Generalized Focal Loss: Learning Qualified and
Distributed Bounding Boxes for Dense Object Detection

One-stage detector basically formulates object detection as dense classification and localization. The classification is usually optimized by Focal Loss and the
box location is commonly learned under Dirac delta distribution. A recent trend for one-stage detectors is to introduce an individual prediction branch to
estimate the quality of localization, where the predicted quality facilitates the classification to improve detection performance. This paper delves into the
representations of the above three fundamental elements: quality estimation, classification and localization. Two problems are discovered in existing
practices, including (1) the inconsistent usage of the quality estimation and classification between training and inference, and (2) the inflexible Dirac delta
distribution for localization. To address the problems, we design new representations for these elements. Specifically, we merge the quality estimation into
the class prediction vector to form a joint representation, and use a vector to represent arbitrary distribution of box locations. The improved representations
eliminate the inconsistency risk and accurately depict the flexible distribution in real data, but contain continuous labels, which is beyond the scope of Focal
Loss. We then propose Generalized Focal Loss (GFL) that generalizes Focal Loss from its discrete form to the continuous version for successful optimization. On

COCO test-dev, GFL achieves 45.0% AP using ResNet-101 backbone, surpassing state-of-the-art SAPD (43.5\%) and ATSS (43.6\%) with higher or comparable
inference speed.

Inconsistent usage of box quality and cls score between train and test Improved Representation for cls, box quality and box regression
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GFL achieves better speed-accuracy trade-off than many com-

petitive counterparts.
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In this section, we show how GFL can be specialized into the form of FL, QFL and DFL, respectively. : oot > — | a "]
FL: Letting 8 = v,y1 = 0,y = 1,p,, = p,py, = 1 —pand y € {1,0} in GFL, we can obtain FL: SEITEETT e T | N L
FL(p) = GFL(1 —p,p) = —|y —p|" ((1 — y) log(1 — p) + ylog(p)),y € {1,0}
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QFL: Having y; = 0,y, = 1, p,, = o and p,, = 1 — o in GFL, the form of QFL can be written as: ACkn OWI ed ) e m e

QFL(0) = GFL(1 — 0,0) = —|y — 0| (1 — y) log(1 — &) + ylog(c)). (10)

DFL: By substituting 8 = 0,y = vi, Yr = Yi+1,0y, = Ply1) = Pyi) = Si,py, = P(yr) = P(yi+1) =
S;+1 in GFL, we can have DFL:

DFL(S;, Si+1) = GFL(S;, Sit1) = — ((yi+1 — y) log(Si) + (y — i) log(Sit1))- (11)
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