms are formulated with one-to-one constraint,
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Figure 1: An exemplar of partial multi-label learning. In
crowdsourcing image tagging, among the 7 candidate labels,
only 5 of them are valid including building, tree, car, sky and
road, while 2 of them are false including cloud and people.

which is not fully in accordance with the original task of PML
problem that multiple instances can correspond to multiple labels.
Therefore, we extend such one-to-one constraint to many-to-many
constraint and propose a many-to-many probabilistic matching
algorithm to make our method accommodate to the original PML
problem. Moreover, to improve the predicted accuracy of learning
model, both minimum error reconstruction scheme and k-nearest-
neighbor weight voting scheme are simultaneously employed to
assign more accurate labels for unseen examples. Extensive experi-
ments demonstrate that our proposed method can achieve superior
performance than state-of-the-art methods.

2 RELATEDWORK
As a novel weakly supervised learning framework, partial multi-
label learning can be regarded as an integration ofmulti-label learn-
ing [37] and partial label learning [4].

2.1 Multi-Label Learning (MLL)
Multi-label Learning aims to learn a multi-class classifier from the
training data where each instance is associated with multiple valid
labels [14]. Based on the order of correlations being exploited for
model training, existing standard MLL methods can be roughly
characterized into three categories: first-order strategy, second-order
strategy and high-order strategy. For the first-order strategy, the
MLL problem is decomposed into multiple binary classification
problems [1] [33], where the classifier for each label is trained
independently. For the second-order strategy, pairwise label corre-
lations are considered, where the ranking between the relevant and
irrelevant label [11], or any pair of labels [19] is often taken into
consideration. For the high-order strategy, higher-level label corre-
lations are considered, such as imposing all other labels’ influences
on each possible label [2] [17]. Recently, some weakly supervised
MLL frameworks are proposed and most of them focus on solving
the MLL problem with missing labels, such as [26] [28] [32].

2.2 Partial Label Learning (PLL)
Partial-label learning aims to induce a multi-class predictive model
from the training data, where each instance is associated with a can-
didate label set, among which only one is ground-truth label [23]
[10]. Existing methods to deal with such problem can be roughly

grouped into three categories: Averaging Disambiguation Strat-
egy, Identification Disambiguation Strategy andDisambiguation-Free
Strategy. Averaging Disambiguation Strategy-based PLL methods
usually treat each candidate label equally and they make prediction
for unseen instances by averaging the outputs from all candidate
labels [13] [34]. Identification Disambiguation Strategy-based PLL
methods often view the ground-truth label as a latent variable first,
and then refine the model parameter in an iterative manner [9]
[16] [20] [24]. Disambiguation-Free Strategy-based methods learns
from the partial label data by incorporating off-the-shelf learning
techniques and they directly make prediction for unseen instance
without any disambiguation operations [29] [35].

2.3 Partial Multi-label Learning (PML)
Partial multi-label learning learns from the ambiguous data, where
partial labels in the candidate label set are correct [31]. Some of ex-
isting methods learns from the PML data by estimating confidence
of each candidate label, and then incorporate the estimated confi-
dence scores into an alternative optimization procedure for model
induction [25] [30]. Others decompose the training process into
two stages, where the high-level confidence labels are first selected
from the candidate label set, and then employed for training the
desired model via some off-the-shelf MLL methods[8] [27].

In this paper, from a completely new perspective, we formulate
the task of PML into an instance-label matching selection problem,
and propose a novel probabilistic matching algorithm to solve it.

3 THE PROPOSED METHOD
Formally speaking, we denote the d-dimensional feature space as
X ∈ Rd , and the label space asY = {1, 2, . . . ,q} with q class labels.
PML aims to learn a classifier f : X 7→ Y from the PML training
data D = {(xi , Si )}(1 ≤ i ≤ m), where the instance xi is described
as a d-dimensional feature vector, the candidate label set Si ⊆ Y is
associated with the instance xi andm is the number of instances.
In addition, we denote S̃i ⊆ Si as the ground-truth label set for
instance xi , and yi , ỹi ∈ {0, 1}q×1 as the vector format of Si and S̃i ,
where each Si (i.e. yi ) corresponding to xi is not directly accessible
to the algorithm.

3.1 Formulation
HALE is a novel PML framework based on probabilistic graph
matching scheme, which aims to fully explore the instance-label
assignment correlations from the ambiguous PML data and establish
an accurate assignment relationship between the instance space
X and label space Y. Although such strategy has been employed
for PLL [24], to the best of our knowledge, this is the first attempt
to resolve PML problem by graph matching strategy. To make the
proposed method easily understanding, we illustrate the HALE
method as a graph matching structure before the following detailed
introduction.

As depicted in Figure 2, both the instance space and label space
are formulated as two different undirected graphs Gi = (Vi ,Ei )
of size ni , where i ∈ {1, 2}, and n1 = m, n2 = q. The nodes Vi
in the two graphs represent the instances and labels respectively,
while the edges Ei encode their correlations. The goal of HALE is
to establish the graph nodes correspondence between G1 and G2.
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Figure 2: The graph matching structure of HALE. For conve-
nience, we only illustrate remarkable labels for each image.

Here, we first denote theAi as the adjacent matrix for each graph
Gi , where i ∈ {1, 2}. A1 ∈ Rm×m encodes the instance similarity,
which can be constructed by the symmetry-favored k-NN graph
[21],

A1
i j =


exp

(
−

∥xi−xj ∥22
1
m

(∑m
i=1 ∥xi−xik ∥22

) ) , j ∈ Ni ,

0, otherwise.
(1)

Here, Ni saves the indices of the k-nearest neighbors of xi , and
xik represents the k-th nearest neighbor of xi . To ensure that A1 is
symmetric, we further set A1 = (A1 +A1⊤)/2. A2 ∈ Rq×q encodes
the label similarity, which is built via the label co-occurrence in the
training data:

A2
i′j′ =

1
m

m∑
c=1
I(Yi′c = 1,Yj′c = 1), (2)

where Y ∈ Rq×m denotes the candidate label matrix for training
instances, I(△) is the indicator function and I(△) = 1 if △ is true,
I(△) = 0 otherwise.

Then, we define P ∈ {0, 1}m×q to describe the graph node cor-
respondence between G1 and G2, where Pi j = 1 represents label
j is assigned to instance xi , and Pi j = 0 otherwise. Among these
correspondences that Pi j = 0, most of them are invaluable since
label j is not contained in the candidate label set of instance xi . To
reduce the complexity of learning model and establish the instance-
label matching model conveniently, we remove the assignments
between instances and their non-candidate labels, and obtain the
row-wise vectorized replica p = [p1,p2, . . . ,pu ]

⊤ ∈ Ru×1, where
each element of p is defined as:

pe = {xie ,yle }, (3)

here ie ∈ {1, 2, . . . ,m}, le ∈ {1, 2, . . . , |Si |}, |Si | is cardinality of
Si . In addition, e ∈ {1, 2, . . . ,u}, u =

∑m
i=1 |Si | and {xie ,yle } repre-

sents the confidence value of instance xie assigned with its le -th
candidate label.

Afterwards, motivated by [22], the correspondence between
instances and their corresponding candidate labels can be obtained
by solving the following optimization problem OP (1):

p∗ = argmax
p

p⊤Kp

s .t . p ∈ {0, 1}u×1

1 ≤

q∑
j=1

Pi j ≤ |Si |, ∀i ∈ [m].

(4)

where K ∈ Ru×u is the affinity matrix that encodes the instance-
label assignment correlations, i.e.Kab = {pa,pb } = {{xia ,yla }, {xib ,ylb }}.
Here, a,b ∈ {1, 2, . . . ,u}, {xia ,yla } represents the value of a-th
element of p that indicating the correspondence between ia -th
instance xia and its la -th candidate label yla . Furthermore, Kab can
be initialized as

Kab = A1
ia jb · A2

i′a j′b
. (5)

It is worth noting that, compared with conventional PML meth-
ods, the proposed framework employs not only instance similarity
but also label correlations, as well as instance-label assignment con-
sistency, which leads the learning model to obtain more accurate
instance-label matchings during the whole learning process.

3.2 Optimization
In this section, we extend the probabilistic graph matching scheme
from [6] and derive a probabilistic graph matching PML algorithm,
which can avoid theOP (1) falling into trivial solutions. The core of
the proposed algorithm is based on the observation that we can use
the solution of the spectral matching algorithm [18] to refine the
estimation of the affinity matrixK and then solve a new assignment
problem based on the refined matrix K.

Concretely, we relax the first constraint of OP (1) to p∈ [0, 1]u×1
and interpret p as matching probabilities P({xi ,yl }). Then, the
affinity matrix K can be further interpreted as a joint matching
probability matrix, i.e. Kab = P({xia ,yla }, {xib ,ylb }). Afterwards,
we can iteratively refine K and p by solving the following problem
OP (2):

min
Kab ,pa

∑
a

((
∑
b

Kab ) − pa )
2

= min
p(a |b),pa

∑
a

((
∑
b

p(a |b) · pb ) − pa )
2 (6)

where pa is the assignment probability P({xia ,yla }) and p(a |b) rep-
resents the conditional assignment probability P({xia ,yla }|{xib ,ylb }),
which is the probability of assignment {xia ,yla } when {xib ,ylb }
is valid.

Note that, in OP (2), the joint matching probability in K is
not directly optimized as it cannot be easily updated: Having a
high assignment probability P({xia ,yla }) ≈ 1 does not imply that
P({xia ,yla }, {xib ,ylb }) ≈ 1, as we might have P({xib ,ylb }) ≈ 0.
In contrast, P({xia ,yla }|{xib ,ylb }) is asymmetric, and given that
P({xia ,yla }) ≈ 1, we can increase P({xia ,yla }|{xib ,ylb }) regard-
less of P({xib ,ylb }).

Next, we optimize thepa andp(a |b) in an iterative manner. Specif-
ically, in t-th iteration, we denote the estimations of P (t )({xia ,yla }|{xib ,ylb })
by p(t )

(a |b) and P
(t )({xia ,yla }) by p

(t )
a , respectively. Then, p(t )

(a |b) and

p
(t )
a can be separately updated following

p
(t+1)
a =

∑
b

p
(t )
(a,b) =

∑
b

p
(t )
(a |b) · p

(t )
b , (7)

and

p
(t+1)
(a |b) = p

(t )
(a |b) ·

p
(t+1)
a

p
(t )
a

. (8)
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Algorithm 1 The Training Algorithm of HALE
Inputs:

D: the partial multi-label training set {(xi , Si )};
Process:
1. Calculate instance similarity matrix A1 and label similarity
matrix A2 according to Eq (1) and Eq (2);
2. Calculate the affinity matrix K by Eq (5);
3. Set K(0) = K and p(0) = 1

|Si |
1 where p(0) ∈ Ru×1;

4. for t = 0 to iter
5. p(t+1) = K(t )p(t );
6. p(t+1) = Normalize(p(t+1));
7. K(t+1)(a,b) = K(t )(a,b) · (p

(t+1)
a /p

(t )
a );

8. if (| |p(t+1) − p(t ) | |2) < δ
9. break;
10. end if
11. end for
12. Discretize p(t+1), and derive the assignment (xi , S̃i );
Output:
S̃i : the assigned labels for xi ;

In order to explicitly formulate the HALE with many-to-many
constraint and avoid the trivial solutions, we normalize p(t+1)a in
each optimization iteration following:

p
(t+1)
ac =

p
(t+1)
ac

max{p(t+1)a1 ,p
(t+1)
a2 , . . . ,p

(t+1)
a |Si |

}
. (9)

Here, p(t+1)ac is the element of instance-label assignment confidence
subvector [p(t+1)a1 ,p

(t+1)
a2 , . . . ,p

(t+1)
a |Si |

], which is separated from the
assignment confidences between varying candidate labels and the
same (i-th) instance.

During the entire process of optimization, we first initialize the
required variables, and then repeat the above steps until the algo-
rithm converges. Algorithm 1 summarized the pseudo-code of the
proposed HALE.

3.3 Proof
In this subsection, inspired by [6], we show that the two-step itera-
tive scheme presented in Eq. (7) and Eq. (8) monotonically reduces
the objective function in OP (2). The proof has two parts, the first
derives a result that is used in the second part.

3.3.1 The First Step. Eq. (7) is a single iteration of the Power It-
eration scheme that converges in the Frobenius norm, and thus
decreases the objective function for each entry of p(t ).((∑

b

p
(t )
(a |b)p

(t+1)
b

)
− p

(t+1)
a

)2
≤

((∑
b

p
(t )
(a |b)p

(t )
b

)
− p

(t )
a

)2
(10)

=
(
p
(t+1)
a − p

(t )
a

)2
.

Denote by S(t ) =
∑
b p

(t )
(a |b)p

(t+1)
b , hence(

S(t )
)2

− 2p(t+1)a S(t ) ≤
(
p
(t )
a

)2
− 2p(t+1)a p

(t )
a . (11)

Assume p(t+1)a ≥ p
(t )
a , then(

S(t ) − p
(t )
a

) (
S(t ) + p

(t )
a − 2p(t+1)a

)
≤ 0. (12)

As p(t+1)a > p
(t )
a ≤ 0 and S(t ) ≥ 0, then

S(t ) − p
(t )
a > S(t ) + p

(t )
a − 2p(t+1)a (13)

and

S(t ) − p
(t )
a > 0, S(t ) + p

(t )
a − 2p(t+1)a < 0 (14)

3.3.2 The Second Step. Eq. (8) also decreases the objective function.
Namely, we aim to show that((∑

b

p
(t )
(a |b)p

(t+1)
b

)
− p

(t+1)
a

)2
≥

((∑
b

p
(t+1)
(a |b)p

(t+1)
b

)
− p

(t+1)
a

)2
(15)

=

((∑
b

p
(t )
(a |b)

p
(t+1)
a

p
(t )
a

p
(t+1)
a

)
− p

(t+1)
a

)2
.

Simplifying the above expression we get

S(t )
©­«
(
p
(t+1)
a

p
(t )
a

)2
− 1ª®¬ − 2p(t+1)a

(
p
(t+1)
a

p
(t )
a

− 1

)
≤ 0. (16)

Assuming p(t+1)a > p
(t )
a as before, we have that p(t+1)a

p(t )a
− 1 > 0.

Thus,

0 ≥S(t )

(
p
(t+1)
a

p
(t )
a

+ 1

)
− 2p(t+1)a (17)

=S(t )

(
p
(t+1)
a

p
(t )
a

)
+ S(t ) − 2p(t+1)a ≥ S(t ) + p

(t )
a − 2p(t+1)a .

Eq. (17) is validated by the first part of the proof (Eq. (14)), which
implies the reduction of the objective function in OP (2). The proof
of the complementary case ( p(t+1)a < p

(t )
a ) can be derived mutatis

mutandis.
In addition, during the optimization process, we normalize the

vector p to satisfy the constraint of PML task and avoid the trivial
solution. According to the illustrations in [15], such normalization
operations does not hamper the convergence properties of our algo-
rithm, since each of these operations can be considered a projection
operator onto a closed and convex set.

3.4 Prediction
During the testing phase, the class label of each unseen instance x∗i
is predicted based on the disambiguated training examples {xi , ỹi },
where both minimum error reconstruction scheme and k-nearest-
neighbor weight voting scheme are simultaneously incorporated
to improve the predictive accuracy of the learning model.

Specifically, we calculate the k-nearest-neighbor weights wi ∈

Rk×1 for each unseen instance x∗i viaminimum error reconstruction
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scheme OP (3):

w∗
ic =min

wic

��������x∗i − k∑
c=1

wic · xic

��������2
2

s .t . wic ≥ 0,
k∑
c=1

wic = 1, (xic ∈ N(x∗i ), 1 ≤ c ≤ k),

(18)

here,wic is an element of wi and c ∈ {1, 2, . . . ,k}. Thereafter, the
unseen instance is classified by

y∗i =
k∑
c=1

wic · ỹic , (19)

where ỹic ∈ Rq×1 denotes the class vector of k-nearest-neighbor
instance xic and y∗i represents the classification results of x∗i .

4 EXPERIMENT
4.1 Experimental Setup
To effectively evaluate the performance of the proposed HALE
method, we implement experiments on 9 synthetic PML data sets
and 3 real-world data sets, where the synthetic PML data sets are
generated from the widely-used MLL data sets by randomly adding
labeling noise under different configurations of the controlling
parameter r . Here, r ∈ {1, 2, 3} represents the average number of
false candidate labels for each training example, and the candidate
label set consists of relevant labels along with irrelevant labels that
are randomly chosen from non-ground-truth label set. For the real-
world data sets, candidate labels are collected from web users which
are further examined by human labelers to specify the ground-truth
labels. Table 1 summarizes the characteristics of these employed
experimental data sets.

Table 1: Characteristics of the experimental data sets. For
each PML data set, the number of examples (EXPs*), fea-
tures (FEAs*), class labels (CLs*), the maximum number of
ground-truth labels (M-GT*), the average number of ground-
truth labels (A-GT*) and its corresponding domain (DOM*)
are recorded. The last three PML data sets are real-world
data sets.

Data set EXPs* FEAs* CLs* M-GT* A-GT* DOM*

Emotions 593 72 6 3 1.86 music
Birds 645 260 19 6 1.86 audio

Medical 978 1,449 45 3 1.25 text
Image 2,000 294 5 3 1.23 images
Scene 2,407 294 6 3 1.07 images
Bibtext 7,395 1,836 159 28 2.40 text

Eurlex-dc 19,348 5,000 412 7 1.01 text
Eurlex-sm 19,348 5,000 201 12 1.53 text
NUS-WIDE1 133,441 500 81 20 1.76 images

Music-emotion 6,833 98 11 7 2.42 music
Music-style 6,839 98 10 4 1.44 music
Mirflickr 10,433 100 7 5 1.77 images

1 The original number of instances is 269,648 but some of them are
unlabeled w.r.t the 81 class labels, thus we only utilized the

remaining 133,441 instances to conduct experiments.

Meanwhile, we employ seven methods from three categories
for comparative studies, including MLL methods [ML-KNN [36],
RankSVM [7]], PLL methods [IPAL [34], LALO [9]], and PML
methods [PML-fp [30], PML-lc [30], PARTICLE [8]], where the
configured parameters are utilized via the suggestions in respec-
tive literatures. In addition, five popular multi-label metrics are
employed to evaluate each comparing method, including Ham-
ming Loss, Ranking Loss, One-Error, Coverage and Average Precision,
whose detailed definitions can be found in [12]. Finally, we adopt
ten-fold cross-validation to train the desired model and record the
experimental results on each data set in Table 2 and Table 3.

4.2 Experimental Results
Due to page limit, we partially report the experimental results on
synthetic data sets in Table 3, where the parameter is configured
with r = 3, and the similar observations can be made when the
data set is built under the configurations of r = 1 and r = 2. Table
2 summarizes the resulting win/tie/loss counts over 9 synthetic
data sets and 5 evaluation metrics. Meanwhile, we also report the
experimental results on real-world data sets in Table 4. Out of 150
statistical comparisons, the following observations can be made:

• For each comparing method, HALE separately achieves su-
perior or comparable performance against tailored MLL and
PLL methods in 85.5% and 89.4% cases. And, it also outper-
forms the counterpart PML methods in 84.0% cases.

• For each evaluation metric, HALE is superior or comparable
to other comparing methods in 95.2% cases (Hamming Loss),
73.5% cases (Ranking Loss), 84.1% cases (One Error), 77.8%
cases (Coverage) and 96.8% cases (Average Precision).

• For each data set, HALE outperforms most of comparing
methods over 4/5 evaluation metrics. Particularly, on Scene
data set, HALE achieves the best performance on all evalua-
tion metrics.

• For large-scale data sets (such as NUS-WIDE), HALE can not
only effectively learn from such large-scale data, but also
achieve superior performance on most evaluation metrics.

In order to comprehensively evaluate the superiority of the pro-
posed HALE, Friedman test [5] is utilized as the statistical test
to analyze the relative performance among the comparing algo-
rithms. According to Table 5, the null hypothesis of distinguish-
able performance among the comparing algorithms is rejected at
0.05 significance level. Therefore, we further employ the post-hoc
Bonferroni-Dunn test [5] to show the relative performance among
the comparing algorithms. Figure 4 illustrates the CD diagrams on
each evaluation metric, where the average rank of each comparing
algorithm is marked along the axis. According to Figure 4, it is ob-
served that HALE performs significantly superiority against other
comparing methods.

4.3 Robustness Analysis
In order to demonstrate the robustness of HALE, we conduct an-
other group of comparative experiments, where the proportion of
training examples decreases from 90% to 10%. Note that, it is the first
time to evaluate the robustness of PML algorithm w.r.t the number
of training examples. Figure 3 illustrates the comparative results
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Table 2: Win/tie/loss counts of HALE’s performance against comparing methods on synthetic data sets (pairwise t-test at 0.05
significance level).

Data set Emotions Birds Medical Image Scene Bibtext Eurlex-dc Eurlex-sm NUS-WIDE Sum

Hamming Loss 17/1/3 16/2/3 13/8/0 18/0/3 19/2/0 13/8/0 14/7/0 9/12/0 19/2/0 138/42/9
Ranking Loss 7/0/14 20/1/0 3/0/18 20/1/0 20/1/0 6/0/15 20/1/0 15/3/3 19/2/0 130/9/50
One Error 20/0/1 19/2/0 19/2/0 18/0/2 18/1/2 9/0/12 15/0/6 13/2/6 21/0/0 152/7/30
Coverage 21/0/0 13/2/6 11/2/8 20/1/0 21/0/0 11/1/9 12/2/7 9/0/12 21/0/0 139/8/42

Average Precision 18/1/2 20/1/0 21/0/0 21/0/0 21/0/0 20/1/0 17/3/1 18/0/3 20/1/0 176/7/6

Sum 83/2/20 88/8/9 67/12/26 97/2/6 99/4/2 59/10/36 78/13/14 64/17/24 100/5/0 735/73/137
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Figure 3: The performance of each comparing method on Emotions data set changes as the proportion of training examples
increases from 0.1 to 0.9 (with one false candidate label [r = 1]).

Figure 4: Comparison of HALE (control algorithm) against seven comparing algorithms with the Bonferroni-Dunn test. Al-
gorithms not connected with HALE in the CD diagram are considered to have significantly different performance from the
control algorithm (CD = 2.60 at 0.05 significance level)
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Table 3: Comparison of HALE with state-of-the-art MLL, PLL, and PML approaches on five evaluation metrics, where the best
performances are shown in bold face. (r = 3, pairwise t-test at 0.05 significance level)

Hamming Loss (the lower the better)
Data set Emotions Birds Medical Image Scene Bibtext Eurlex-dc Eurlex-sm NUS-WIDE
HALE 0.297±0.071 0.096±0.009 0.017±0.001 0.189±0.017 0.108±0.008 0.016±0.001 0.004±0.003 0.008±0.005 0.031±0.008

ML-KNN 0.607±0.029 0.053±0.006 0.022±0.002 0.753±0.005 0.816±0.007 0.014±0.000 0.009±0.005 0.012±0.001 0.049±0.016
RankSVM 0.517±0.020 0.194±0.015 0.074±0.003 0.650±0.020 0.646±0.003 0.021±0.000 0.006±0.001 0.009±0.006 -

IPAL 0.314±0.021 0.125±0.009 0.018±0.003 0.199±0.015 0.173±0.001 0.020±0.000 0.010±0.004 0.013±0.005 0.059±0.017
LALO 0.311±0.002 0.098±0.012 0.027±0.001 0.244±0.005 0.107±0.009 0.015±0.000 0.007±0.002 0.009±0.002 -
PML-fp 0.437±0.027 0.157±0.007 0.056±0.005 0.448±0.030 0.362±0.017 0.019±0.000 0.011±0.006 0.016±0.002 -
PML-lc 0.437±0.027 0.132±0.012 0.063±0.003 0.443±0.014 0.363±0.008 0.021±0.001 0.013±0.005 0.019±0.002 -

PARTICLE 0.233±0.018 0.142±0.018 0.024±0.002 0.403±0.042 0.483±0.042 0.017±0.000 0.004±0.000 0.010±0.001 0.029±0.006
Ranking Loss (the lower the better)

Data set Emotions Birds Medical Image Scene Bibtext Eurlex-dc Eurlex-sm NUS-WIDE
HALE 0.235±0.037 0.271±0.061 0.169±0.025 0.192±0.015 0.096±0.009 0.601±0.009 0.079±0.002 0.040±0.002 0.239±0.012

ML-KNN 0.241±0.026 0.304±0.048 0.088±0.019 0.342±0.026 0.179±0.016 0.232±0.006 0.086±0.012 0.043±0.003 0.301±0.011
RankSVM 0.235±0.037 0.291±0.067 0.103±0.018 0.247±0.023 0.155±0.009 0.224±0.006 0.134±0.012 0.085±0.005 -

IPAL 0.738±0.052 0.864±0.041 0.383±0.055 0.383±0.056 0.085±0.008 0.703±0.009 0.663±0.011 0.619±0.011 0.935±0.015
LALO 0.240±0.024 0.428±0.037 0.079±0.035 0.196±0.025 0.317±0.029 0.689±0.018 0.326±0.005 0.506±0.006 -
PML-fp 0.462±0.034 0.368±0.050 0.052±0.016 0.494±0.043 0.370±0.031 0.336±0.002 0.068±0.014 0.079±0.012 -
PML-lc 0.459±0.035 0.321±0.021 0.056±0.012 0.467±0.025 0.359±0.012 0.342±0.005 0.071±0.013 0.082±0.013 -

PARTICLE 0.259±0.019 0.301±0.032 0.100±0.021 0.315±0.073 0.175±0.066 0.287±0.010 0.061±0.023 0.053±0.002 0.240±0.015
One Error (the lower the better)

Data set Emotions Birds Medical Image Scene Bibtext Eurlex-dc Eurlex-sm NUS-WIDE
HALE 0.296±0.027 0.467±0.083 0.253±0.036 0.255±0.016 0.243±0.015 0.491±0.014 0.292±0.012 0.165±0.008 0.761±0.011

ML-KNN 0.383±0.062 0.794±0.031 0.425±0.041 0.562±0.035 0.395±0.028 0.624±0.008 0.502±0.015 0.189±0.003 0.866±0.005
RankSVM 0.389±0.096 0.650±0.081 0.588±0.056 0.437±0.030 0.381±0.022 0.518±0.012 0.602±0.021 0.539±0.012 -

IPAL 0.511±0.093 0.760±0.072 0.285±0.059 0.289±0.052 0.262±0.013 0.405±0.020 0.244±0.015 0.172±0.012 0.883±0.011
LALO 0.300±0.153 0.836±0.079 0.285±0.096 0.120±0.140 0.286±0.028 0.443±0.018 0.213±0.002 0.179±0.009 -
PML-fp 0.527±0.049 0.747±0.060 0.295±0.035 0.712±0.053 0.757±0.038 0.465±0.013 0.429±0.008 0.292±0.015 -
PML-lc 0.531±0.045 0.589±0.036 0.325±0.043 0.683±0.027 0.773±0.034 0.468±0.016 0.432±0.009 0.306±0.013 -

PARTICLE 0.306±0.065 0.575±0.084 0.251±0.066 0.410±0.121 0.356±0.121 0.557±0.014 0.356±0.012 0.212±0.017 0.835±0.012
Coverage (the lower the better)

Data set Emotions Birds Medical Image Scene Bibtext Eurlex-dc Eurlex-sm NUS-WIDE
HALE 0.332±0.040 0.206±0.049 0.095±0.016 0.219±0.017 0.096±0.009 0.478±0.007 0.235±0.009 0.243±0.010 0.243±0.006

ML-KNN 0.374±0.028 0.206±0.045 0.111±0.027 0.324±0.020 0.165±0.016 0.369±0.009 0.098±0.002 0.061±0.008 0.389±0.011
RankSVM 0.368±0.040 0.399±0.064 0.125±0.021 0.253±0.021 0.144±0.008 0.294±0.008 0.158±0.021 0.339±0.011 -

IPAL 0.514±0.036 0.584±0.042 0.220±0.031 0.225±0.027 0.900±0.029 0.498±0.023 0.239±0.012 0.689±0.012 0.628±0.026
LALO 0.815±0.064 0.595±0.075 0.084±0.026 0.917±0.042 0.162±0.015 0.499±0.004 0.291±0.013 0.602±0.004 -
PML-fp 0.528±0.035 0.485±0.054 0.055±0.021 0.448±0.032 0.321±0.027 0.356±0.016 0.121±0.019 0.166±0.011 -
PML-lc 0.526±0.036 0.453±0.046 0.062±0.026 0.430±0.022 0.312±0.011 0.372±0.016 0.132±0.023 0.176±0.025 -

PARTICLE 0.365±0.040 0.396±0.033 0.121±0.023 0.275±0.088 0.142±0.066 0.458±0.014 0.101±0.021 0.114±0.004 0.295±0.021
Average Precision (the higher the better)

Data set Emotions Birds Medical Image Scene Bibtext Eurlex-dc Eurlex-sm NUS-WIDE
HALE 0.751±0.035 0.505±0.054 0.769±0.023 0.762±0.016 0.849±0.010 0.353±0.010 0.673±0.006 0.739±0.013 0.230±0.007

ML-KNN 0.741±0.029 0.453±0.052 0.672±0.039 0.627±0.022 0.744±0.019 0.306±0.006 0.603±0.012 0.761±0.012 0.171±0.015
RankSVM 0.722±0.050 0.443±0.070 0.544±0.044 0.714±0.021 0.760±0.009 0.329±0.002 0.413±0.015 0.530±0.012 -

IPAL 0.588±0.051 0.275±0.042 0.667±0.048 0.662±0.035 0.788±0.014 0.326±0.012 0.603±0.009 0.436±0.009 0.116±0.005
LALO 0.608±0.045 0.223±0.035 0.404±0.036 0.658±0.025 0.793±0.018 0.347±0.016 0.670±0.009 0.490±0.005 -
PML-fp 0.573±0.025 0.350±0.041 0.700±0.012 0.501±0.037 0.491±0.030 0.297±0.008 0.613±0.009 0.605±0.011 -
PML-lc 0.573±0.025 0.388±0.035 0.713±0.012 0.523±0.019 0.489±0.023 0.283±0.010 0.602±0.012 0.582±0.013 -

PARTICLE 0.745±0.024 0.431±0.051 0.720±0.044 0.689±0.096 0.750±0.098 0.313±0.012 0.630±0.016 0.695±0.012 0.206±0.017
‘-’ means overlong time consumption. Hence, the experimental results are not reported.
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Table 4: Comparison of HALE with state-of-the-art MLL, PLL, and PML approaches on real-world data sets, where the best
performances are shown in bold face. (pairwise t-test at 0.05 significance level).

Data sets HALE ML-KNN RankSVM IPAL LALO PML-fp PML-lc PARTICLE Evaluation Metrics

Music-emotion 0.219±0.003 0.364±0.011 0.609±0.013 0.239±0.002 0.222±0.000 0.228±0.005 0.221±0.008 0.206±0.003
Hamming Loss ↓Music-style 0.122±0.005 0.844±0.010 0.791±0.114 0.178±0.004 0.152±0.002 0.153±0.008 0.162±0.006 0.137±0.007

Mirflickr 0.156±0.003 0.217±0.006 0.307±0.010 0.225±0.013 0.241±0.011 0.178±0.007 0.193±0.006 0.179±0.008

Music-emotion 0.299±0.008 0.365±0.010 0.523±0.009 0.838±0.009 0.349±0.022 0.324±0.012 0.310±0.010 0.261±0.007
Ranking Loss ↓Music-style 0.271±0.015 0.229±0.010 0.693±0.031 0.752±0.015 0.339±0.020 0.195±0.012 0.269±0.016 0.351±0.014

Mirflickr 0.143±0.009 0.178±0.013 0.223±0.016 0.634±0.012 0.151±0.012 0.190±0.008 0.206±0.008 0.213±0.011

Music-emotion 0.356±0.009 0.591±0.015 0.773±0.012 0.605±0.015 0.454±0.074 0.435±0.011 0.421±0.016 0.419±0.019
One Error ↓Music-style 0.318±0.016 0.398±0.020 0.844±0.064 0.671±0.020 0.500±0.141 0.432±0.012 0.493±0.015 0.410±0.027

Mirflickr 0.139±0.009 0.411±0.016 0.518±0.013 0.403±0.013 0.142±0.006 0.172±0.010 0.179±0.006 0.152±0.012

Music-emotion 0.475±0.006 0.512±0.010 0.694±0.012 0.606±0.007 0.857±0.054 0.436±0.007 0.421±0.009 0.409±0.009
Coverage ↓Music-style 0.286±0.010 0.295±0.014 0.713±0.010 0.382±0.010 0.815±0.014 0.398±0.017 0.467±0.011 0.368±0.017

Mirflickr 0.211±0.008 0.262±0.011 0.309±0.007 0.564±0.012 0.786±0.021 0.286±0.009 0.309±0.009 0.271±0.013

Music-emotion 0.543±0.005 0.505±0.010 0.377±0.005 0.423±0.008 0.411±0.025 0.556±0.016 0.539±0.013 0.626±0.011
Average Precision ↑Music-style 0.687±0.013 0.659±0.014 0.269±0.026 0.473±0.011 0.354±0.030 0.653±0.011 0.598±0.009 0.621±0.016

Mirflickr 0.718±0.005 0.698±0.013 0.671±0.012 0.566±0.016 0.671±0.009 0.683±0.007 0.675±0.010 0.690±0.012
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Figure 5: (I) The performance of HALE changes as each parameter increases with other parameters fixed [left]. (II) The con-
vergence curves of HALE on Emotions [center] and Image [right] data sets with increasing number of iterations.

Table 5: Friedman statics τF in terms of each evaluationmet-
ric (at 0.05 significance level).

Evaluation Metric τF Average Precision

Hamming Loss 10.07

2.131
(Methods: 8, Data sets: 12)

Ranking Loss 4.28
One Error 10.91
Coverage 9.37

Average Precision 8.22

between HALE and other state-of-the-art methods on five evalua-
tion metrics. As described in Figure 3, HALE is superior to all other
comparing methods on most evaluation metrics. Especially, when
the scale of training examples is extremely small (10%), HALE can
significantly outperform all comparing methods on each evaluation
metric. In summary, the robustness of HALE is demonstrated.

5 FURTHER ANALYSIS
Complexity Analysis: Theoretically, at each iteration of Algo-
rithm 1, HALE consists of the O(m2q2) operations required for

Table 6: Total running time (training time/testing time) com-
parison between HALE and other comparing methods on
Emotions, Image and NUS-WIDE data sets.

Running time(s) Emotions Image NUS-WIDE

HALE 0.845/0.050 8.905/0.338 1,495.508/76.529
ML-KNN 0.136/0.114 2.374/0.192 865.015/79.120
RankSVM 72.989/0.376 155.407/1.449 -

IPAL 0.259/0.027 2.446/0.219 2,152.075/200.147
LALO 6.294/1.029 64.098/11.360 -
PML-fp 494.88/0.080 2,753.531/0.100 -
PML-lc 316.35/0.060 2,265.123/0.106 -

PARTICLE 1.273/0.039 9.578/0.502 3,124.148/254.080
‘-’ means that the time consumption is over one week.

the matrix-vector multiplication, and O(mq) operations to row-
normalize the assignment matrix, as well as O(m2q2) operations
needed to weigh the affinity matrix. Therefore, the overall compu-
tational complexity of HALE can reach to O(m2q2). However, in
practice, since we only utilize the k-nearest-neighbor instances to
build the instance similarity matrices, and continuously conduct the
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sparsity operation on all employed matrix during the whole learn-
ing process, thus the practical computational cost of HALE is far
less than O(m2q2). Table 6 illustrates the running time comparison
between HALE and other comparing methods, measured within
Matlab environment equipped with Intel E5-2650 CPU. According
to Table 6, our proposed HALE is significantly effective than most
comparing methods.

ParameterAnalysis:We study the sensitivity analysis of HALE
with respect to the crucial parameter k . Sub-figure [left] in Figure
5 illustrates the performance of HALE changes as k increases from
5 to 30 with step-size of 5 on Emotions data set. As shown in Figure
5, HALE is robust in terms of the parameter k and we empirically
set k = 10 in our experiments.

Convergence Analysis: We conduct the convergence analysis
of HALE on Emotions and Image data sets, where the convergence
curves are separately shown in the right two sub-figures of Figure
5. We can easily observe that each ∥p(t+1) − p(t )∥2 gradually de-
creases to 0 as the number of iterations t increases. Therefore, the
convergence of HALE is empirically demonstrated. In addition, in
Section 3.3, we show that the two-step iterative scheme presented
in Eq. (7) and Eq. (8) is monotonically decreasing the objective
function in OP (2). Therefore, the convergence of HALE is further
demonstrated in theory.

6 CONCLUSION
In this paper, we proposed a novel probabilistic graph matching
based partial multi-label learning framework named HALE. To
the best of our knowledge, it is the first time to reformulate the
PML problem into a graph matching structure. By incorporating
the instance-label assignment correlations, the proposed HALE al-
gorithm can effectively disambiguate the candidate label set and
identify the credible labels for each training instance. Extensive
comparative experiments demonstrate that HALE can achieve supe-
rior or comparable performance against state-of-the-art methods.
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